
Symbolic Math Toolbox™

User's Guide

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Symbolic Math Toolbox™ User's Guide
© COPYRIGHT 1993–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

August 1993 First printing
October 1994 Second printing
May 1997 Third printing Revised for Version 2
May 2000 Fourth printing Minor changes
June 2001 Fifth printing Minor changes
July 2002 Online only Revised for Version 2.1.3 (Release 13)
October 2002 Online only Revised for Version 3.0.1
December 2002 Sixth printing
June 2004 Seventh printing Revised for Version 3.1 (Release 14)
October 2004 Online only Revised for Version 3.1.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.1.2 (Release 14SP2)
September 2005 Online only Revised for Version 3.1.3 (Release 14SP3)
March 2006 Online only Revised for Version 3.1.4 (Release 2006a)
September 2006 Online only Revised for Version 3.1.5 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.2.2 (Release 2007b)
March 2008 Online only Revised for Version 3.2.3 (Release 2008a)
October 2008 Online only Revised for Version 5.0 (Release 2008a+)
October 2008 Online only Revised for Version 5.1 (Release 2008b)
November 2008 Online only Revised for Version 4.9 (Release 2007b+)
March 2009 Online only Revised for Version 5.2 (Release 2009a)
September 2009 Online only Revised for Version 5.3 (Release 2009b)
March 2010 Online only Revised for Version 5.4 (Release 2010a)
September 2010 Online only Revised for Version 5.5 (Release 2010b)
April 2011 Online only Revised for Version 5.6 (Release 2011a)
September 2011 Online only Revised for Version 5.7 (Release 2011b)
March 2012 Online only Revised for Version 5.8 (Release 2012a)
September 2012 Online only Revised for Version 5.9 (Release 2012b)
March 2013 Online only Revised for Version 5.10 (Release 2013a)
September 2013 Online only Revised for Version 5.11 (Release 2013b)
March 2014 Online only Revised for Version 6.0 (Release 2014a)
October 2014 Online only Revised for Version 6.1 (Release 2014b)
March 2015 Online only Revised for Version 6.2 (Release 2015a)
September 2015 Online only Revised for Version 6.3 (Release 2015b)

v

Contents

Acknowledgments

Getting Started
1

Symbolic Math Toolbox Product Description 1-2
Key Features . 1-2

Access Symbolic Math Toolbox Functionality 1-3
Work from MATLAB . 1-3
Work from MuPAD . 1-3

Create Symbolic Numbers, Variables, and Expressions 1-4
Create Symbolic Numbers . 1-4
Create Symbolic Variables . 1-5
Create Symbolic Expressions . 1-5
Reuse Names of Symbolic Objects . 1-6

Create Symbolic Functions . 1-8

Create Symbolic Matrices . 1-9
Use Existing Symbolic Variables . 1-9
Generate Elements While Creating a Matrix 1-10
Create Matrix of Symbolic Numbers 1-10

Perform Symbolic Computations . 1-12
Differentiate Symbolic Expressions 1-12
Integrate Symbolic Expressions . 1-13
Solve Equations . 1-15
Simplify Symbolic Expressions . 1-17
Substitutions in Symbolic Expressions 1-18

vi Contents

Plot Symbolic Functions . 1-21

Use Assumptions on Symbolic Variables 1-27
Default Assumption . 1-27
Set Assumptions . 1-27
Check Existing Assumptions . 1-28
Delete Symbolic Objects and Their Assumptions 1-28

Using Symbolic Math Toolbox Software
2

Find Symbolic Variables in Expressions, Functions,
Matrices . 2-4

Find a Default Symbolic Variable . 2-5

Differentiation . 2-6
Derivatives of Expressions with Several Variables 2-7
More Examples . 2-8

Solve Wave Equation Using Functional Derivatives 2-12

Limits . 2-20
One-Sided Limits . 2-20

Integration . 2-23
Integration with Real Parameters . 2-26
Integration with Complex Parameters 2-28

Symbolic Summation . 2-30
Comparing symsum and sum . 2-30
Computational Speed of symsum versus sum 2-31
Output Format Differences Between symsum and sum 2-31

Taylor Series . 2-33

Padé Approximant . 2-36

Find Asymptotes, Critical and Inflection Points 2-45
Define a Function . 2-45
Find Asymptotes . 2-46

vii

Find Maximum and Minimum . 2-48
Find Inflection Point . 2-50

Simplify Symbolic Expressions . 2-53
Simplify Using Options . 2-55
Simplify Using Assumptions . 2-57
Simplify Fractions . 2-57

Abbreviate Common Terms in Long Expressions 2-59

Choose Function to Rearrange Expression 2-61
Combine Terms of Same Algebraic Structures 2-61
Expand Expressions . 2-63
Factor Expressions . 2-64
Extract Subexpressions from Expression 2-66
Collect Terms with Same Powers . 2-67
Rewrite Expressions in Terms of Other Functions 2-68
Compute Partial Fraction Decompositions of Expressions . . 2-69
Compute Normal Forms of Rational Expressions 2-70
Represent Polynomials Using Horner Nested Forms 2-70

Extract Polynomial Coefficients . 2-72

Extract Numerators and Denominators of Rational
Expressions . 2-74

Substitute Variables in Symbolic Expressions 2-76

Substitute Elements in Symbolic Matrices 2-78

Substitute Scalars with Matrices . 2-80

Use subs to Evaluate Expressions and Functions 2-82
Evaluate Expressions . 2-82
Evaluate Functions . 2-83

Choose Symbolic or Numeric Arithmetic 2-85
Symbolic Arithmetic . 2-85
Variable-Precision Arithmetic . 2-85
Double-Precision Arithmetic . 2-86

Control Precision of Numerical Computations 2-87

viii Contents

Recognize and Avoid Round-Off Errors 2-89
Use Symbolic Computations When Possible 2-89
Perform Calculations with Increased Precision 2-90
Compare Symbolic and Numeric Results 2-92
Plot the Function or Expression . 2-92

Improve Performance of Numeric Computations 2-94

Numeric to Symbolic Conversion . 2-95
Conversion to Rational Symbolic Form 2-97
Conversion by Using Floating-Point Expansion 2-97
Conversion to Rational Symbolic Form with Error Term . . . 2-97
Conversion to Decimal Form . 2-97

Basic Algebraic Operations . 2-99

Linear Algebraic Operations . 2-101

Eigenvalues . 2-107

Jordan Canonical Form . 2-112

Singular Value Decomposition . 2-114

Solve Algebraic Equation . 2-116
Solve an Equation . 2-116
Return the Full Solution to an Equation 2-117
Work with the Full Solution, Parameters, and Conditions

Returned by solve . 2-117
Visualize and Plot Solutions Returned by solve 2-118
Simplify Complicated Results and Improve Performance . . 2-120

Select Numeric or Symbolic Solver 2-121

Solve System of Algebraic Equations 2-123
Handle the Output of solve . 2-123
Solve a Linear System of Equations 2-125
Return the Full Solution of a System of Equations 2-126
Solve a System of Equations Under Conditions 2-128
Work with Solutions, Parameters, and Conditions Returned by

solve . 2-129
Convert Symbolic Results to Numeric Values 2-132
Simplify Complicated Results and Improve Performance . . 2-133

ix

Resolve Complicated Solutions or Stuck Solver 2-134
Return Only Real Solutions . 2-134
Apply Simplification Rules . 2-134
Use Assumptions to Narrow Results 2-135
Simplify Solutions . 2-137
Tips . 2-137

Solve System of Linear Equations . 2-139
Solve System of Linear Equations Using linsolve 2-139
Solve System of Linear Equations Using solve 2-140

Solve Equations Numerically . 2-142
Find All Roots of a Polynomial Function 2-142
Find Zeros of a Nonpolynomial Function Using Search Ranges

and Starting Points . 2-143
Obtain Solutions to Arbitrary Precision 2-147
Solve Multivariate Equations Using Search Ranges 2-148

Solve a Single Differential Equation 2-153
First-Order Linear ODE . 2-153
Nonlinear ODE . 2-154
Second-Order ODE with Initial Conditions 2-154
Third-Order ODE . 2-155
More ODE Examples . 2-155

Solve a System of Differential Equations 2-157
Solve System of Differential Equations 2-157
Solve Differential Equations in Matrix Form 2-159

Differential Algebraic Equations . 2-163

Set Up Your DAE Problem . 2-164
Step 1: Equations and Variables . 2-165
Step 2: Differential Order . 2-166
Step 3: Differential Index . 2-166
Step 4: MATLAB Function Handles 2-166
Step 5: Consistent Initial Conditions 2-167
Step 6: ODE Solvers . 2-167
Solving DAE Systems Flow Chart 2-167

Reduce Differential Order of DAE Systems 2-169

x Contents

Check and Reduce Differential Index 2-171
Reduce Differential Index to 1 . 2-171
Reduce Differential Index to 0 . 2-173

Convert DAE Systems to MATLAB Function Handles 2-175
DAEs to Function Handles for ode15i 2-175
ODEs to Function Handles for ode15i 2-177
DAEs to Function Handles for ode15s and ode23t 2-178
ODEs to Function Handles for ode15s and ode23t 2-179

