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Symbolic Math Toolbox Product Description

1-2

Perform symbolic math computations

Symbolic Math Toolbox provides functions for solving and manipulating symbolic

math expressions and performing variable-precision arithmetic. You can analytically
perform differentiation, integration, simplification, transforms, and equation solving.
You can also generate code for MATLAB, Simulink®, and Simscape™ from symbolic math
expressions.

Symbolic Math Toolbox includes the MuPAD language, which is optimized for handling
and operating on symbolic math expressions. It provides libraries of MuPAD functions
in common mathematical areas, such as calculus and linear algebra, and in specialized
areas, such as number theory and combinatorics. You can also write custom symbolic
functions and libraries in the MuPAD language. The MuPAD Notebook app lets you
document symbolic math derivations with embedded text, graphics, and typeset math.
You can share the annotated derivations as HTML or as a PDF.

Key Features

* Symbolic integration, differentiation, transforms, and linear algebra
* Algebraic and ordinary differential equation (ODE) solvers
+ Simplification and manipulation of symbolic expressions

*  Code generation from symbolic expressions for MATLAB, Simulink, Simscape, C,
Fortran, MathML, and TeX

*  Variable-precision arithmetic
*  MuPAD Notebook for performing and documenting symbolic calculations

* MuPAD language and function libraries for combinatorics, number theory, and other
mathematical areas



Access Symbolic Math Toolbox Functionality

Access Symbolic Math Toolbox Functionality

In this section...
“Work from MATLAB” on page 1-3
“Work from MuPAD” on page 1-3

Work from MATLAB

You can access the Symbolic Math Toolbox functionality directly from the MATLAB
Command Window. This environment lets you call functions using familiar MATLAB
syntax.

Work from MuPAD

You can access the Symbolic Math Toolbox functionality from the MuPAD Notebook app
using the MuPAD language. The MuPAD Notebook app includes a symbol palette for
accessing common MuPAD functions. All results are displayed in typeset math. You also
can convert the results into MathML and TeX. You can embed graphics, animations, and
descriptive text within your notebook.

A debugger and other programming utilities provide tools for authoring custom symbolic
functions and libraries in the MuPAD language. The MuPAD language supports multiple
programming styles including imperative, functional, and object-oriented programming.
The language treats variables as symbolic by default and is optimized for handling and
operating on symbolic math expressions. You can call functions written in the MuPAD
language from the MATLAB Command Window. For more information, see “Call Built-In
MuPAD Functions from MATLAB” on page 3-31

If you are a new user of the MuPAD Notebook app, see Getting Started with MuPAD.

1-3
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Create Symbolic Numbers, Variables, and Expressions

1-4

This page shows how to create symbolic numbers, variables, and expressions. To learn
how to work with symbolic math, see “Perform Symbolic Computations” on page 1-12.

Create Symbolic Numbers

You can create symbolic numbers by using sym. Symbolic numbers are exact
representations, unlike floating-point numbers.

Create a symbolic number by using sym and compare it to the same floating-point
number.

sym(1/3)
1/3

ans =

1/3

ans =
0.3333

The symbolic number is represented in exact rational form, while the floating-point
number is a decimal approximation. The symbolic result is not indented, while the
standard MATLAB result is indented.

Calculations on symbolic numbers are exact. Demonstrate this exactness by finding
sin(pi) symbolically and numerically. The symbolic result is exact, while the numeric
result is an approximation.

sin(sym(pi))
sin(pi)

ans =

0

ans =
1.2246e-16

To learn more about symbolic representation of numbers, see “Numeric to Symbolic
Conversion” on page 2-95.
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Create Symbolic Variables

You can use two ways to create symbolic variables, syms and sym. The syms syntax is a
shorthand for sym.

Create symbolic variables X and y using syms and sym respectively.

syms X
y = sym(C'y")

The first command creates a symbolic variable x in the MATLAB workspace with the
value X assigned to the variable x. The second command creates a symbolic variable y
with value y. Therefore, the commands are equivalent.

With syms, you can create multiple variables in one command. Create the variables a, b,
and c.

syms a b ¢

If you want to create many variables, the syms syntax is inconvenient. Instead of using
sSyms, use Sym to create many numbered variables.

Create the variablesal, ..., a20.

A

sym(*a®, [1 20])
A =

[ a1, a2, a3, a4, a5, a6, a7, a8, a9, alo,...
all, al2, al3, al4, al5, al6, al7, al8, al9, a20]

The syms command is a convenient shorthand for the sym syntax. Use the sym syntax
when you create many variables, when the variable value differs from the variable name,
or when you create a symbolic number, such as sym(5).

Create Symbolic Expressions

Suppose you want to use a symbolic variable to represent the golden ratio

_1+\/5
="

The command

1-5
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phi = (1 + sqrt(sym(5)))/2;

achieves this goal. Now you can perform various mathematical operations on phi. For
example,

f = phi®2 - phi - 1
returns

f =
(GN(L/2)/2 + 1/2)72 - 57 (1/2)/2 - 3/2

Now suppose you want to study the quadratic function = ax® + bx + c. First, create the
symbolic variables a, b, c, and x:

syms a b ¢ X
Then, assign the expression to f:

f = a*x"2 + b*x + c;

Tip To create a symbolic number, use the sym command. Do not use the syms function
to create a symbolic expression that is a constant. For example, to create the expression
whose value is 5, enter ¥ = sym(5). The command f = 5 does not define Fas a
symbolic expression.

Reuse Names of Symbolic Objects

If you set a variable equal to a symbolic expression, and then apply the syms command
to the variable, MATLAB software removes the previously defined expression from the
variable. For example,

syms a b
f=a+b

returns

f =
a+b

If later you enter
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syms F
f

then MATLAB removes the value a + b from the expression f:

f =
£

You can use the syms command to clear variables of definitions that you previously
assigned to them in your MATLAB session. However, syms does not clear the following
assumptions of the variables: complex, real, integer, and positive. These assumptions are
stored separately from the symbolic object. For more information, see “Delete Symbolic
Objects and Their Assumptions” on page 1-28.
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Create Symbolic Functions

You also can use sym and syms to create symbolic functions. For example, you can create
an arbitrary function F(x, y) where X and y are function variables. The simplest way to
create an arbitrary symbolic function is to use syms:

syms (X, Yy)

This syntax creates the symbolic function ¥ and symbolic variables x and y. If instead
of an arbitrary symbolic function you want to create a function defined by a particular
mathematical expression, use this two-step approach. First, create symbolic variables
representing the arguments of the function:

syms X y

Then assign a mathematical expression to the function. In this case, the assignment
operation also creates the new symbolic function:

(X, y) = x"3*y"3

f(x, y) =
XN3*yN3

Note that the body of the function must be a symbolic number, variable, or expression.
Assigning a number, such as F(X,y) = 1, causes an error.

After creating a symbolic function, you can differentiate, integrate, or simplify it,
substitute its arguments with values, and perform other mathematical operations. For
example, find the second derivative on F(x, y) with respect to variable y. The result
d2fy is also a symbolic function.

d2fy = diff(f, y, 2)

d2fy(x, y) =
6*xX"N3*y

Now evaluate f(x, y) forx =y + 1:

fty +1,y)

ans =
yr3*(y + 173
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Create Symbolic Matrices

In this section...

“Use Existing Symbolic Variables” on page 1-9
“Generate Elements While Creating a Matrix” on page 1-10

“Create Matrix of Symbolic Numbers” on page 1-10

Use Existing Symbolic Variables

A circulant matrix has the property that each row is obtained from the previous one
by cyclically permuting the entries one step forward. For example, create the symbolic
circulant matrix whose elements are a, b, and c, using the commands:

syms a b c
A=[abc; cab; bca]l

A =

[ a, b, c]
[ c, a, b]
[ b, c, a]

Since matrix A is circulant, the sum of elements over each row and each column is the
same. Find the sum of all the elements of the first row:

sum(A(1,:))

ans =
a+b+c

To check if the sum of the elements of the first row equals the sum of the elements of the
second column, use the isAlways function:

isAlways(sum(A(1, :)) == sum(A(:,2)))
The sums are equal:

ans =
1

From this example, you can see that using symbolic objects is very similar to using
regular MATLAB numeric objects.