Find Consistent Initial Conditions 2-182
DAEs: Initial Conditions for ode15i 2-182
ODEs: Initial Conditions for ode15i 2-184
DAEs: Initial Conditions for ode15s and ode23t 2-185
ODEs: Initial Conditions for ode15s and ode23t 2-186

Solve DAE Systems Using MATLAB ODE Solvers 2-188
Solve a DAE System with ode15i 2-188
Solve an ODE System with ode15i 2-189
Solve a DAE System with ode15s 2-190
Solve an ODE System with ode15s 2-191

Compute Fourier and Inverse Fourier Transforms 2-193

Compute Laplace and Inverse Laplace Transforms 2-199

Compute Z-Transforms and Inverse Z-Transforms 2-206
References . 2-208

Diffraction of Light . 2-210

Create Plots . 2-214
Plot with Symbolic Plotting Functions 2-214
Plot with MATLAB Plotting Functions 2-217
Plot Multiple Symbolic Functions in One Graph 2-219
Plot Multiple Symbolic Functions in One Figure 2-221
Combine Symbolic Function Plots and Numeric Data Plots 2-223

Explore Function Plots . 2-228

Edit Graphs . 2-230

Save Graphs . 2-231

xi

Generate C or Fortran Code . 2-232

Generate MATLAB Functions . 2-234
Generating a Function Handle . 2-234
Control the Order of Variables . 2-235
Generate a File . 2-235
Name Output Variables . 2-236
Convert MuPAD Expressions . 2-237

Generate MATLAB Function Blocks 2-239
Generate and Edit a Block . 2-239
Control the Order of Input Ports . 2-239
Name the Output Ports . 2-240
Convert MuPAD Expressions . 2-240

Generate Simscape Equations . 2-241
Convert Algebraic and Differential Equations 2-241
Convert MuPAD Equations . 2-243
Limitations . 2-243

MuPAD in Symbolic Math Toolbox
3

MuPAD Engines and MATLAB Workspace 3-2

Create MuPAD Notebooks . 3-3
If You Need Communication Between Interfaces 3-3
If You Use MATLAB to Access MuPAD 3-4

Open MuPAD Notebooks . 3-6
If You Need Communication Between Interfaces 3-6
If You Use MATLAB to Access MuPAD 3-7
Open MuPAD Program Files and Graphics 3-9

Save MuPAD Notebooks . 3-12

Evaluate MuPAD Notebooks from MATLAB 3-13

Close MuPAD Notebooks from MATLAB 3-16

xii Contents

Edit MuPAD Code in MATLAB Editor 3-18
Comments in MuPAD Procedures . 3-19

Notebook Files and Program Files . 3-20

Source Code of the MuPAD Library Functions 3-21

Differences Between MATLAB and MuPAD Syntax 3-22

Copy Variables and Expressions Between MATLAB and
MuPAD . 3-25

Copy and Paste Using the System Clipboard 3-27

Reserved Variable and Function Names 3-29

Call Built-In MuPAD Functions from MATLAB 3-31
evalin . 3-31
feval . 3-31
evalin vs. feval . 3-32
Floating-Point Arguments of evalin and feval 3-33

Computations in MATLAB Command Window vs. MuPAD
Notebook App . 3-34

Results Displayed in Typeset Math 3-35
Graphics and Animations . 3-35
More Functionality in Specialized Mathematical Areas 3-36
More Options for Common Symbolic Functions 3-36
Possibility to Expand Existing Functionality 3-37

Use Your Own MuPAD Procedures . 3-38
Write MuPAD Procedures . 3-38
Steps to Take Before Calling a Procedure 3-39
Call Your Own MuPAD Procedures 3-40

Clear Assumptions and Reset the Symbolic Engine 3-43
Check Assumptions Set On Variables 3-44
Effects of Assumptions on Computations 3-45

Create MATLAB Functions from MuPAD Expressions 3-47
Copy MuPAD Variables to the MATLAB Workspace 3-48
Generate MATLAB Code in a MuPAD Notebook 3-49

xiii

Create MATLAB Function Blocks from MuPAD
Expressions . 3-50

Create Simscape Equations from MuPAD Expressions 3-52
GenerateSimscape Equations in the MuPAD Notebook App . 3-52
Generate Simscape Equations in the MATLAB Command

Window . 3-53

Functions — Alphabetical List
4

xv

Acknowledgments
The MuPAD® documentation is © COPYRIGHT 1997–2015 by SciFace Software GmbH &
Co. KG.

MuPAD is a registered trademark of SciFace Software GmbH & Co. KG. MATLAB and
Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/
trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

http://www.mathworks.com/trademarks
http://www.mathworks.com/trademarks

1

Getting Started

• “Symbolic Math Toolbox Product Description” on page 1-2
• “Access Symbolic Math Toolbox Functionality” on page 1-3
• “Create Symbolic Numbers, Variables, and Expressions” on page 1-4
• “Create Symbolic Functions” on page 1-8
• “Create Symbolic Matrices” on page 1-9
• “Perform Symbolic Computations” on page 1-12
• “Use Assumptions on Symbolic Variables” on page 1-27

1 Getting Started

1-2

Symbolic Math Toolbox Product Description
Perform symbolic math computations

Symbolic Math Toolbox provides functions for solving and manipulating symbolic
math expressions and performing variable-precision arithmetic. You can analytically
perform differentiation, integration, simplification, transforms, and equation solving.
You can also generate code for MATLAB, Simulink®, and Simscape™ from symbolic math
expressions.

Symbolic Math Toolbox includes the MuPAD language, which is optimized for handling
and operating on symbolic math expressions. It provides libraries of MuPAD functions
in common mathematical areas, such as calculus and linear algebra, and in specialized
areas, such as number theory and combinatorics. You can also write custom symbolic
functions and libraries in the MuPAD language. The MuPAD Notebook app lets you
document symbolic math derivations with embedded text, graphics, and typeset math.
You can share the annotated derivations as HTML or as a PDF.

Key Features

• Symbolic integration, differentiation, transforms, and linear algebra
• Algebraic and ordinary differential equation (ODE) solvers
• Simplification and manipulation of symbolic expressions
• Code generation from symbolic expressions for MATLAB, Simulink, Simscape, C,

Fortran, MathML, and TeX
• Variable-precision arithmetic
• MuPAD Notebook for performing and documenting symbolic calculations
• MuPAD language and function libraries for combinatorics, number theory, and other

mathematical areas

 Access Symbolic Math Toolbox Functionality

1-3

Access Symbolic Math Toolbox Functionality

In this section...

“Work from MATLAB” on page 1-3
“Work from MuPAD” on page 1-3

Work from MATLAB

You can access the Symbolic Math Toolbox functionality directly from the MATLAB
Command Window. This environment lets you call functions using familiar MATLAB
syntax.

Work from MuPAD

You can access the Symbolic Math Toolbox functionality from the MuPAD Notebook app
using the MuPAD language. The MuPAD Notebook app includes a symbol palette for
accessing common MuPAD functions. All results are displayed in typeset math. You also
can convert the results into MathML and TeX. You can embed graphics, animations, and
descriptive text within your notebook.

A debugger and other programming utilities provide tools for authoring custom symbolic
functions and libraries in the MuPAD language. The MuPAD language supports multiple
programming styles including imperative, functional, and object-oriented programming.
The language treats variables as symbolic by default and is optimized for handling and
operating on symbolic math expressions. You can call functions written in the MuPAD
language from the MATLAB Command Window. For more information, see “Call Built-In
MuPAD Functions from MATLAB” on page 3-31

If you are a new user of the MuPAD Notebook app, see Getting Started with MuPAD.

1 Getting Started

1-4

Create Symbolic Numbers, Variables, and Expressions

This page shows how to create symbolic numbers, variables, and expressions. To learn
how to work with symbolic math, see “Perform Symbolic Computations” on page 1-12.

Create Symbolic Numbers

You can create symbolic numbers by using sym. Symbolic numbers are exact
representations, unlike floating-point numbers.

Create a symbolic number by using sym and compare it to the same floating-point
number.

sym(1/3)

1/3

ans =

1/3

ans =

 0.3333

The symbolic number is represented in exact rational form, while the floating-point
number is a decimal approximation. The symbolic result is not indented, while the
standard MATLAB result is indented.

Calculations on symbolic numbers are exact. Demonstrate this exactness by finding
sin(pi) symbolically and numerically. The symbolic result is exact, while the numeric
result is an approximation.

sin(sym(pi))

sin(pi)

ans =

0

ans =

 1.2246e-16

To learn more about symbolic representation of numbers, see “Numeric to Symbolic
Conversion” on page 2-95.

 Create Symbolic Numbers, Variables, and Expressions

1-5

Create Symbolic Variables

You can use two ways to create symbolic variables, syms and sym. The syms syntax is a
shorthand for sym.

Create symbolic variables x and y using syms and sym respectively.

syms x

y = sym('y')

The first command creates a symbolic variable x in the MATLAB workspace with the
value x assigned to the variable x. The second command creates a symbolic variable y
with value y. Therefore, the commands are equivalent.