1-9
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Generate Elements While Creating a Matrix

The sym function also lets you define a symbolic matrix or vector without having to
define its elements in advance. In this case, the sym function generates the elements of

a symbolic matrix at the same time that it creates a matrix. The function presents all
generated elements using the same form: the base (which must be a valid variable name),
a row index, and a column index. Use the first argument of sym to specify the base for the
names of generated elements. You can use any valid variable name as a base. To check
whether the name is a valid variable name, use the isvarname function. By default, sym
separates a row index and a column index by underscore. For example, create the 2-by-4
matrix A with the elements A1 1, ..., A2 4:

A = sym("A", [2 4D

A =
[ AL 1, AL 2, AL 3, Al 4]
[ A2 1, A2 2, A2 3, A2 4]

To control the format of the generated names of matrix elements, use %d in the first
argument:

A

sym("A%d%d*®, [2 4])
A =

[ All, A12, Al3, Al4]
[ A21, A22, A23, A24]

Create Matrix of Symbolic Numbers

A particularly effective use of sym is to convert a matrix from numeric to symbolic form.
The command

A = hilb(3)
generates the 3-by-3 Hilbert matrix:
A =

1.0000 0.5000 0.3333

0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

By applying sym to A

A = sym(A)
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you can obtain the precise symbolic form of the 3-by-3 Hilbert matrix:

A =

[ 1, 172, 1/3]
[ 172, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

For more information on numeric to symbolic conversions, see “Numeric to Symbolic
Conversion” on page 2-95.
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In this section...

“Differentiate Symbolic Expressions” on page 1-12
“Integrate Symbolic Expressions” on page 1-13
“Solve Equations” on page 1-15

“Simplify Symbolic Expressions” on page 1-17

“Substitutions in Symbolic Expressions” on page 1-18

“Plot Symbolic Functions” on page 1-21

Differentiate Symbolic Expressions
With the Symbolic Math Toolbox software, you can find

* Derivatives of single-variable expressions
+ Partial derivatives

* Second and higher order derivatives

*  Mixed derivatives

For in-depth information on taking symbolic derivatives see “Differentiation” on page
2-6.

Expressions with One Variable

To differentiate a symbolic expression, use the di fF command. The following example
illustrates how to take a first derivative of a symbolic expression:

syms X

f = sin(x)"2;

diff(f)

ans =
2*cos(X)*sin(x)

Partial Derivatives

For multivariable expressions, you can specify the differentiation variable. If you do not
specify any variable, MATLAB chooses a default variable by its proximity to the letter x:
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syms X y
f = sin(xX)"2 + cos(y)"2;
diff(f)

ans =
2*cos(X)*sin(x)

For the complete set of rules MATLAB applies for choosing a default variable, see “Find a
Default Symbolic Variable” on page 2-5.

To differentiate the symbolic expression F with respect to a variable y, enter:
syms X y

f = sin(x)™2 + cos(y)"2;

diff(f, y)

ans =
-2*cos(y)*sin(y)

Second Partial and Mixed Derivatives

To take a second derivative of the symbolic expression ¥ with respect to a variable y,
enter:

syms X y
f = sin(xX)"2 + cos(y)"2;
diff(f, y, 2)

ans =
2*sin(y)"2 - 2*cos(y)"2

You get the same result by taking derivative twice: difF(diFF(F, y)). To take mixed
derivatives, use two differentiation commands. For example:

syms X y
f = sin(xX)"2 + cos(y)"2;
diff(diff(f, y), x)

ans =
0

Integrate Symbolic Expressions
You can perform symbolic integration including:

* Indefinite and definite integration

1-13
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+ Integration of multivariable expressions

For in-depth information on the int command including integration with real and
complex parameters, see “Integration” on page 2-23.

Indefinite Integrals of One-Variable Expressions

Suppose you want to integrate a symbolic expression. The first step is to create the
symbolic expression:

syms X
f = sin(x)"2;

To find the indefinite integral, enter
int(f)

ans =
x/2 - sin(2*x)/4

Indefinite Integrals of Multivariable Expressions

If the expression depends on multiple symbolic variables, you can designate a variable of
integration. If you do not specify any variable, MATLAB chooses a default variable by the
proximity to the letter x:

syms X y n

f = X + y™n;

int(f)

ans =
x*y™n + (x*x*n)/(n + 1)

For the complete set of rules MATLAB applies for choosing a default variable, see “Find a
Default Symbolic Variable” on page 2-5.

You also can integrate the expression ¥ = xX™n + y”n with respect toy

sSyms X y n
f = x™ + y™n;
int(f, y)

ans =
xrnry + (y*y™n)/(n + 1)

If the integration variable is n, enter
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syms X y n
f = X + y™n;
int(f, n)

ans =
x*n/log(x) + y”™n/log(y)

Definite Integrals

To find a definite integral, pass the limits of integration as the final two arguments of the
int function:

Syms X y n
f = X + y™n;
int(f, 1, 10)
ans =
piecewise([n == -1, log(10) + 9/vy],.-.

[n ~= -1, (10*10™n - 1)/(n + 1) + 9*y"n])
If MATLAB Cannot Find a Closed Form of an Integral

If the int function cannot compute an integral, it returns an unresolved integral:

syms X
int(sin(sinh(x)))

ans =
int(sin(sinh(x)), x)

Solve Equations

You can solve different types of symbolic equations including:

+ Algebraic equations with one symbolic variable
+ Algebraic equations with several symbolic variables

+  Systems of algebraic equations

For in-depth information on solving symbolic equations including differential equations,
see “Equation Solving”.

Solve Algebraic Equations with One Symbolic Variable

Use the double equal sign (==) to define an equation. Then you can solve the equation
by calling the solve function. For example, solve this equation:
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syms X
solve(x"3 - 6*x"2 == 6 - 11*x)

If you do not specify the right side of the equation, solve assumes that it is zero:

syms X
solve(x"3 - 6*x"2 + 11*x - 6)

ans =

WNEF3S

Solve Algebraic Equations with Several Symbolic Variables

If an equation contains several symbolic variables, you can specify a variable for which
this equation should be solved. For example, solve this multivariable equation with
respect to y:

syms X y
solve(6*xX"2 - 6*xMN2*y + X*y"2 - x*y + y*"3 - y"2 == 0, y)

ans =
1

2*X
-3*X

If you do not specify any variable, you get the solution of an equation for the
alphabetically closest to X variable. For the complete set of rules MATLAB applies for
choosing a default variable see “Find a Default Symbolic Variable” on page 2-5.

Solve Systems of Algebraic Equations

You also can solve systems of equations. For example:

syms X y z
[X, ¥, z] = solve(z == 4*x, X ==y, z == X2 + y"2)

X =
0
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Simplify Symbolic Expressions

Symbolic Math Toolbox provides a set of simplification functions allowing you to
manipulate the output of a symbolic expression. For example, the following polynomial of
the golden ratio phi

phi = sym("(1 + sqrt(5))/2%);
f = phi®2 - phi - 1

returns

f —

(5A(L/2)72 + 1/2)A2 — 5A(LI2)/2 - 372
You can simplify this answer by entering
simplify(f)

and get a very short answer:

ans =
0

Symbolic simplification is not always so straightforward. There is no universal
simplification function, because the meaning of a simplest representation of a symbolic
expression cannot be defined clearly. Different problems require different forms of the
same mathematical expression. Knowing what form is more effective for solving your
particular problem, you can choose the appropriate simplification function.

For example, to show the order of a polynomial or symbolically differentiate or integrate
a polynomial, use the standard polynomial form with all the parentheses multiplied out
and all the similar terms summed up. To rewrite a polynomial in the standard form, use
the expand function:
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syms X
F=OMN2- D)*(X™M + X3 + X2 + X + D*(X™M - X3 + X2 - x + 1);
expand(f)

ans =
x~10 - 1

The factor simplification function shows the polynomial roots. If a polynomial cannot
be factored over the rational numbers, the output of the factor function is the standard
polynomial form. For example, to factor the third-order polynomial, enter:

syms X
g = X3 + 6*xM2 + 11*X + 6;
factor(g)

ans =
[ x + 3, x+ 2, x+ 1]

The nested (Horner) representation of a polynomial is the most efficient for numerical
evaluations:

syms X
h = x5 + XM + X3 + X2 + X;
horner(h)

ans =
X*OXFX*F(xX*F(x + 1) + 1) + 1) +1)

For a list of Symbolic Math Toolbox simplification functions, see “Choose Function to
Rearrange Expression” on page 2-61.

Substitutions in Symbolic Expressions
Substitute Symbolic Variables with Numbers

You can substitute a symbolic variable with a numeric value by using the subs function.
For example, evaluate the symbolic expression T at the point X = 1/3:

syms X
f = 2*x"2 - 3*x + 1;
subs(f, 1/3)

ans =
2/9
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The subs function does not change the original expression F:
f

f =
2*x"N2 - 3*x + 1

Substitute in Multivariate Expressions

When your expression contains more than one variable, you can specify the variable for
which you want to make the substitution. For example, to substitute the value X = 3 in
the symbolic expression

syms X y
T = x"2*y + 5*x*sqrt(y);

enter the command
subs(f, x, 3)

ans =
9*y + 15*y~(1/2)

Substitute One Symbolic Variable for Another

You also can substitute one symbolic variable for another symbolic variable. For example
to replace the variable y with the variable X, enter

subs(f, y, X)

ans =
X3 + 5*x™(3/2)

Substitute a Matrix into a Polynomial

You can also substitute a matrix into a symbolic polynomial with numeric coefficients.
There are two ways to substitute a matrix into a polynomial: element by element and
according to matrix multiplication rules.

Element-by-Element Substitution
To substitute a matrix at each element, use the subs command:
syms X

f = x"3 - 15*x"2 - 24*x + 350;
A=1123; 45 6];
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subs(f,A)

ans

[ 312, 250, 170]
[ 78, -20, -118]

You can do element-by-element substitution for rectangular or square matrices.

Substitution in a Matrix Sense

If you want to substitute a matrix into a polynomial using standard matrix
multiplication rules, a matrix must be square. For example, you can substitute the magic
square A into a polynomial f:

1

Create the polynomial:

syms X
T = x"3 - 15*x"2 - 24*x + 350;

Create the magic square matrix:

A = magic(3)

A =
8 1 6
3 5 7
4 9 2

Get a row vector containing the numeric coefficients of the polynomial F:

b sym2poly(f)

b =
1 -15 -24 350

Substitute the magic square matrix A into the polynomial f. Matrix A replaces all
occurrences of X in the polynomial. The constant times the identity matrix eye(3)
replaces the constant term of f:

AN3 - 15*AN2 - 24*A + 350%eye(3)

ans =
-10 0 0
0 -10 0
0 0 -10

The polyvalm command provides an easy way to obtain the same result:
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polyvalm(b,A)

ans =
-10 0 0
0 -10 0
0 0 -10

Substitute the Elements of a Symbolic Matrix

To substitute a set of elements in a symbolic matrix, also use the subs command.
Suppose you want to replace some of the elements of a symbolic circulant matrix A

syms a b ¢

A=Jabc; cab; bca]
A =

[ a, b, c]

[ c, a, b]

[ b, c, al

To replace the (2, 1) element of A with beta and the variable b throughout the matrix

with variable alpha, enter

alpha = sym("alpha®);
beta = sym("beta®);
A(2,1) = beta;

A = subs(A,b,alpha)

The result 1s the matrix:

A =

L a, alpha, c]
[ beta, a, alpha]
[ alpha, c, aj

For more information, see “Substitution”.

Plot Symbolic Functions

You can create different types of graphs including:

+ Plots of explicit functions

* Plots of implicit functions
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* 3-D parametric plots

*  Surface plots
Explicit Function Plot

The simplest way to create a plot is to use the ezplot command:

syms X
ezplot(x"3 - 6*x"2 + 11*x - 6)
hold on

Mx-6x2+x3-6
100 b

-100
200 [ / -

=300 / 7

400/ b

500/

The hold on command retains the existing plot allowing you to add new elements and
change the appearance of the plot. For example, now you can change the names of the
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no Name axis

axes and add a new title and grid lines. When you finish working with the current plot,
enter the hold off command:

xlabel ("x axis®)
ylabel ("no name axis®)
title(C"Explicit function: X3 - 6*x"2 + 11*X - 6%)

grid on
hold off

Explicit function: x

100

100 1
=200
=300 [
400/

500

3.6 %2 +11*x -6

Implicit Function Plot

Using ezplot, you can also plot equations. For example, plot the following equation over

-1<x<1I.
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syms X y
ezplot((x"2 + y"2)M == (X2 - y™"2)"2, [-1 1D
hold on

xlabel ("x axis®)

ylabel ("y axis®)

grid on

hold off

I:J[z + yz;l4 — [xz - YZ:IZ

Y axis
o
T
1

-1 08 06 04 02 1] 0.2 04 06 0.8 1
X axis

3-D Plot

3-D graphics is also available in Symbolic Math Toolbox. To create a 3-D plot, use the
ezplot3 command. For example:
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syms t
ezplot3(t"2*sin(10*t), t"2*cos(10*t), t)

x =t sin(10 t),y =% cos(10 t),z=1t

Surface Plot

If you want to create a surface plot, use the ezsurf command. For example, to plot a
paraboloid z = x* + y?, enter:

syms X y

ezsurf(x"2 + y"2)

hold on

zlabel("z")

title("z = X2 + y"2%)

1-25



1 Getting Started

hold off

1-26



Use Assumptions on Symbolic Variables

Use Assumptions on Symbolic Variables

In this section...

“Default Assumption” on page 1-27
“Set Assumptions” on page 1-27
“Check Existing Assumptions” on page 1-28

“Delete Symbolic Objects and Their Assumptions” on page 1-28

Default Assumption

In Symbolic Math Toolbox, symbolic variables are complex variables by default. For
example, if you declare z as a symbolic variable using

syms z

then MATLAB assumes that z is a complex variable. You can always check if a symbolic
variable is assumed to be complex or real by using assumptions. If z is complex,
assumptions(z) returns an empty symbolic object:

assumptions(z)
ans =

Empty sym: 1-by-0

Set Assumptions

To set an assumption on a symbolic variable, use the assume function. For example,
assume that the variable X is nonnegative:

syms X
assume(x >= 0)

assume replaces all previous assumptions on the variable with the new assumption.
If you want to add a new assumption to the existing assumptions, use assumeAlso.
For example, add the assumption that X is also an integer. Now the variable X is a
nonnegative integer:

assumeAlso(x, "integer”®)
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assume and assumeAlso let you state that a variable or an expression belongs to one of
these sets: integers, positive numbers, rational numbers, and real numbers.

Alternatively, you can set an assumption while declaring a symbolic variable using
sym or syms. For example, create the real symbolic variables a and b, and the positive
symbolic variable c:

a = sym("a", "real");
b = sym("b", "real”);
c = sym("c", "positive);

or more efficiently:

syms a b real
syms c positive

The assumptions that you can assign to a symbolic object with Sym or syms are real,

rational, integer and positive.

Check Existing Assumptions

To see all assumptions set on a symbolic variable, use the assumptions function with
the name of the variable as an input argument. For example, this command returns the
assumptions currently used for the variable x:

assumptions(x)

To see all assumptions used for all symbolic variables in the MATLAB workspace, use
assumptions without input arguments:

assumptions

For details, see “Check Assumptions Set On Variables” on page 3-44.

Delete Symbolic Objects and Their Assumptions

Symbolic objects and their assumptions are stored separately. When you set an
assumption that X is real using

syms X
assume(x, "real ™)
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you actually create a symbolic object X and the assumption that the object is real. The
object is stored in the MATLAB workspace, and the assumption is stored in the symbolic
engine. When you delete a symbolic object from the MATLAB workspace using

clear x

the assumption that X is real stays in the symbolic engine. If you declare a new symbolic
variable X later, it inherits the assumption that X is real instead of getting a default
assumption. If later you solve an equation and simplify an expression with the symbolic
variable X, you could get incomplete results. For example, the assumption that X is real

causes the polynomial x* + 1 to have no roots:

syms x real

clear x

syms X

solve(x™2 + 1 == 0, X)

ans =
Empty sym: O-by-1

The complex roots of this polynomial disappear because the symbolic variable x still has
the assumption that X is real stored in the symbolic engine. To clear the assumption,
enter

assume(x, "clear™)

After you clear the assumption, the symbolic object stays in the MATLAB workspace.
If you want to remove both the symbolic object and its assumption, use two subsequent
commands:

1 To clear the assumption, enter

assume(x, “clear™)

2 To delete the symbolic object, enter

clear x

For details on clearing symbolic variables, see “Clear Assumptions and Reset the
Symbolic Engine” on page 3-43.
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To find symbolic variables in an expression, function, or matrix, use symvar. For
example, find all symbolic variables in symbolic expressions f and g:

syms a b n t x

f = x™n;

g = sin(a*t + b);
symvar (F)

ans =

[ n, x]

Here, symvar sorts all returned variables alphabetically. Similarly, you can find the
symbolic variables in g by entering:

symvar(g)
ans =
[ a, b, t]

symvar also can return the first n symbolic variables found in a symbolic expression,
matrix, or function. To specify the number of symbolic variables that you want symvar to
return, use the second parameter of symvar. For example, return the first two variables
found in symbolic expression g:

symvar(g, 2)

ans =

[ t, b]

Notice that the first two variables in this case are not a and b. When you call symvar
with two arguments, it sorts symbolic variables by their proximity to X.