With syms, you can create multiple variables in one command. Create the variables a, b,
and c.

syms a b c

If you want to create many variables, the syms syntax is inconvenient. Instead of using
syms, use sym to create many numbered variables.

Create the variables a1, ..., a20.

A = sym('a', [1 20])

A =

[a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,...

 a11, a12, a13, a14, a15, a16, a17, a18, a19, a20]

The syms command is a convenient shorthand for the sym syntax. Use the sym syntax
when you create many variables, when the variable value differs from the variable name,
or when you create a symbolic number, such as sym(5).

Create Symbolic Expressions

Suppose you want to use a symbolic variable to represent the golden ratio

j =
+1 5

2

The command

1 Getting Started

1-6

phi = (1 + sqrt(sym(5)))/2;

achieves this goal. Now you can perform various mathematical operations on phi. For
example,

f = phi^2 - phi - 1

returns

f =

(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2

Now suppose you want to study the quadratic function f = ax2 + bx + c. First, create the
symbolic variables a, b, c, and x:

syms a b c x

Then, assign the expression to f:

f = a*x^2 + b*x + c;

Tip To create a symbolic number, use the sym command. Do not use the syms function
to create a symbolic expression that is a constant. For example, to create the expression
whose value is 5, enter f = sym(5). The command f = 5 does not define f as a
symbolic expression.

Reuse Names of Symbolic Objects

If you set a variable equal to a symbolic expression, and then apply the syms command
to the variable, MATLAB software removes the previously defined expression from the
variable. For example,

syms a b

f = a + b

returns

f =

a + b

If later you enter

 Create Symbolic Numbers, Variables, and Expressions

1-7

syms f

f

then MATLAB removes the value a + b from the expression f:

f =

f

You can use the syms command to clear variables of definitions that you previously
assigned to them in your MATLAB session. However, syms does not clear the following
assumptions of the variables: complex, real, integer, and positive. These assumptions are
stored separately from the symbolic object. For more information, see “Delete Symbolic
Objects and Their Assumptions” on page 1-28.

1 Getting Started

1-8

Create Symbolic Functions

You also can use sym and syms to create symbolic functions. For example, you can create
an arbitrary function f(x, y) where x and y are function variables. The simplest way to
create an arbitrary symbolic function is to use syms:

syms f(x, y)

This syntax creates the symbolic function f and symbolic variables x and y. If instead
of an arbitrary symbolic function you want to create a function defined by a particular
mathematical expression, use this two-step approach. First, create symbolic variables
representing the arguments of the function:

syms x y

Then assign a mathematical expression to the function. In this case, the assignment
operation also creates the new symbolic function:

f(x, y) = x^3*y^3

f(x, y) =

x^3*y^3

Note that the body of the function must be a symbolic number, variable, or expression.
Assigning a number, such as f(x,y) = 1, causes an error.

After creating a symbolic function, you can differentiate, integrate, or simplify it,
substitute its arguments with values, and perform other mathematical operations. For
example, find the second derivative on f(x, y) with respect to variable y. The result
d2fy is also a symbolic function.

d2fy = diff(f, y, 2)

d2fy(x, y) =

6*x^3*y

Now evaluate f(x, y) for x = y + 1:

f(y + 1, y)

ans =

y^3*(y + 1)^3

 Create Symbolic Matrices

1-9

Create Symbolic Matrices

In this section...

“Use Existing Symbolic Variables” on page 1-9
“Generate Elements While Creating a Matrix” on page 1-10
“Create Matrix of Symbolic Numbers” on page 1-10

Use Existing Symbolic Variables

A circulant matrix has the property that each row is obtained from the previous one
by cyclically permuting the entries one step forward. For example, create the symbolic
circulant matrix whose elements are a, b, and c, using the commands:

syms a b c

A = [a b c; c a b; b c a]

A =

[a, b, c]

[c, a, b]

[b, c, a]

Since matrix A is circulant, the sum of elements over each row and each column is the
same. Find the sum of all the elements of the first row:

sum(A(1,:))

ans =

a + b + c

To check if the sum of the elements of the first row equals the sum of the elements of the
second column, use the isAlways function:

isAlways(sum(A(1,:)) == sum(A(:,2)))

The sums are equal:

ans =

 1

From this example, you can see that using symbolic objects is very similar to using
regular MATLAB numeric objects.

1 Getting Started

1-10

Generate Elements While Creating a Matrix

The sym function also lets you define a symbolic matrix or vector without having to
define its elements in advance. In this case, the sym function generates the elements of
a symbolic matrix at the same time that it creates a matrix. The function presents all
generated elements using the same form: the base (which must be a valid variable name),
a row index, and a column index. Use the first argument of sym to specify the base for the
names of generated elements. You can use any valid variable name as a base. To check
whether the name is a valid variable name, use the isvarname function. By default, sym
separates a row index and a column index by underscore. For example, create the 2-by-4
matrix A with the elements A1_1, ..., A2_4:

A = sym('A', [2 4])

A =

[A1_1, A1_2, A1_3, A1_4]

[A2_1, A2_2, A2_3, A2_4]

To control the format of the generated names of matrix elements, use %d in the first
argument:

A = sym('A%d%d', [2 4])

A =

[A11, A12, A13, A14]

[A21, A22, A23, A24]

Create Matrix of Symbolic Numbers

A particularly effective use of sym is to convert a matrix from numeric to symbolic form.
The command

A = hilb(3)

generates the 3-by-3 Hilbert matrix:

A =

 1.0000 0.5000 0.3333

 0.5000 0.3333 0.2500

 0.3333 0.2500 0.2000

By applying sym to A

A = sym(A)

 Create Symbolic Matrices

1-11

you can obtain the precise symbolic form of the 3-by-3 Hilbert matrix:

A =

[1, 1/2, 1/3]

[1/2, 1/3, 1/4]

[1/3, 1/4, 1/5]

For more information on numeric to symbolic conversions, see “Numeric to Symbolic
Conversion” on page 2-95.

1 Getting Started

1-12

Perform Symbolic Computations

In this section...

“Differentiate Symbolic Expressions” on page 1-12
“Integrate Symbolic Expressions” on page 1-13
“Solve Equations” on page 1-15
“Simplify Symbolic Expressions” on page 1-17
“Substitutions in Symbolic Expressions” on page 1-18
“Plot Symbolic Functions” on page 1-21

Differentiate Symbolic Expressions

With the Symbolic Math Toolbox software, you can find

• Derivatives of single-variable expressions
• Partial derivatives
• Second and higher order derivatives
• Mixed derivatives

For in-depth information on taking symbolic derivatives see “Differentiation” on page
2-6.

Expressions with One Variable

To differentiate a symbolic expression, use the diff command. The following example
illustrates how to take a first derivative of a symbolic expression:

syms x

f = sin(x)^2;

diff(f)

ans =

2*cos(x)*sin(x)

Partial Derivatives

For multivariable expressions, you can specify the differentiation variable. If you do not
specify any variable, MATLAB chooses a default variable by its proximity to the letter x:

 Perform Symbolic Computations

1-13

syms x y

f = sin(x)^2 + cos(y)^2;

diff(f)

ans =

2*cos(x)*sin(x)

For the complete set of rules MATLAB applies for choosing a default variable, see “Find a
Default Symbolic Variable” on page 2-5.

To differentiate the symbolic expression f with respect to a variable y, enter:

syms x y

f = sin(x)^2 + cos(y)^2;

diff(f, y)

ans =

-2*cos(y)*sin(y)

Second Partial and Mixed Derivatives

To take a second derivative of the symbolic expression f with respect to a variable y,
enter:

syms x y

f = sin(x)^2 + cos(y)^2;

diff(f, y, 2)

ans =

2*sin(y)^2 - 2*cos(y)^2

You get the same result by taking derivative twice: diff(diff(f, y)). To take mixed
derivatives, use two differentiation commands. For example:

syms x y

f = sin(x)^2 + cos(y)^2;

diff(diff(f, y), x)

ans =

0

Integrate Symbolic Expressions

You can perform symbolic integration including:

• Indefinite and definite integration

1 Getting Started

1-14

• Integration of multivariable expressions

For in-depth information on the int command including integration with real and
complex parameters, see “Integration” on page 2-23.

Indefinite Integrals of One-Variable Expressions

Suppose you want to integrate a symbolic expression. The first step is to create the
symbolic expression:

syms x

f = sin(x)^2;

To find the indefinite integral, enter

int(f)

ans =

x/2 - sin(2*x)/4

Indefinite Integrals of Multivariable Expressions

If the expression depends on multiple symbolic variables, you can designate a variable of
integration. If you do not specify any variable, MATLAB chooses a default variable by the
proximity to the letter x:

syms x y n

f = x^n + y^n;

int(f)

ans =

x*y^n + (x*x^n)/(n + 1)

For the complete set of rules MATLAB applies for choosing a default variable, see “Find a
Default Symbolic Variable” on page 2-5.

You also can integrate the expression f = x^n + y^n with respect to y

syms x y n

f = x^n + y^n;

int(f, y)

ans =

x^n*y + (y*y^n)/(n + 1)

If the integration variable is n, enter

 Perform Symbolic Computations

1-15

syms x y n

f = x^n + y^n;

int(f, n)

ans =

x^n/log(x) + y^n/log(y)

Definite Integrals

To find a definite integral, pass the limits of integration as the final two arguments of the
int function:

syms x y n

f = x^n + y^n;

int(f, 1, 10)

ans =

piecewise([n == -1, log(10) + 9/y],...

 [n ~= -1, (10*10^n - 1)/(n + 1) + 9*y^n])

If MATLAB Cannot Find a Closed Form of an Integral

If the int function cannot compute an integral, it returns an unresolved integral:

syms x

int(sin(sinh(x)))

ans =

int(sin(sinh(x)), x)

Solve Equations

You can solve different types of symbolic equations including:

• Algebraic equations with one symbolic variable
• Algebraic equations with several symbolic variables
• Systems of algebraic equations

For in-depth information on solving symbolic equations including differential equations,
see “Equation Solving”.

Solve Algebraic Equations with One Symbolic Variable

Use the double equal sign (==) to define an equation. Then you can solve the equation
by calling the solve function. For example, solve this equation:

1 Getting Started

1-16

syms x

solve(x^3 - 6*x^2 == 6 - 11*x)

ans =

 1

 2

 3

If you do not specify the right side of the equation, solve assumes that it is zero:

syms x

solve(x^3 - 6*x^2 + 11*x - 6)

ans =

 1

 2

 3

Solve Algebraic Equations with Several Symbolic Variables

If an equation contains several symbolic variables, you can specify a variable for which
this equation should be solved. For example, solve this multivariable equation with
respect to y:

syms x y

solve(6*x^2 - 6*x^2*y + x*y^2 - x*y + y^3 - y^2 == 0, y)

ans =

 1

 2*x

 -3*x

If you do not specify any variable, you get the solution of an equation for the
alphabetically closest to x variable. For the complete set of rules MATLAB applies for
choosing a default variable see “Find a Default Symbolic Variable” on page 2-5.

Solve Systems of Algebraic Equations

You also can solve systems of equations. For example:

syms x y z

[x, y, z] = solve(z == 4*x, x == y, z == x^2 + y^2)

x =

 0

 Perform Symbolic Computations

1-17

 2

y =

 0

 2

z =

 0

 8

Simplify Symbolic Expressions

Symbolic Math Toolbox provides a set of simplification functions allowing you to
manipulate the output of a symbolic expression. For example, the following polynomial of
the golden ratio phi

phi = sym('(1 + sqrt(5))/2');

f = phi^2 - phi - 1

returns

f =

(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2

You can simplify this answer by entering

simplify(f)

and get a very short answer:

ans =

0

Symbolic simplification is not always so straightforward. There is no universal
simplification function, because the meaning of a simplest representation of a symbolic
expression cannot be defined clearly. Different problems require different forms of the
same mathematical expression. Knowing what form is more effective for solving your
particular problem, you can choose the appropriate simplification function.

For example, to show the order of a polynomial or symbolically differentiate or integrate
a polynomial, use the standard polynomial form with all the parentheses multiplied out
and all the similar terms summed up. To rewrite a polynomial in the standard form, use
the expand function:

1 Getting Started

1-18

syms x

f = (x ^2- 1)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1);

expand(f)

ans =

x^10 - 1

The factor simplification function shows the polynomial roots. If a polynomial cannot
be factored over the rational numbers, the output of the factor function is the standard
polynomial form. For example, to factor the third-order polynomial, enter:

syms x

g = x^3 + 6*x^2 + 11*x + 6;

factor(g)

ans =

[x + 3, x + 2, x + 1]

The nested (Horner) representation of a polynomial is the most efficient for numerical
evaluations:

syms x

h = x^5 + x^4 + x^3 + x^2 + x;

horner(h)

ans =

x*(x*(x*(x*(x + 1) + 1) + 1) + 1)

For a list of Symbolic Math Toolbox simplification functions, see “Choose Function to
Rearrange Expression” on page 2-61.

Substitutions in Symbolic Expressions

Substitute Symbolic Variables with Numbers

You can substitute a symbolic variable with a numeric value by using the subs function.
For example, evaluate the symbolic expression f at the point x = 1/3:

syms x

f = 2*x^2 - 3*x + 1;

subs(f, 1/3)

ans =

2/9

 Perform Symbolic Computations

1-19

The subs function does not change the original expression f:

f

f =

2*x^2 - 3*x + 1

Substitute in Multivariate Expressions

When your expression contains more than one variable, you can specify the variable for
which you want to make the substitution. For example, to substitute the value x = 3 in
the symbolic expression

syms x y

f = x^2*y + 5*x*sqrt(y);

enter the command

subs(f, x, 3)

ans =

9*y + 15*y^(1/2)

Substitute One Symbolic Variable for Another

You also can substitute one symbolic variable for another symbolic variable. For example
to replace the variable y with the variable x, enter

subs(f, y, x)

ans =

x^3 + 5*x^(3/2)

Substitute a Matrix into a Polynomial

You can also substitute a matrix into a symbolic polynomial with numeric coefficients.
There are two ways to substitute a matrix into a polynomial: element by element and
according to matrix multiplication rules.

Element-by-Element Substitution

To substitute a matrix at each element, use the subs command:

syms x

f = x^3 - 15*x^2 - 24*x + 350;

A = [1 2 3; 4 5 6];

1 Getting Started

1-20

subs(f,A)

ans =

[312, 250, 170]

[78, -20, -118]

You can do element-by-element substitution for rectangular or square matrices.

Substitution in a Matrix Sense

If you want to substitute a matrix into a polynomial using standard matrix
multiplication rules, a matrix must be square. For example, you can substitute the magic
square A into a polynomial f:

1 Create the polynomial:

syms x

f = x^3 - 15*x^2 - 24*x + 350;

2 Create the magic square matrix:

A = magic(3)

A =

 8 1 6

 3 5 7

 4 9 2

3 Get a row vector containing the numeric coefficients of the polynomial f:

b = sym2poly(f)

b =

 1 -15 -24 350

4 Substitute the magic square matrix A into the polynomial f. Matrix A replaces all
occurrences of x in the polynomial. The constant times the identity matrix eye(3)
replaces the constant term of f:

A^3 - 15*A^2 - 24*A + 350*eye(3)

ans =

 -10 0 0

 0 -10 0

 0 0 -10

The polyvalm command provides an easy way to obtain the same result:

 Perform Symbolic Computations

1-21

polyvalm(b,A)

ans =

 -10 0 0

 0 -10 0

 0 0 -10

Substitute the Elements of a Symbolic Matrix

To substitute a set of elements in a symbolic matrix, also use the subs command.
Suppose you want to replace some of the elements of a symbolic circulant matrix A

syms a b c

A = [a b c; c a b; b c a]

A =

[a, b, c]

[c, a, b]

[b, c, a]

To replace the (2, 1) element of A with beta and the variable b throughout the matrix
with variable alpha, enter

alpha = sym('alpha');

beta = sym('beta');

A(2,1) = beta;

A = subs(A,b,alpha)

The result is the matrix:

A =

[a, alpha, c]

[beta, a, alpha]

[alpha, c, a]

For more information, see “Substitution”.

Plot Symbolic Functions

You can create different types of graphs including:

• Plots of explicit functions
• Plots of implicit functions

1 Getting Started

1-22

• 3-D parametric plots
• Surface plots

Explicit Function Plot

The simplest way to create a plot is to use the ezplot command:

syms x

ezplot(x^3 - 6*x^2 + 11*x - 6)

hold on

The hold on command retains the existing plot allowing you to add new elements and
change the appearance of the plot. For example, now you can change the names of the

 Perform Symbolic Computations

1-23

axes and add a new title and grid lines. When you finish working with the current plot,
enter the hold off command:

xlabel('x axis')

ylabel('no name axis')

title('Explicit function: x^3 - 6*x^2 + 11*x - 6')

grid on

hold off

Implicit Function Plot

Using ezplot, you can also plot equations. For example, plot the following equation over
–1 < x < 1:

1 Getting Started

1-24

syms x y

ezplot((x^2 + y^2)^4 == (x^2 - y^2)^2, [-1 1])

hold on

xlabel('x axis')

ylabel('y axis')

grid on

hold off

3-D Plot

3-D graphics is also available in Symbolic Math Toolbox. To create a 3-D plot, use the
ezplot3 command. For example:

 Perform Symbolic Computations

1-25

syms t

ezplot3(t^2*sin(10*t), t^2*cos(10*t), t)

Surface Plot

If you want to create a surface plot, use the ezsurf command. For example, to plot a
paraboloid z = x2 + y2, enter:

syms x y

ezsurf(x^2 + y^2)

hold on

zlabel('z')

title('z = x^2 + y^2')

1 Getting Started

1-26

hold off

 Use Assumptions on Symbolic Variables

1-27

Use Assumptions on Symbolic Variables

In this section...