You also can find symbolic variables in a function:

syms X y w z
f(w, z) = xX*w + y*z;
symvar (f)

ans =
[ w, X, vy, z]

When you call symvar with two arguments, it returns the function inputs in front of
other variables:
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symvar(f, 2)

ans =

Lw, z]

Find a Default Symbolic Variable

If you do not specify an independent variable when performing substitution,
differentiation, or integration, MATLAB uses a default variable. The default variable
1s typically the one closest alphabetically to X or, for symbolic functions, the first input
argument of a function. To find which variable is chosen as a default variable, use the
symvar (f, 1) command. For example:

syms s t
f=s+t;
symvar(f, 1)

ans =
t

syms sx tx
f = sx + tx;
symvar(f, 1)

ans =
tx

For more information on choosing the default symbolic variable, see symvar.
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Differentiation

To illustrate how to take derivatives using Symbolic Math Toolbox software, first create a
symbolic expression:

syms X
f = sin(6*x);

The command
diff(f)
differentiates ¥ with respect to x:

ans =
5*cos(5*x)

As another example, let

g = exp(x)*cos(x);

where exp(x) denotes €%, and differentiate g:
y = diff(g)

y =
exp(x)*cos(x) - exp(xX)*sin(x)

To find the derivative of g for a given value of X, substitute X for the value using subs
and return a numerical value using vpa. Find the derivative of g at x = 2.

vpa(subs(y,x,2))

ans =
-9.7937820180676088383807818261614

To take the second derivative of g, enter
diff(g,2)

ans =
-2*exp(xX)*sin(x)

You can get the same result by taking the derivative twice:
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difF(diff(g))

ans =
-2*exp(X)*sin(x)

In this example, MATLAB software automatically simplifies the answer. However,
in some cases, MATLAB might not simplify an answer, in which case you can use the
simplify command. For an example of such simplification, see “More Examples” on
page 2-8.

Note that to take the derivative of a constant, you must first define the constant as a
symbolic expression. For example, entering

c = sym("5%);
diff(c)

returns

ans =
0

If you just enter
diff(5)
MATLAB returns

ans =

L1

because 5 is not a symbolic expression.

Derivatives of Expressions with Several Variables

To differentiate an expression that contains more than one symbolic variable, specify
the variable that you want to differentiate with respect to. The di ff command then
calculates the partial derivative of the expression with respect to that variable. For
example, given the symbolic expression

syms s t
f = sin(s*t);

the command
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diff(F,t)
calculates the partial derivative df / dt. The result is

ans =
s*cos(s*t)

To differentiate ¥ with respect to the variable s, enter
diff(f,s)
which returns:

ans =
t*cos(s*t)

If you do not specify a variable to differentiate with respect to, MATLAB chooses a
default variable. Basically, the default variable is the letter closest to x in the alphabet.
See the complete set of rules in “Find a Default Symbolic Variable” on page 2-5. In the
preceding example, di FF(F) takes the derivative of F with respect to t because the letter
t is closer to x in the alphabet than the letter s is. To determine the default variable that
MATLAB differentiates with respect to, use symvar:

symvar(f, 1)

ans =
t

Calculate the second derivative of T with respect to t:
diff(f, t, 2)
This command returns

ans =
-s"2*sin(s*t)

Note that difF(F, 2) returns the same answer because t is the default variable.

More Examples

To further illustrate the di fF command, define a, b, X, n, t, and theta in the MATLAB
workspace by entering



Differentiation

syms a b x n t theta

This table illustrates the results of entering di FF(F).

f diff(f)
syms X n diff ()
f = x™n;
ans =
n*x~M(n - 1)
syms a b t diff(f)
f = sin(a*t + b);
ans =
a*cos(b + a*t)
syms theta diff ()
f = exp(i*theta);
ans =
exp(theta*1i)*1i

To differentiate the Bessel function of the first kind, bessel j (nu, z), with respect to z,
type

syms nu z
b = besselj(nu,z);
db = diff(b)

which returns

db =
(nu*besselj(nu, z))/z - besselj(nu + 1, z2)

The difF function can also take a symbolic matrix as its input. In this case, the
differentiation is done element-by-element. Consider the example

syms a X
A = [cos(a*x),sin(a*x);-sin(a*x),cos(a*x)]

which returns

A =
[ cos(a*x), sin(a*x)]
[ -sin(a*x), cos(a*x)]

The command
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diff(A)

returns

ans =

[ -a*sin(a*x), a*cos(a*x)]

[ -a*cos(a*x), -a*sin(a*x)]

You can also perform differentiation of a vector function with respect to a vector
argument. Consider the transformation from Euclidean (x, y, 2) to spherical (r,A,¢)

coordinates as given by x =rcosAcos@, y=rcosising, and z=rsinA. Note that 1

corresponds to elevation or latitude while ¢ denotes azimuth or longitude.

iy

(x,y.2)

|
|
|
—»
|

('P =

To calculate the Jacobian matrix, </, of this transformation, use the jacobian function.
The mathematical notation for J is

_0x,y,2)
B(r,ﬂ,,(p).

For the purposes of toolbox syntax, use I for A and f for ¢ . The commands

syms r I F

x = r*cos(1)*cos(f);
r*cos()*sin(f);

r*sin(l);

jacobian([x; y; z], [r 1 1)

o N K
I



Differentiation

return the Jacobian

J =

[ cos(P)*cos(l), -r*cos(P)*sin(l), -r*cos(l)*sin(f)]
[ cos(D)*sin(f), -r*sin(f)*sin(l), r*cos(f)*cos(l)]
L sin(l), r*cos(l), 0]
and the command

detd = simplify(det(J))

returns

detd =
-r~"2*cos(l)

The arguments of the Jacobian function can be column or row vectors. Moreover, since
the determinant of the Jacobian is a rather complicated trigonometric expression, you
can use simpliFfy to make trigonometric substitutions and reductions (simplifications).

A table summarizing di fF and jacobian follows.

Mathematical Operator MATLAB Command

df difF(F) or diFF(F, x)

dx

df diff(f, a)

da

ey diff(F, b, 2)

db?

7 a(r,b) J = jacobian([r; t],[u; vD
d(u,v)
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Solve Wave Equation Using Functional Derivatives

2-12

This example shows how to solve the wave equation for a string fixed at its ends using
functional derivatives. A functional derivative is the derivative of a functional with
respect to the function that the functional depends on. The Symbolic Math Toolbox™
implements functional derivatives using the functionalDerivative function.

Solving the wave equation is one application of functional derivatives. It describes the
motion of waves, from the motion of a string to the propagation of an electromagnetic
wave, and is an important equation in physics. You can apply the techniques
illustrate in this example to applications in the calculus of variations from solving the
Brachistochrone problem to finding minimal surfaces of soap bubbles.

Consider a string of length L suspended between the two points X = 0 and X = L. The
string has a characteristic density per unit length and a characteristic tension. Define
the length, density, and tension as constants for later use. For simplicity, set these
constants to 1.

Length = 1
Density

1;
Tension 1;

If the string is in motion, the string's kinetic and potential energies are a function of
its displacement from rest S(X, t), which varies with position X and time t. If d is the
density per unit length, the kinetic energy is

L 2
T = £ j (jr S(r, fj) dr.
The potential energy is
L 2
V= £ 5 (E:,F Sz, t ]) da,
where r is the tension.
Enter these equations in MATLAB™. Since length must be positive, set this assumption.

This assumption allows simplify to simplify the resulting equations into the expected
form.



Solve Wave Equation Using Functional Derivatives

syms S(x,t) d r v L

assume(L>0)

T(x,t) = int(d/2*diff(S,t)"2,x,0,L);
V(x,t) = Int(r/2*diff(S,x)"2,x,0,L);

The action A is T-V. The Principle of Least Action states that action is always minimized.
Determine the condition for minimum action, by finding the functional derivative of A
with respect to S using functionalDerivative and equate it to zero.

A= T-V;
eqn = functionalDerivative(A,S) ==
egn(x, t) =

L*r*diff(S(x, t), X, X) - L*d*diff(S(x, t), t, t) ==

Simplify the equation using simplify. Convert the equation into its expected form by
substituting for r/d with the square of the wave velocity v.

egn = simplify(eqn)/r;
eqn = subs(eqgn,r/d,v"2)
eqn(x, t) =

diff(S(x, ), t, ©)/v 2 == diff(S(X, 1), X, X)

Solve the equation using the method of separation of variables. Set S(x,t) =
U(X)*V () to separate the dependence on position X and time t. Separate both sides of
the resulting equation using children.

syms U(x) V(t)

eqn2 = subs(eqgn,S(X,t),UC)*V(L));
eqn2 = egn2/(U)*V(L))

tmp = children(eqn2);

egn2(x, t) =

difF(V(L), t, ©)/(V2*V(L)) == diffUK), x, x)/U(X)
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Both sides of the equation depend on different variables, yet are equal. This is only
possible if each side is a constant. Equate each side to an arbitrary constant C to get two
differential equations.

syms C
eqn3 = tmp(l) ==
eqnd = tmp(2) ==
egqn3 =

diff(V(L), t, ©)/(V2*V(t)) == C

egqnd =
diff(U), x, x)/UX) == C
Solve the differential equations using dsolve with the condition that displacement is O

atx = Oand t = 0. Simplify the equations to their expected form using simplify with
the Steps option set to 50.

V(t) = dsolve(eqn3,V(0)==0,1);
U(x) = dsolve(eqn4,U(0)==0,x%x);
V(t) = simplify(V(t), "Steps”,50)
Ux) = simplify(U(x), "Steps”,50)
V(o) =

—2*C3*sinh(Cr(1/2)*t*V)

Ux) =

—2*C6*sinh(CA(1/2)*x)

Obtain the constants in the equations.

setdiff(symvar(U(x)),sym([C,x]))
setdiff(symvar(V(t)),sym([C,V,t]))

pl
p2
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C6

p2 =

C3

The string is fixed at the positions X = 0 and x = L. The condition U(0) = 0 already
exists. Apply the boundary condition that U(L) = 0 and solve for C.

eqn_bc = U(L) == 0;
[solC,param,cond] = solve(egn_bc,C, "ReturnConditions”,true)
assume(cond)

solC =

—(KN2*pin2)/LA2

param =

k

cond =

C6 ~= 0 & 1 <= k & in(k, "integer®)

The solution S(X,t) is the product of U(X) and V(t). Find the solution, and substitute
the characteristic values of the string into the solution to obtain the final form of the
solution.

S, = UC)*V(D);

S = subs(S,C,solC);
S = subs(S,[L v],[Length sgrt(Tension/Density)]);

The parameters pl and p2 determine the amplitude of the vibrations. Set p1 and p2 to 1
for simplicity.

S = subs(S,[pl p2],.[1 1D);
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S = simplify(S, "Steps”,50)

S(x, t) =

-4*sin(pi*k*t)*sin(pi*k*x)

The string has different modes of vibration for different values of k. Plot the first four
modes for an arbitrary value of time t. Use the param argument returned by solve to
address parameter k.

Splot = subs(S,t,0.3);
figure(l)
hold on
grid on
tmp = children(S);
ymin = double(tmp(3));
for i = 1:4
yplot = subs(Splot,param,i);
ezplot(yplot, [0 Length])
end
ylim([ymin -ymin])
legend("k = 1",k = 27,"k = 3","k = 47,"Location”,"best")
xlabel ("Position (xX)*)
ylabel ("Displacement (S)*)
title("Modes of a string”)
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Displacement (S)

Modes of a string

A

\
\ 1
\ 7

s\ /Hﬁ_;

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1
Position (x)

The wave equation is linear. This means that any linear combination of the allowed
modes is a valid solution to the wave equation. Hence, the full solution to the wave

equation with the given boundary conditions and initial values is a sum over allowed
modes

Fx,t) = Z Ag sin(wkt) sin(wkz),

k=n

where A denotes arbitrary constants.
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Use symsum to sum the first five modes of the string. On a new figure, display
the resulting waveform at the same instant of time as the previous waveforms for
comparison.

figure(2)
ezplot(subs(1/5*symsum(S,param,1,5),t,0.3),[0 Length])
ylim([ymin -ymin])

grid on

xlabel ("Position (xX)%)

ylabel ("Displacement (S)")

title("Summation of first 5 modes*®)

Summation of first 5 modes
4 T T T T T T T T T

Displacement (S)
o
#;”
yd

_4 i i i i i i i i i
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1

Position (x)

The figure shows that summing modes allows you to model a qualitatively different

waveform. Here, we specified the initial condition is Slat =0) = 0¢p a1l 2.
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You can calculate the values <k in the equation Flz,t) =}, Axsin(wkt) sin(wkz) by
specifying a condition for initial velocity

ulx, b =0) = Fy(x, 0).

The appropriate summation of modes can represent any waveform, which is the same as
using the Fourier series to represent the string's motion.
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Limits

The fundamental idea in calculus is to make calculations on functions as a variable “gets
close to” or approaches a certain value. Recall that the definition of the derivative is
given by a limit

f,(x): hm f(x+h)_f(x)
h—0 h ’

provided this limit exists. Symbolic Math Toolbox software enables you to calculate the
limits of functions directly. The commands

syms h n x
limit((cos(x+h) - cos(x))/h, h, 0)

which return

ans =
-sin(X)

and
limit((1 + x/n)"™n, n, inf)
which returns

ans =
exp(x)

illustrate two of the most important limits in mathematics: the derivative (in this case of
cos(x)) and the exponential function.

One-Sided Limits

You can also calculate one-sided limits with Symbolic Math Toolbox software. For
example, you can calculate the limit of x/| x|, whose graph is shown in the following
figure, as x approaches 0 from the left or from the right.

syms x
ezplot(x/abs(x), -1, 1)
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x/abs(x)

-1 08 06 -04 -02 0 0.2 0.4 0.6 0.8

To calculate the limit as x approaches 0 from the left,

enter

syms X
limit(x/abs(x), x, 0, "left")

ans =
-1

To calculate the limit as x approaches 0 from the right,
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2-22

lim — =1,
x—0* |x|

enter
syms X

limit(x/abs(x), x, 0, "right")

ans =
1

Since the limit from the left does not equal the limit from the right, the two- sided limit

does not exist. In the case of undefined limits, MATLAB returns NaN (not a number). For
example,

syms X
limit(x/abs(x), x, 0)

returns

ans =
NaN

Observe that the default case, limit(F) is the same as limit(F,x,0). Explore the

options for the limit command in this table, where F is a function of the symbolic object
X.

Mathematical Operation | MATLAB Command

b ) Limit(f)

x—0

lim f(x) limit(f, x, a) or
x—a

linit(f, a)

lim f(x) limit(f, x, a, "left")
x—a—
lim f(x) limit(f, x, a, "right")
x—at




Integration

Integration

If ¥ is a symbolic expression, then
int(f)

attempts to find another symbolic expression, F, so that diff(F) = f. That is, int(f)
returns the indefinite integral or antiderivative of ¥ (provided one exists in closed form).
Similar to differentiation,

int(f,v)

uses the symbolic object v as the variable of integration, rather than the variable
determined by symvar. See how int works by looking at this table.