“Default Assumption” on page 1-27
“Set Assumptions” on page 1-27
“Check Existing Assumptions” on page 1-28
“Delete Symbolic Objects and Their Assumptions” on page 1-28

Default Assumption

In Symbolic Math Toolbox, symbolic variables are complex variables by default. For
example, if you declare z as a symbolic variable using

syms z

then MATLAB assumes that z is a complex variable. You can always check if a symbolic
variable is assumed to be complex or real by using assumptions. If z is complex,
assumptions(z) returns an empty symbolic object:

assumptions(z)

ans =

Empty sym: 1-by-0

Set Assumptions

To set an assumption on a symbolic variable, use the assume function. For example,
assume that the variable x is nonnegative:

syms x

assume(x >= 0)

assume replaces all previous assumptions on the variable with the new assumption.
If you want to add a new assumption to the existing assumptions, use assumeAlso.
For example, add the assumption that x is also an integer. Now the variable x is a
nonnegative integer:

assumeAlso(x,'integer')

1 Getting Started

1-28

assume and assumeAlso let you state that a variable or an expression belongs to one of
these sets: integers, positive numbers, rational numbers, and real numbers.

Alternatively, you can set an assumption while declaring a symbolic variable using
sym or syms. For example, create the real symbolic variables a and b, and the positive
symbolic variable c:

a = sym('a', 'real');

b = sym('b', 'real');

c = sym('c', 'positive');

or more efficiently:

syms a b real

syms c positive

The assumptions that you can assign to a symbolic object with sym or syms are real,
rational, integer and positive.

Check Existing Assumptions

To see all assumptions set on a symbolic variable, use the assumptions function with
the name of the variable as an input argument. For example, this command returns the
assumptions currently used for the variable x:

assumptions(x)

To see all assumptions used for all symbolic variables in the MATLAB workspace, use
assumptions without input arguments:

assumptions

For details, see “Check Assumptions Set On Variables” on page 3-44.

Delete Symbolic Objects and Their Assumptions

Symbolic objects and their assumptions are stored separately. When you set an
assumption that x is real using

syms x

assume(x,'real')

 Use Assumptions on Symbolic Variables

1-29

you actually create a symbolic object x and the assumption that the object is real. The
object is stored in the MATLAB workspace, and the assumption is stored in the symbolic
engine. When you delete a symbolic object from the MATLAB workspace using

clear x

the assumption that x is real stays in the symbolic engine. If you declare a new symbolic
variable x later, it inherits the assumption that x is real instead of getting a default
assumption. If later you solve an equation and simplify an expression with the symbolic
variable x, you could get incomplete results. For example, the assumption that x is real
causes the polynomial x2 + 1 to have no roots:

syms x real

clear x

syms x

solve(x^2 + 1 == 0, x)

ans =

Empty sym: 0-by-1

The complex roots of this polynomial disappear because the symbolic variable x still has
the assumption that x is real stored in the symbolic engine. To clear the assumption,
enter

assume(x,'clear')

After you clear the assumption, the symbolic object stays in the MATLAB workspace.
If you want to remove both the symbolic object and its assumption, use two subsequent
commands:

1 To clear the assumption, enter

assume(x,'clear')

2 To delete the symbolic object, enter

clear x

For details on clearing symbolic variables, see “Clear Assumptions and Reset the
Symbolic Engine” on page 3-43.

2

Using Symbolic Math Toolbox
Software

• “Find Symbolic Variables in Expressions, Functions, Matrices” on page 2-4
• “Differentiation” on page 2-6
• “Solve Wave Equation Using Functional Derivatives” on page 2-12
• “Limits” on page 2-20
• “Integration” on page 2-23
• “Symbolic Summation” on page 2-30
• “Taylor Series” on page 2-33
• “Padé Approximant” on page 2-36
• “Find Asymptotes, Critical and Inflection Points” on page 2-45
• “Simplify Symbolic Expressions” on page 2-53
• “Abbreviate Common Terms in Long Expressions” on page 2-59
• “Choose Function to Rearrange Expression” on page 2-61
• “Extract Polynomial Coefficients” on page 2-72
• “Extract Numerators and Denominators of Rational Expressions” on page 2-74
• “Substitute Variables in Symbolic Expressions” on page 2-76
• “Substitute Elements in Symbolic Matrices” on page 2-78
• “Substitute Scalars with Matrices” on page 2-80
• “Use subs to Evaluate Expressions and Functions” on page 2-82
• “Choose Symbolic or Numeric Arithmetic” on page 2-85
• “Control Precision of Numerical Computations” on page 2-87
• “Recognize and Avoid Round-Off Errors” on page 2-89
• “Improve Performance of Numeric Computations” on page 2-94
• “Numeric to Symbolic Conversion” on page 2-95

2 Using Symbolic Math Toolbox Software

2-2

• “Basic Algebraic Operations” on page 2-99
• “Linear Algebraic Operations” on page 2-101
• “Eigenvalues” on page 2-107
• “Jordan Canonical Form” on page 2-112
• “Singular Value Decomposition” on page 2-114
• “Solve Algebraic Equation” on page 2-116
• “Select Numeric or Symbolic Solver” on page 2-121
• “Solve System of Algebraic Equations” on page 2-123
• “Resolve Complicated Solutions or Stuck Solver” on page 2-134
• “Solve System of Linear Equations” on page 2-139
• “Solve Equations Numerically” on page 2-142
• “Solve a Single Differential Equation” on page 2-153
• “Solve a System of Differential Equations” on page 2-157
• “Differential Algebraic Equations” on page 2-163
• “Set Up Your DAE Problem” on page 2-164
• “Reduce Differential Order of DAE Systems” on page 2-169
• “Check and Reduce Differential Index” on page 2-171
• “Convert DAE Systems to MATLAB Function Handles” on page 2-175
• “Find Consistent Initial Conditions” on page 2-182
• “Solve DAE Systems Using MATLAB ODE Solvers” on page 2-188
• “Compute Fourier and Inverse Fourier Transforms” on page 2-193
• “Compute Laplace and Inverse Laplace Transforms” on page 2-199
• “Compute Z-Transforms and Inverse Z-Transforms” on page 2-206
• “Diffraction of Light” on page 2-210
• “Create Plots” on page 2-214
• “Explore Function Plots” on page 2-228
• “Edit Graphs” on page 2-230
• “Save Graphs” on page 2-231
• “Generate C or Fortran Code” on page 2-232
• “Generate MATLAB Functions” on page 2-234

 Using Symbolic Math Toolbox Software

2-3

• “Generate MATLAB Function Blocks” on page 2-239
• “Generate Simscape Equations” on page 2-241

2 Using Symbolic Math Toolbox Software

2-4

Find Symbolic Variables in Expressions, Functions, Matrices

To find symbolic variables in an expression, function, or matrix, use symvar. For
example, find all symbolic variables in symbolic expressions f and g:

syms a b n t x

f = x^n;

g = sin(a*t + b);

symvar(f)

ans =

[n, x]

Here, symvar sorts all returned variables alphabetically. Similarly, you can find the
symbolic variables in g by entering:

symvar(g)

ans =

[a, b, t]

symvar also can return the first n symbolic variables found in a symbolic expression,
matrix, or function. To specify the number of symbolic variables that you want symvar to
return, use the second parameter of symvar. For example, return the first two variables
found in symbolic expression g:

symvar(g, 2)

ans =

[t, b]

Notice that the first two variables in this case are not a and b. When you call symvar
with two arguments, it sorts symbolic variables by their proximity to x.

You also can find symbolic variables in a function:

syms x y w z

f(w, z) = x*w + y*z;

symvar(f)

ans =

[w, x, y, z]

When you call symvar with two arguments, it returns the function inputs in front of
other variables:

 Find Symbolic Variables in Expressions, Functions, Matrices

2-5

symvar(f, 2)

ans =

[w, z]

Find a Default Symbolic Variable

If you do not specify an independent variable when performing substitution,
differentiation, or integration, MATLAB uses a default variable. The default variable
is typically the one closest alphabetically to x or, for symbolic functions, the first input
argument of a function. To find which variable is chosen as a default variable, use the
symvar(f, 1) command. For example:

syms s t

f = s + t;

symvar(f, 1)

ans =

t

syms sx tx

f = sx + tx;

symvar(f, 1)

ans =

tx

For more information on choosing the default symbolic variable, see symvar.

2 Using Symbolic Math Toolbox Software

2-6

Differentiation

To illustrate how to take derivatives using Symbolic Math Toolbox software, first create a
symbolic expression:

syms x

f = sin(5*x);

The command

diff(f)

differentiates f with respect to x:

ans =

5*cos(5*x)

As another example, let

g = exp(x)*cos(x);

where exp(x) denotes ex, and differentiate g:

y = diff(g)

y =

exp(x)*cos(x) - exp(x)*sin(x)

To find the derivative of g for a given value of x, substitute x for the value using subs
and return a numerical value using vpa. Find the derivative of g at x = 2.

vpa(subs(y,x,2))

ans =

-9.7937820180676088383807818261614

To take the second derivative of g, enter

diff(g,2)

ans =

-2*exp(x)*sin(x)

You can get the same result by taking the derivative twice:

 Differentiation

2-7

diff(diff(g))

ans =

-2*exp(x)*sin(x)

In this example, MATLAB software automatically simplifies the answer. However,
in some cases, MATLAB might not simplify an answer, in which case you can use the
simplify command. For an example of such simplification, see “More Examples” on
page 2-8.

Note that to take the derivative of a constant, you must first define the constant as a
symbolic expression. For example, entering

c = sym('5');

diff(c)

returns

ans =

0

If you just enter

diff(5)

MATLAB returns

ans =

 []

because 5 is not a symbolic expression.

Derivatives of Expressions with Several Variables

To differentiate an expression that contains more than one symbolic variable, specify
the variable that you want to differentiate with respect to. The diff command then
calculates the partial derivative of the expression with respect to that variable. For
example, given the symbolic expression

syms s t

f = sin(s*t);

the command

2 Using Symbolic Math Toolbox Software

2-8

diff(f,t)

calculates the partial derivative ∂ ∂f t/ . The result is

ans =

s*cos(s*t)

To differentiate f with respect to the variable s, enter

diff(f,s)

which returns:

ans =

t*cos(s*t)

If you do not specify a variable to differentiate with respect to, MATLAB chooses a
default variable. Basically, the default variable is the letter closest to x in the alphabet.
See the complete set of rules in “Find a Default Symbolic Variable” on page 2-5. In the
preceding example, diff(f) takes the derivative of f with respect to t because the letter
t is closer to x in the alphabet than the letter s is. To determine the default variable that
MATLAB differentiates with respect to, use symvar:

symvar(f, 1)

ans =

t

Calculate the second derivative of f with respect to t:

diff(f, t, 2)

This command returns

ans =

-s^2*sin(s*t)

Note that diff(f, 2) returns the same answer because t is the default variable.

More Examples

To further illustrate the diff command, define a, b, x, n, t, and theta in the MATLAB
workspace by entering

 Differentiation

2-9

syms a b x n t theta

This table illustrates the results of entering diff(f).

f diff(f)

syms x n

f = x^n;

diff(f)

ans =

n*x^(n - 1)

syms a b t

f = sin(a*t + b);

diff(f)

ans =

a*cos(b + a*t)

syms theta

f = exp(i*theta);

diff(f)

ans =

exp(theta*1i)*1i

To differentiate the Bessel function of the first kind, besselj(nu,z), with respect to z,
type

syms nu z

b = besselj(nu,z);

db = diff(b)

which returns

db =

(nu*besselj(nu, z))/z - besselj(nu + 1, z)

The diff function can also take a symbolic matrix as its input. In this case, the
differentiation is done element-by-element. Consider the example

syms a x

A = [cos(a*x),sin(a*x);-sin(a*x),cos(a*x)]

which returns

A =

[cos(a*x), sin(a*x)]

[-sin(a*x), cos(a*x)]

The command

2 Using Symbolic Math Toolbox Software

2-10

diff(A)

returns

ans =

[-a*sin(a*x), a*cos(a*x)]

[-a*cos(a*x), -a*sin(a*x)]

You can also perform differentiation of a vector function with respect to a vector
argument. Consider the transformation from Euclidean (x, y, z) to spherical (, ,)r l j

coordinates as given by x r= cos cosl j , y r= cos sinl f , and z r= sinl . Note that l

corresponds to elevation or latitude while j denotes azimuth or longitude.

To calculate the Jacobian matrix, J, of this transformation, use the jacobian function.
The mathematical notation for J is

J
x y z

r
=

∂

∂ ()
(, ,)

, ,
.

l j

For the purposes of toolbox syntax, use l for l and f for j . The commands

syms r l f

x = r*cos(l)*cos(f);

y = r*cos(l)*sin(f);

z = r*sin(l);

J = jacobian([x; y; z], [r l f])

 Differentiation

2-11

return the Jacobian

J =

[cos(f)*cos(l), -r*cos(f)*sin(l), -r*cos(l)*sin(f)]

[cos(l)*sin(f), -r*sin(f)*sin(l), r*cos(f)*cos(l)]

[sin(l), r*cos(l), 0]

and the command

detJ = simplify(det(J))

returns

detJ =

-r^2*cos(l)

The arguments of the jacobian function can be column or row vectors. Moreover, since
the determinant of the Jacobian is a rather complicated trigonometric expression, you
can use simplify to make trigonometric substitutions and reductions (simplifications).

A table summarizing diff and jacobian follows.

Mathematical Operator MATLAB Command

df

dx

diff(f) or diff(f, x)

df

da

diff(f, a)

d f

db

2

2

diff(f, b, 2)

J
r t

u v
=

∂

∂

(,)

(,)

J = jacobian([r; t],[u; v])

2 Using Symbolic Math Toolbox Software

2-12

Solve Wave Equation Using Functional Derivatives

This example shows how to solve the wave equation for a string fixed at its ends using
functional derivatives. A functional derivative is the derivative of a functional with
respect to the function that the functional depends on. The Symbolic Math Toolbox™
implements functional derivatives using the functionalDerivative function.

Solving the wave equation is one application of functional derivatives. It describes the
motion of waves, from the motion of a string to the propagation of an electromagnetic
wave, and is an important equation in physics. You can apply the techniques
illustrate in this example to applications in the calculus of variations from solving the
Brachistochrone problem to finding minimal surfaces of soap bubbles.

Consider a string of length L suspended between the two points x = 0 and x = L. The
string has a characteristic density per unit length and a characteristic tension. Define
the length, density, and tension as constants for later use. For simplicity, set these
constants to 1.

Length = 1;

Density = 1;

Tension = 1;

If the string is in motion, the string's kinetic and potential energies are a function of
its displacement from rest S(x,t), which varies with position x and time t. If d is the
density per unit length, the kinetic energy is

The potential energy is

where r is the tension.

Enter these equations in MATLAB™. Since length must be positive, set this assumption.
This assumption allows simplify to simplify the resulting equations into the expected
form.

 Solve Wave Equation Using Functional Derivatives

2-13

syms S(x,t) d r v L

assume(L>0)

T(x,t) = int(d/2*diff(S,t)^2,x,0,L);

V(x,t) = int(r/2*diff(S,x)^2,x,0,L);

The action A is T-V. The Principle of Least Action states that action is always minimized.
Determine the condition for minimum action, by finding the functional derivative of A
with respect to S using functionalDerivative and equate it to zero.

A = T-V;

eqn = functionalDerivative(A,S) == 0

eqn(x, t) =

L*r*diff(S(x, t), x, x) - L*d*diff(S(x, t), t, t) == 0

Simplify the equation using simplify. Convert the equation into its expected form by
substituting for r/d with the square of the wave velocity v.

eqn = simplify(eqn)/r;

eqn = subs(eqn,r/d,v^2)

eqn(x, t) =

diff(S(x, t), t, t)/v^2 == diff(S(x, t), x, x)

Solve the equation using the method of separation of variables. Set S(x,t) =
U(x)*V(t) to separate the dependence on position x and time t. Separate both sides of
the resulting equation using children.

syms U(x) V(t)

eqn2 = subs(eqn,S(x,t),U(x)*V(t));

eqn2 = eqn2/(U(x)*V(t))

tmp = children(eqn2);

eqn2(x, t) =

diff(V(t), t, t)/(v^2*V(t)) == diff(U(x), x, x)/U(x)

2 Using Symbolic Math Toolbox Software

2-14

Both sides of the equation depend on different variables, yet are equal. This is only
possible if each side is a constant. Equate each side to an arbitrary constant C to get two
differential equations.

syms C

eqn3 = tmp(1) == C

eqn4 = tmp(2) == C

eqn3 =

diff(V(t), t, t)/(v^2*V(t)) == C

eqn4 =

diff(U(x), x, x)/U(x) == C

Solve the differential equations using dsolve with the condition that displacement is 0
at x = 0 and t = 0. Simplify the equations to their expected form using simplify with
the Steps option set to 50.

V(t) = dsolve(eqn3,V(0)==0,t);

U(x) = dsolve(eqn4,U(0)==0,x);

V(t) = simplify(V(t),'Steps',50)

U(x) = simplify(U(x),'Steps',50)

V(t) =

-2*C3*sinh(C^(1/2)*t*v)

U(x) =

-2*C6*sinh(C^(1/2)*x)

Obtain the constants in the equations.

p1 = setdiff(symvar(U(x)),sym([C,x]))

p2 = setdiff(symvar(V(t)),sym([C,v,t]))

 Solve Wave Equation Using Functional Derivatives

2-15

p1 =

C6

p2 =

C3

The string is fixed at the positions x = 0 and x = L. The condition U(0) = 0 already
exists. Apply the boundary condition that U(L) = 0 and solve for C.

eqn_bc = U(L) == 0;

[solC,param,cond] = solve(eqn_bc,C,'ReturnConditions',true)

assume(cond)

solC =

-(k^2*pi^2)/L^2

param =

k

cond =

C6 ~= 0 & 1 <= k & in(k, 'integer')

The solution S(x,t) is the product of U(x) and V(t). Find the solution, and substitute
the characteristic values of the string into the solution to obtain the final form of the
solution.