Mathematical Operation MATLAB Command
int(x™n) or int(x™*n,x)

log(x) ifn=-1
andx = xn+1

otherwise.
n+
/2 int(sin(2*x), 0, pi/2) or int(sin(2*x), X,
j sin(2x)dx =1 0, pi/2)
0
g = cos(at + b) g = cos(a*t + b) int(g) or int(g, t)

jg(t)dt = sin(at+b)/ a

int(besselj(1, z)) or int(besselj(1l, z),

[J1(2)dz = ~Jo(2) 2

In contrast to differentiation, symbolic integration is a more complicated task. A number
of difficulties can arise in computing the integral:

* The antiderivative, F, may not exist in closed form.
* The antiderivative may define an unfamiliar function.

* The antiderivative may exist, but the software can't find it.
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* The software could find the antiderivative on a larger computer, but runs out of time
or memory on the available machine.

Nevertheless, in many cases, MATLAB can perform symbolic integration successfully.
For example, create the symbolic variables

syms a b theta x y nu z

The following table illustrates integration of expressions containing those variables.

f int(f)
syms X n int(f)
f = x™n;
ans =
piecewise([n == -1, log()1,---
[n ~= -1, x*(n + 1)/(n + 1))
syms y int(f)
f=y(-1;
ans =
log(y)
syms X n int(f)
T = n™x;
ans =
n~x/1og(n)
syms a b theta int(f)
T = sin(a*thetatb);
ans =
-cos(b + a*theta)/a
syms u int(f)
f = 1/(1+u"2);
ans =
atan(u)
syms X int(f)
f = exp(-x"2);
ans =
(pir(1/72)*erf(x))/2

In the last example, exp(-x"2), there is no formula for the integral involving standard
calculus expressions, such as trigonometric and exponential functions. In this case,
MATLAB returns an answer in terms of the error function erf.

If MATLAB is unable to find an answer to the integral of a function f, it just returns
int(F).

2-24



Integration

Definite integration is also possible.

Definite Integral

Command

ﬁﬂmw

int(f, a, b)

ﬁﬂw@

int(f, v, a, b)

Here are some additional examples.

f a, b int{f, a, b)
syms X a = 0; int(f, a, b)
T = x©7; b =1;

ans =

1/8
syms X a=1; int(f, a, b)
f = 1/x; b =2;

ans =

log(2)
syms X a = 0; int(f, a, b)
T = log(X)*sqrt(x); |b = 1;

ans =

-4/9
syms X a = 0; int(f, a, b)
T = exp(-x"2); b = inf;

ans =

pin(1/2)/2
syms z a=0; int(f, a, b)
f = besselj(1,2)"2; |b = 1;

ans =

hypergeom([3/2, 3/2],--.

[2, 5/2, 3], -1)/12

For the Bessel function (bessel j) example, it is possible to compute a numerical
approximation to the value of the integral, using the double function. The commands

syms z
a = int(besselj(1,2z)"2,0,1)
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return

a =
hypergeom([3/2, 3/2], [2, 5/2, 3], -1)/12

and the command
a = double(a)
returns

a =

0.0717

Integration with Real Parameters

One of the subtleties involved in symbolic integration is the “value” of various
parameters. For example, if a is any positive real number, the expression

1s the positive, bell shaped curve that tends to 0 as x tends to . You can create an
example of this curve, for a = 1/2, using the following commands:

syms X
a = sym(1/2);

T = exp(-a*x"2);
ezplot(f)
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0.8 [ Y 1
06 [ \ 1

0.4 i

However, if you try to calculate the integral

2
Ieaxdx

—oo

without assigning a value to a, MATLAB assumes that a represents a complex number,

and therefore returns a piecewise answer that depends on the argument of a. If you

are only interested in the case when a is a positive real number, use assume to set an

assumption on a:

syms a
assume(a > 0)
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Now you can calculate the preceding integral using the commands
syms X

T = exp(-a*x"2);

int(f, x, -inf, inf)

This returns

ans =

pi~(1/2)/an(1/2)

Integration with Complex Parameters

To calculate the integral

To1

J dx

SLat+x
for complex values of a, enter
syms a x clear

f=1/(@"2 + x"2);
F int(f, x, -inf, inf)

syms is used with the clear option to clear the all assumptions on a. For more
information about symbolic variables and assumptions on them, see “Delete Symbolic
Objects and Their Assumptions” on page 1-28.

The preceding commands produce the complex output

F =
(pi*signim(li/a))/a

The function signlm is defined as:
1 ifIm(2)>0, or Im(z)=0andz<0

signlm(z) =40 if z=0
-1 otherwise.
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signim =0

signim = -1 signim = -1

To evaluate Fata = 1 + 1, enter

g subs(F, 1 + i)

g =
pi*(1/2 - 1i/2)

double(g)

ans =
1.5708 - 1.5708i
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Symbolic Summation

2-30

Symbolic Math Toolbox provides two functions for calculating sums:

* sum finds the sum of elements of symbolic vectors and matrices. Unlike the MATLAB
sum, the symbolic sum function does not work on multidimensional arrays. For
details, follow the MATLAB sum page.

+ symsum finds the sum of a symbolic series.

In this section...

“Comparing symsum and sum” on page 2-30
“Computational Speed of symsum versus sum” on page 2-31

“Output Format Differences Between symsum and sum” on page 2-31

Comparing symsum and sum

You can find definite sums by using both sum and symsum. The sum function sums the
input over a dimension, while the symsum function sums the input over an index.

5=y L
: . 2 .
Consider the definite sum k=1 First, find the terms of the definite sum by
substituting the index values for k in the expression. Then, sum the resulting vector
using sum.

V = subs(f, k, 1:10)
S _sum = sum(V)

1/4, 1/9, 1/16, 1/25, 1/36, 1/49, 1/64, 1/81, 1/100]
um =
832971270080

[N BN |

Find the same sum by using symsum by specifying the index and the summation limits.
sum and symsum return identical results.

S _symsum = symsum(f, k, 1, 10)

S_symsum =



Symbolic Summation

1968329/1270080

Computational Speed of symsum versus sum

For summing definite series, symsum can be faster than sum. For summing an indefinite
series, you can only use symsum.

You can demonstrate that symsum can be faster than sum by summing a large definite
100000
S= Y .
k=1

series such as

To compare runtimes on your computer, use the following commands.

syms k

tic

sum(sym(1:100000) ."2);

toc

tic

symsum(k”2, k, 1, 100000);
toc

Output Format Differences Between symsum and sum

symsum can provide a more elegant representation of sums than sum provides.
Demonstrate this difference by comparing the function outputs for the definite series

10
S=2xk.

k=1 To simplify the solution, assume X > 1.

syms X
assume(x > 1)

S_sum = sum(x-~(1:10))

S_symsum = symsum(x"k, k, 1, 10)

S_sum =

XMN10 + XN + XMN8 + XN + XM6 + XS+ XM+ X3+ X2+ X
S_symsum =

XM1I/(x - 1) - x/(x - 1)

Show that the outputs are equal by using isAlways. The 1sAlways function returns
logical 1 (true), meaning that the outputs are equal.
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isAlways(S_sum == S_symsum)

ans =
1

For further computations, clear the assumptions.

assume(x, "clear™)
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Taylor Series

The statements

syms X
f =1/ + 4*cos(X));
T = taylor(f, "Order®, 8)

return

T =
(49%x76) /131220 + (5*x"4)/1458 + (2*x~2)/81 + 1/9

which is all the terms up to, but not including, order eight in the Taylor series for f(x):

Technically, T is a Maclaurin series, since its expansion pointisa = O.
The command
pretty(T)

prints T in a format resembling typeset mathematics:

6 4 2
49 X 5 X 2 X 1
______ o 4+ -

131220 1458 81 9

These commands

syms X
g = exp(x*sin(x));
t = taylor(g, "ExpansionPoint”, 2, "Order", 12);

generate the first 12 nonzero terms of the Taylor series for g about x = 2.

t is a large expression; enter
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size(char(t))

ans =
1 99791

to find that t has about 100,000 characters in its printed form. In order to proceed with
using t, first simplify its presentation:

t = simplify(t);
size(char(t))

ans =
1 6988

Next, plot these functions together to see how well this Taylor approximation compares
to the actual function g:

xd = 1:0.05:3;

yd = subs(g,x,xd);

ezplot(t, [1, 3]

hold on

plot(xd, yd, "r-_.")

title("Taylor approximation vs. actual function®)
legend("Taylor®, "Function®)
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Taylor approximatio

n vs. actual function
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Special thanks is given to Professor Gunnar Backstrom of UMEA in Sweden for this

example.
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Padé Approximant

2-36

The Padé approximant of order [m, n] approximates the function f(x) around x = x, as

ap+a; (x—xp)+...+a, (x—x5 )"

1+by (% —29) +..+ b, (x—24)"

The Padé approximant is a rational function formed by a ratio of two power series.
Because it is a rational function, it is more accurate than the Taylor series in
approximating functions with poles. The Padé approximant is represented by the
Symbolic Math Toolbox function pade.