S(x,t) = U(x)*V(t);

S = subs(S,C,solC);

S = subs(S,[L v],[Length sqrt(Tension/Density)]);

The parameters p1 and p2 determine the amplitude of the vibrations. Set p1 and p2 to 1
for simplicity.

S = subs(S,[p1 p2],[1 1]);

2 Using Symbolic Math Toolbox Software

2-16

S = simplify(S,'Steps',50)

S(x, t) =

-4*sin(pi*k*t)*sin(pi*k*x)

The string has different modes of vibration for different values of k. Plot the first four
modes for an arbitrary value of time t. Use the param argument returned by solve to
address parameter k.

Splot = subs(S,t,0.3);

figure(1)

hold on

grid on

tmp = children(S);

ymin = double(tmp(3));

for i = 1:4

 yplot = subs(Splot,param,i);

 ezplot(yplot,[0 Length])

end

ylim([ymin -ymin])

legend('k = 1','k = 2','k = 3','k = 4','Location','best')

xlabel('Position (x)')

ylabel('Displacement (S)')

title('Modes of a string')

 Solve Wave Equation Using Functional Derivatives

2-17

The wave equation is linear. This means that any linear combination of the allowed
modes is a valid solution to the wave equation. Hence, the full solution to the wave
equation with the given boundary conditions and initial values is a sum over allowed
modes

where denotes arbitrary constants.

2 Using Symbolic Math Toolbox Software

2-18

Use symsum to sum the first five modes of the string. On a new figure, display
the resulting waveform at the same instant of time as the previous waveforms for
comparison.

figure(2)

ezplot(subs(1/5*symsum(S,param,1,5),t,0.3),[0 Length])

ylim([ymin -ymin])

grid on

xlabel('Position (x)')

ylabel('Displacement (S)')

title('Summation of first 5 modes')

The figure shows that summing modes allows you to model a qualitatively different
waveform. Here, we specified the initial condition is for all .

 Solve Wave Equation Using Functional Derivatives

2-19

You can calculate the values in the equation by
specifying a condition for initial velocity

The appropriate summation of modes can represent any waveform, which is the same as
using the Fourier series to represent the string's motion.

2 Using Symbolic Math Toolbox Software

2-20

Limits

The fundamental idea in calculus is to make calculations on functions as a variable “gets
close to” or approaches a certain value. Recall that the definition of the derivative is
given by a limit

f x
f x h f x

hh
’() lim

() ()
,=

+ -

Æ0

provided this limit exists. Symbolic Math Toolbox software enables you to calculate the
limits of functions directly. The commands

syms h n x

limit((cos(x+h) - cos(x))/h, h, 0)

which return

ans =

-sin(x)

and

limit((1 + x/n)^n, n, inf)

which returns

ans =

exp(x)

illustrate two of the most important limits in mathematics: the derivative (in this case of
cos(x)) and the exponential function.

One-Sided Limits

You can also calculate one-sided limits with Symbolic Math Toolbox software. For
example, you can calculate the limit of x/|x|, whose graph is shown in the following
figure, as x approaches 0 from the left or from the right.

syms x

ezplot(x/abs(x), -1, 1)

 Limits

2-21

To calculate the limit as x approaches 0 from the left,

lim ,
x

x

x
Æ

-
0

enter

syms x

limit(x/abs(x), x, 0, 'left')

ans =

 -1

To calculate the limit as x approaches 0 from the right,

2 Using Symbolic Math Toolbox Software

2-22

lim ,
x

x

x
Æ

+

=

0

1

enter

syms x

limit(x/abs(x), x, 0, 'right')

ans =

1

Since the limit from the left does not equal the limit from the right, the two- sided limit
does not exist. In the case of undefined limits, MATLAB returns NaN (not a number). For
example,

syms x

limit(x/abs(x), x, 0)

returns

ans =

NaN

Observe that the default case, limit(f) is the same as limit(f,x,0). Explore the
options for the limit command in this table, where f is a function of the symbolic object
x.

Mathematical Operation MATLAB Command

lim ()
x

f x
Æ0

limit(f)

lim ()
x a

f x
Æ

limit(f, x, a) or

limit(f, a)

lim ()
x a

f x
Æ -

limit(f, x, a, 'left')

lim ()
x a

f x
Æ

+

limit(f, x, a, 'right')

 Integration

2-23

Integration

If f is a symbolic expression, then

int(f)

attempts to find another symbolic expression, F, so that diff(F) = f. That is, int(f)
returns the indefinite integral or antiderivative of f (provided one exists in closed form).
Similar to differentiation,

int(f,v)

uses the symbolic object v as the variable of integration, rather than the variable
determined by symvar. See how int works by looking at this table.

Mathematical Operation MATLAB Command

x dx

x n

x

n

n
nÚ =

= -

+

Ï

Ì
Ô

Ó
Ô

+

log() if

otherwise.

1

1

1

int(x^n) or int(x^n,x)

sin()

/

2 1

0

2

x dx =Ú
p int(sin(2*x), 0, pi/2) or int(sin(2*x), x,

0, pi/2)

g = cos(at + b)

g t dt at b a() sin() /= +Ú

g = cos(a*t + b) int(g) or int(g, t)

J z dz J z1 0() ()= -Ú
int(besselj(1, z)) or int(besselj(1, z),
z)

In contrast to differentiation, symbolic integration is a more complicated task. A number
of difficulties can arise in computing the integral:

• The antiderivative, F, may not exist in closed form.
• The antiderivative may define an unfamiliar function.
• The antiderivative may exist, but the software can't find it.

2 Using Symbolic Math Toolbox Software

2-24

• The software could find the antiderivative on a larger computer, but runs out of time
or memory on the available machine.

Nevertheless, in many cases, MATLAB can perform symbolic integration successfully.
For example, create the symbolic variables

syms a b theta x y n u z

The following table illustrates integration of expressions containing those variables.

f int(f)

syms x n

f = x^n;

int(f)

ans =

piecewise([n == -1, log(x)],...

 [n ~= -1, x^(n + 1)/(n + 1)])

syms y

f = y^(-1);

int(f)

ans =

log(y)

syms x n

f = n^x;

int(f)

ans =

n^x/log(n)

syms a b theta

f = sin(a*theta+b);

int(f)

ans =

-cos(b + a*theta)/a

syms u

f = 1/(1+u^2);

int(f)

ans =

atan(u)

syms x

f = exp(-x^2);

int(f)

ans =

(pi^(1/2)*erf(x))/2

In the last example, exp(-x^2), there is no formula for the integral involving standard
calculus expressions, such as trigonometric and exponential functions. In this case,
MATLAB returns an answer in terms of the error function erf.

If MATLAB is unable to find an answer to the integral of a function f, it just returns
int(f).

 Integration

2-25

Definite integration is also possible.

Definite Integral Command

f x dx
a

b
()Ú

int(f, a, b)

f v dv
a

b
()Ú

int(f, v, a, b)

Here are some additional examples.

f a, b int(f, a, b)

syms x

f = x^7;

a = 0;

b = 1;

int(f, a, b)

ans =

1/8

syms x

f = 1/x;

a = 1;

b = 2;

int(f, a, b)

ans =

log(2)

syms x

f = log(x)*sqrt(x);

a = 0;

b = 1;

int(f, a, b)

ans =

-4/9

syms x

f = exp(-x^2);

a = 0;

b = inf;

int(f, a, b)

ans =

pi^(1/2)/2

syms z

f = besselj(1,z)^2;

a = 0;

b = 1;

int(f, a, b)

ans =

hypergeom([3/2, 3/2],...

 [2, 5/2, 3], -1)/12

For the Bessel function (besselj) example, it is possible to compute a numerical
approximation to the value of the integral, using the double function. The commands

syms z

a = int(besselj(1,z)^2,0,1)

2 Using Symbolic Math Toolbox Software

2-26

return

a =

hypergeom([3/2, 3/2], [2, 5/2, 3], -1)/12

and the command

a = double(a)

returns

a =

 0.0717

Integration with Real Parameters

One of the subtleties involved in symbolic integration is the “value” of various
parameters. For example, if a is any positive real number, the expression

e
ax-

2

is the positive, bell shaped curve that tends to 0 as x tends to ±∞. You can create an
example of this curve, for a = 1/2, using the following commands:

syms x

a = sym(1/2);

f = exp(-a*x^2);

ezplot(f)

 Integration

2-27

However, if you try to calculate the integral

e dx
ax-

-•

•

Ú
2

without assigning a value to a, MATLAB assumes that a represents a complex number,
and therefore returns a piecewise answer that depends on the argument of a. If you
are only interested in the case when a is a positive real number, use assume to set an
assumption on a:

syms a

assume(a > 0)

2 Using Symbolic Math Toolbox Software

2-28

Now you can calculate the preceding integral using the commands

syms x

f = exp(-a*x^2);

int(f, x, -inf, inf)

This returns

ans =

pi^(1/2)/a^(1/2)

Integration with Complex Parameters

To calculate the integral

1

2 2
a x

dx

+-•

•

Ú

for complex values of a, enter

syms a x clear

f = 1/(a^2 + x^2);

F = int(f, x, -inf, inf)

syms is used with the clear option to clear the all assumptions on a. For more
information about symbolic variables and assumptions on them, see “Delete Symbolic
Objects and Their Assumptions” on page 1-28.