When a pole or zero exists at the expansion point x = xy, the accuracy of the Padé
approximant decreases. To increase accuracy, an alternative form of the Padé
approximant can be used which is

(x—2x0)P (ao +a1(x—x0)+...+am(x—x0)m)

1+ (x—xg)+...+b, (x—xo)n

The pade function returns the alternative form of the Padé approximant when you set
the OrderMode input argument to Relative.

The Padé approximant is used in control system theory to model time delays in the
response of the system. Time delays arise in systems such as chemical and transport
processes where there is a delay between the input and the system response. When these
inputs are modeled, they are called dead-time inputs. This example shows how to use the
Symbolic Math Toolbox to model the response of a first-order system to dead-time inputs
using Padé approximants.

The behavior of a first-order system is described by this differential equation

dy(t) 3
T—dt + y(t) = ax(2).

Enter the differential equation in MATLAB.

syms tau a x(t) y(t) xS(s) yS(s) H(s) tmp
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F = tau*diff(y)+y == a*x;
Find the Laplace transform of F using laplace.

F

laplace(F,t,s)

F =

laplace(y(t), t, s) - tau*(y(0) - s*laplace(y(t), t, s)) == a*laplace(x(t), t, s)

Assume the response of the system at € = 0 1is 0. Use subs to substitute for y(0) = 0.

F = subs(F,y(0),0)

F =

laplace(y(t), t, s) + s*tau*laplace(y(t), t, s) == a*laplace(x(t), t, s)

To collect common terms, use simplify.

F = simplify(F)

F =

(s*tau + 1)*laplace(y(t), t, s) == a*laplace(x(t), t, s)

For readability, replace the Laplace transforms of x(t) and y(t) with xS(s) and
yS(s).

F subs(F, [laplace(x(t),t,s) laplace(y(t),t,s)].[xS(s) yS(s)D

F =

yS(s)*(s*tau + 1) == a*xS(s)

The Laplace transform of the transfer function is yS(s)/xS(s). Divide both sides of the
equation by XS(s) and use subs to replace yS(s)/xS(s) with H(s).
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F = F/xS(s);
F = subs(F,yS(s)/xS(s),.H(s))
F =

H(s)*(s*tau + 1) == a

Solve the equation for H(S). Substitute for H(s) with a dummy variable, solve for the
dummy variable using solve, and assign the solution back to H(S).

F = subs(F,H(s),tmp);
H(s) = solve(F,tmp)
H(s) =

a/(s*tau + 1)

The input to the first-order system is a time-delayed step input. To represent a step
input, use heaviside. Delay the input by three time units. Find the Laplace transform
using laplace.

step = heaviside(t - 3);
step = laplace(step)
step =

exp(-3*s)/s

Find the response of the system, which is the product of the transfer function and the

input.
y = H(s)*step
y =

(a*exp(-3*s))/(s*(s*tau + 1))
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To allow plotting of the response, set parameters a and tau to their values. For a and
tau, choose values 1 and 3, respectively.

subs(y,[a tau]l,[1 3]);
ilaplace(y,s);

y
y

Find the Padé approximant of order [2 2] of the step input using the Order input
argument to pade.

stepPade22 = pade(step, "Order”,[2 2])

stepPade22 =

(3*s"2 - 4*s + 2)/(2*s*(s + 1))

Find the response to the input by multiplying the transfer function and the Padé
approximant of the input.

yPade22 = H(s)*stepPade22

yPade22 =

(a*(3*s™2 - 4*s + 2))/(2*s*(s*tau + 1)*(s + 1))

Find the inverse Laplace transform of yPade22 using i laplace.

yPade22 = ilaplace(yPade22,s)

yPade22 =

a + (9*a*exp(-s))/(2*tau - 2) - (a*exp(-s/tau)*(2*tau™2 + 4*tau + 3))/(tau*(2*tau - 2)

To plot the response, set parameters a and tau to their values of 1 and 3, respectively.

yPade22 = subs(yPade22,[a tau],[1 3])

yPade22
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0.4

0.2 H

(9*%exp(-s))/4 - (11*exp(-s/3))/4 + 1

Plot the response of the system y and the response calculated from the Padé approximant
yPade22.

hold on
grid on
ezplot(y,[0 20])
ezplot(yPade22,[0 20])
title(["Pad” char(233) " Approximant for dead-time step input™])
legend("Response to dead-time step input”,...
["Pad® char(233) " approximant [2 2]°],---
"Location®, "Best");

Pade Approximant for dead-time step input

f Response to dead-time step input
\ , Padé approximant [2 2]




Padé Approximant

The [2 2] Padé approximant does not represent the response well because a pole exists
at the expansion point of 0. To increase the accuracy of pade when there is a pole or zero
at the expansion point, set the OrderMode input argument to Relative and repeat the
steps. For details, see pade.

stepPade22Rel = pade(step, "Order”,[2 2], OrderMode”, "Relative™)

yPade22Rel = H(s)*stepPade22Rel
yPade22Rel = ilaplace(yPade22Rel)
yPade22Rel = subs(yPade22Rel,[a tau],[1 3])

ezplot(yPade22Rel, [0 20])
title(["Pad” char(233) " Approximant for dead-time step input™])
legend("Response to dead-time step input”®,...

["Pad® char(233) " approximant [2 2]"],---

["Relative Pad" char(233) " approximant [2 2]"], "Location®, "Best");
stepPade22Rel =

(3*s™2 - 6*s + 4)/(s*(3*s"2 + 6*s + 4))

yPade22Rel =

(@a*(3*s"2 - 6*s + 4))/(s*(s*tau + 1)*(3*s™2 + 6*s + 4))

yPade22Rel =

a - (@*exp(-t/tau)*(4*tau™2 + 6*tau + 3))/(4*tau™2 - 6*tau + 3) + (12*a*tau*exp(-t)*(c

yPade22Rel =

(12*%exp(-t)*(cos((3(1/2)*t)/3) + (2*3~(1/2)*sin((3"(1/2)*t)/3))/3))/7 - (19*exp(-t/3).
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Pade Approximant for dead-time step input
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0 _I'.'—'_' Response to dead-time step input
| Pade approximant [2 2]
Relative Pade approximant [2 2]
0 2 4 G ] 10 12 14 16 18 20

t

The accuracy of the Padé approximant can also be increased by increasing its order.
Increase the order to [4 5] and repeat the steps. The [n-1 n] Padé approximant is
better at approximating the response at t = O than the [n n] Padé approximant.

stepPade45 = pade(step, "Order”,[4 5])

yPade45 = H(s)*stepPade45
yPade45 = subs(yPade45,[a tau],[1 3])
yPade45 = ilaplace(yPade45)

yPade45 = vpa(yPade45)
ezplot(yPade45,[0 20])
title(["Pad® char(233) ° Approximant for dead-time step input®])
legend("Response to dead-time step input”,...
[FPad® char(233) " approximant [2 2]"],---
["Relative Pad®" char(233) " approximant [2 2]°],---



Padé Approximant

["Pad® char(233) " approximant [4 5]"], "“Location®, "Best");

stepPade45 =

(27*s™M4 - 180*s"3 + 540*s™2 - 840*s + 560)/(s*(27*s™4 + 180*s"3 + 540*s™2 + 840*s + 56

yPade45 =

(@*(27*s™M - 180*s"3 + 540*s™2 - 840*s + 560))/(s*(s*tau + 1)*(27*s™4 + 180*s"3 + 540%

yPade45 =

(27*s™4 - 180*s"3 + 540*s™2 - 840*s + 560)/(s*(3*s + 1)*(27*s™4 + 180*s"3 + 540*s"2 + |

yPade45 =

(294120*symsum((exp(root(s5™4 + (20*s573)/3 + 20*s572 + (280*s5)/9 + 560/27, s5, k)*t)

yPade45 =

3.2418384981662546679005910164486*exp(-1.930807068546914778929595950184*t)*cos(0.57815¢
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Pade Approximant for dead-time step input

\ Response to dead-time step input
W Pade approximant [2 2]

3 Relative Padé approximant [2 2]
, Pade approximant [4 5]
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The following points have been shown:

Padé approximants can model dead-time step inputs.

The accuracy of the Padé approximant increases with the increase in the order of the
approximant.,

When a pole or zero exists at the expansion point, the Padé approximant is inaccurate
about the expansion point. To increase the accuracy of the approximant, set

the OrderMode option to Relative. You can also use increase the order of the
denominator relative to the numerator.
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Find Asymptotes, Critical and Inflection Points

This section describes how to analyze a simple function to find its asymptotes, maximum,
minimum, and inflection point. The section covers the following topics:

In this section...

“Define a Function” on page 2-45
“Find Asymptotes” on page 2-46

“Find Maximum and Minimum” on page 2-48

“Find Inflection Point” on page 2-50

Define a Function

The function in this example is

2
£(x) = 3x2 +6x-1

x2+x-3

To create the function, enter the following commands:
syms X

num = 3*x"2 + 6*x -1;

denom = x"2 + X - 3;
f = num/denom

f =
@B*xX"2 + 6*x - /(X2 + X - 3)
Plot the function f

ezplot(f)
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Find Asymptotes

To find the horizontal asymptote of the graph of F, take the limit of ¥ as X approaches
positive infinity:
limit(f, inf)

ans
3

The limit as x approaches negative infinity is also 3. This tells you that the line y =3 is a
horizontal asymptote to the graph.
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To find the vertical asymptotes of F, set the denominator equal to 0 and solve by entering
the following command:

roots = solve(denom)

This returns to solutions to x% +x -3 =0:
roots =
- 137 (1/2)72 - 1/2
137 (1/2)/2 - 1/2

This tells you that vertical asymptotes are the lines

‘e —1+x/ﬁ
=

and
Lo 1-V13
=

You can plot the horizontal and vertical asymptotes with the following commands. Note
that roots must be converted to double to use the plot command.

ezplot(f)

hold on % Keep the graph of f in the figure
% Plot horizontal asymptote
plot([-2*pi 2*pi], [3 3].79")

% Plot vertical asymptotes
plot(double(roots(1))*[1 1], [-5 10],°r")
plot(double(roots(2))*[1 1], [-5 10],°r")
title("Horizontal and Vertical Asymptotes™)
hold off
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Horizontal and Vertical Asymptotes
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Find Maximum and Minimum

You can see from the graph that F has a local maximum somewhere between the points x
= -2 and x = 0, and might have a local minimum between x = —6 and x = —2. To find the x
coordinates of the maximum and minimum, first take the derivative of F:

f1 = diff(H)
fl =

(6*x + B)/(x"2 + x - 3) - ((2*x + 1)*(3*X"2 + 6*x - 1))/ (X 2 + x - 3)"2

To simplify this expression, enter

f1 = simplify(fl)

2-48




Find Asymptotes, Critical and Inflection Points

fl =
-(3*xX"N2 + 16*x + 17)/(X"2 + X - 3)™2

You can display f1 in a more readable form by entering
pretty(fl)

which returns

3 x + 16 x + 17

x +x-23)
Next, set the derivative equal to 0 and solve for the critical points:
crit_pts = solve(fl)
crit _pts =
- 137~(1/2)/3 - 8/3
13~(1/2)/3 - 8/3

It is clear from the graph of F that it has a local minimum at

=—8—\/E

X1 3

and a local maximum at

_ —8+\/E

x2 3

Note MATLAB does not always return the roots to an equation in the same order.

You can plot the maximum and minimum of ¥ with the following commands:
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ezplot(f)
hold on

plot(double(crit_pts), double(subs(f,crit_pts)),“ro")
title("Maximum and Minimum of %)

text(-5.5,3.2,"Local minimum®)

text(-2.5,2, "Local maximum®)
hold off

Maximum and Minimum of f
T T T T 'I T T T
|
II
8 I'l ]
|
IIII
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0r . \ 1
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|
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-.4 C i i i i | i i i 7
% -4 2 0 2 4

Find Inflection Point

To find the inflection point of ¥, set the second derivative equal to 0 and solve.
2 = diff(fl);
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inflec_pt = solve(f2, "MaxDegree® ,3);
double(inflec_pt)

This returns

ans =
-5.2635 + 0.00001#
-1.3682 - 0.8511i
-1.3682 + 0.8511i

In this example, only the first entry is a real number, so this is the only inflection point.
(Note that in other examples, the real solutions might not be the first entries of the
answer.) Since you are only interested in the real solutions, you can discard the last two
entries, which are complex numbers.

inflec_pt = inflec_pt(1l);
To see the symbolic expression for the inflection point, enter

pretty(simplify(inflec_pt))

2/3 1/3 1/3 2/3 1/3 1/3
2 13 (13 - 3 sqrt(13)) 2 13 (3 sqrt(13) + 13) 8

Plot the inflection point. The extra argument, [-9 6], in ezplot extends the range
of x values in the plot so that you see the inflection point more clearly, as shown in the
following figure.

ezplot(f, [-9 6])

hold on

plot(double(inflec_pt), double(subs(f,inflec_pt)),"ro")
title("Inflection Point of f7)

text(-7,2, " Inflection point™)

hold off
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Inflection Point of f
B

Inflection point
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Simplify Symbolic Expressions

Simplification of a mathematical expression is not a clearly defined subject. There

is no universal idea as to which form of an expression is simplest. The form of a
mathematical expression that is simplest for one problem turns out to be complicated
or even unsuitable for another problem. For example, the following two mathematical
expressions present the same polynomial in different forms:

X+ DX -2+ )& - 4),

4 3

x' - 2x® - 13x° + 14x + 24.

The first form clearly shows the roots of this polynomial. This form is simpler for working
with the roots. The second form serves best when you want to see the coefficients of the
polynomial. For example, this form is convenient when you differentiate or integrate
polynomials.

If the problem you want to solve requires a particular form of an expression, the best
approach is to choose the appropriate simplification function. See “Choose Function to
Rearrange Expression” on page 2-61.

Besides specific simplifiers, Symbolic Math Toolbox offers a general simplifier,

simplify.

If you do not need a particular form of expressions (expanded, factored, or expressed in
particular terms), use simplify to shorten mathematical expressions. For example, use
this simplifier to find a shorter form for a final result of your computations.

simplify works on various types of symbolic expressions, such as polynomials,
expressions with trigonometric, logarithmic, and special functions. For example, simplify
these polynomials.

syms X y
simplify((1 - x*2)/(1 - x))
simplify((x - D*(x + D*(XM2 + x + 1)*(XN2 + D*(xN2 - x + D*(xM - x"2 + 1))

ans =
X + 1

ans =
xN12 -1

Simplify expressions involving trigonometric functions.
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simplify(cosQON(-2) - tan(x)"2)
simplify(cos(x)"2 - sin(x)"2)

ans =
1

ans =
cos(2*x)

Simplify expressions involving exponents and logarithms. In the third expression, use
log(sym(3)) instead of 1og(3). If you use 10g(3), then MATLAB calculates 10g(3)
with the double precision, and then converts the result to a symbolic number.

simplify(exp(x)*exp(y))
simplify(exp(X) - exp(x/2)"2)
simplify(log(x) + log(sym(3)) - log(3*x) + (exp(xX) - 1)/(exp(x/2) + 1))

ans =
exp(x + y)

ans =
0

ans =
exp(x/2) -1

Simplify expressions involving special functions.

simplify(gamma(x + 1) - x*gamma(x))
simplify(besselj(2, x) + besselj(0, x))

ans =
0

ans =
(2*besselj(1, x))/X

You also can simplify symbolic functions by using simplify.

syms F(x,y)
T, y) = exp(x)*exp(y)
f = simplify(f)

f(x, y) =
exp(x)*exp(y)



Simplify Symbolic Expressions

f(x, y) =
exp(x + y)

Simplify Using Options

By default, simpliFfy uses strict simplification rules and ensures that simplified
expressions are always mathematically equivalent to initial expressions. For example, it
does not combine logarithms.

syms X
simplify(log(x*2) + log(x))

ans =
log(x"2) + log(x)

You can