The preceding commands produce the complex output

F =

(pi*signIm(1i/a))/a

The function signIm is defined as:

signIm

if or and

if

-1 otherwi

()

Im() , Im()

z

z z z

z=

> = <

=

1 0 0 0

0 0

sse.

Ï

Ì
Ô

Ó
Ô

 Integration

2-29

signIm = 1

signIm = -1

signIm = 0

x

y

signIm = 1

signIm = -1

To evaluate F at a = 1 + i, enter

g = subs(F, 1 + i)

g =

pi*(1/2 - 1i/2)

double(g)

ans =

 1.5708 - 1.5708i

2 Using Symbolic Math Toolbox Software

2-30

Symbolic Summation

Symbolic Math Toolbox provides two functions for calculating sums:

• sum finds the sum of elements of symbolic vectors and matrices. Unlike the MATLAB
sum, the symbolic sum function does not work on multidimensional arrays. For
details, follow the MATLAB sum page.

• symsum finds the sum of a symbolic series.

In this section...

“Comparing symsum and sum” on page 2-30
“Computational Speed of symsum versus sum” on page 2-31
“Output Format Differences Between symsum and sum” on page 2-31

Comparing symsum and sum

You can find definite sums by using both sum and symsum. The sum function sums the
input over a dimension, while the symsum function sums the input over an index.

Consider the definite sum
S

kk

=

=

Â
1

2
1

10

.

 First, find the terms of the definite sum by
substituting the index values for k in the expression. Then, sum the resulting vector
using sum.

syms k

f = 1/k^2;

V = subs(f, k, 1:10)

S_sum = sum(V)

V =

[1, 1/4, 1/9, 1/16, 1/25, 1/36, 1/49, 1/64, 1/81, 1/100]

S_sum =

1968329/1270080

Find the same sum by using symsum by specifying the index and the summation limits.
sum and symsum return identical results.

S_symsum = symsum(f, k, 1, 10)

S_symsum =

 Symbolic Summation

2-31

1968329/1270080

Computational Speed of symsum versus sum

For summing definite series, symsum can be faster than sum. For summing an indefinite
series, you can only use symsum.

You can demonstrate that symsum can be faster than sum by summing a large definite

series such as
S k

k

=

=

Â
2

1

100000

.

To compare runtimes on your computer, use the following commands.

syms k

tic

sum(sym(1:100000).^2);

toc

tic

symsum(k^2, k, 1, 100000);

toc

Output Format Differences Between symsum and sum

symsum can provide a more elegant representation of sums than sum provides.
Demonstrate this difference by comparing the function outputs for the definite series

S x
k

k

=

=

Â
1

10

.

 To simplify the solution, assume x > 1.

syms x

assume(x > 1)

S_sum = sum(x.^(1:10))

S_symsum = symsum(x^k, k, 1, 10)

S_sum =

x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x

S_symsum =

x^11/(x - 1) - x/(x - 1)

Show that the outputs are equal by using isAlways. The isAlways function returns
logical 1 (true), meaning that the outputs are equal.

2 Using Symbolic Math Toolbox Software

2-32

isAlways(S_sum == S_symsum)

ans =

 1

For further computations, clear the assumptions.

assume(x, 'clear')

 Taylor Series

2-33

Taylor Series

The statements

syms x

f = 1/(5 + 4*cos(x));

T = taylor(f, 'Order', 8)

return

T =

(49*x^6)/131220 + (5*x^4)/1458 + (2*x^2)/81 + 1/9

which is all the terms up to, but not including, order eight in the Taylor series for f(x):

()
()

!
.

()

x a
f a

n

n
n

n

-

=

•

Â
0

Technically, T is a Maclaurin series, since its expansion point is a = 0.

The command

pretty(T)

prints T in a format resembling typeset mathematics:

 6 4 2

 49 x 5 x 2 x 1

------ + ---- + ---- + -

131220 1458 81 9

These commands

syms x

g = exp(x*sin(x));

t = taylor(g, 'ExpansionPoint', 2, 'Order', 12);

generate the first 12 nonzero terms of the Taylor series for g about x = 2.

t is a large expression; enter

2 Using Symbolic Math Toolbox Software

2-34

size(char(t))

ans =

 1 99791

to find that t has about 100,000 characters in its printed form. In order to proceed with
using t, first simplify its presentation:

t = simplify(t);

size(char(t))

ans =

 1 6988

Next, plot these functions together to see how well this Taylor approximation compares
to the actual function g:

xd = 1:0.05:3;

yd = subs(g,x,xd);

ezplot(t, [1, 3])

hold on

plot(xd, yd, 'r-.')

title('Taylor approximation vs. actual function')

legend('Taylor','Function')

 Taylor Series

2-35

Special thanks is given to Professor Gunnar Bäckstrøm of UMEA in Sweden for this
example.

2 Using Symbolic Math Toolbox Software

2-36

Padé Approximant

The Padé approximant of order [m, n] approximates the function f(x) around x = x0 as

a a x x a x x

b x x b x x

m

m

n

n

0 1 0 0

1 0 0
1

+ -() + + -()

+ -() + + -()

...

...

.

The Padé approximant is a rational function formed by a ratio of two power series.
Because it is a rational function, it is more accurate than the Taylor series in
approximating functions with poles. The Padé approximant is represented by the
Symbolic Math Toolbox function pade.

When a pole or zero exists at the expansion point x = x0, the accuracy of the Padé
approximant decreases. To increase accuracy, an alternative form of the Padé
approximant can be used which is

x x a a x x a x x

b x x b x x

p
m

m

n
n

-() + -() + + -()()
+ -() + + -()

0 0 1 0 0

1 0 0
1

...

...

..

The pade function returns the alternative form of the Padé approximant when you set
the OrderMode input argument to Relative.

The Padé approximant is used in control system theory to model time delays in the
response of the system. Time delays arise in systems such as chemical and transport
processes where there is a delay between the input and the system response. When these
inputs are modeled, they are called dead-time inputs. This example shows how to use the
Symbolic Math Toolbox to model the response of a first-order system to dead-time inputs
using Padé approximants.

The behavior of a first-order system is described by this differential equation

t
dy t

dt
y t ax t

()
+ () = ()

.

Enter the differential equation in MATLAB.

syms tau a x(t) y(t) xS(s) yS(s) H(s) tmp

 Padé Approximant

2-37

F = tau*diff(y)+y == a*x;

Find the Laplace transform of F using laplace.

F = laplace(F,t,s)

F =

laplace(y(t), t, s) - tau*(y(0) - s*laplace(y(t), t, s)) == a*laplace(x(t), t, s)

Assume the response of the system at t = 0 is 0. Use subs to substitute for y(0) = 0.

F = subs(F,y(0),0)

F =

laplace(y(t), t, s) + s*tau*laplace(y(t), t, s) == a*laplace(x(t), t, s)

To collect common terms, use simplify.

F = simplify(F)

F =

(s*tau + 1)*laplace(y(t), t, s) == a*laplace(x(t), t, s)

For readability, replace the Laplace transforms of x(t) and y(t) with xS(s) and
yS(s).

F = subs(F,[laplace(x(t),t,s) laplace(y(t),t,s)],[xS(s) yS(s)])

F =

yS(s)*(s*tau + 1) == a*xS(s)

The Laplace transform of the transfer function is yS(s)/xS(s). Divide both sides of the
equation by xS(s) and use subs to replace yS(s)/xS(s) with H(s).

2 Using Symbolic Math Toolbox Software

2-38

F = F/xS(s);

F = subs(F,yS(s)/xS(s),H(s))

F =

H(s)*(s*tau + 1) == a

Solve the equation for H(s). Substitute for H(s) with a dummy variable, solve for the
dummy variable using solve, and assign the solution back to H(s).

F = subs(F,H(s),tmp);

H(s) = solve(F,tmp)

H(s) =

a/(s*tau + 1)

The input to the first-order system is a time-delayed step input. To represent a step
input, use heaviside. Delay the input by three time units. Find the Laplace transform
using laplace.

step = heaviside(t - 3);

step = laplace(step)

step =

exp(-3*s)/s

Find the response of the system, which is the product of the transfer function and the
input.

y = H(s)*step

y =

(a*exp(-3*s))/(s*(s*tau + 1))

 Padé Approximant

2-39

To allow plotting of the response, set parameters a and tau to their values. For a and
tau, choose values 1 and 3, respectively.

y = subs(y,[a tau],[1 3]);

y = ilaplace(y,s);

Find the Padé approximant of order [2 2] of the step input using the Order input
argument to pade.

stepPade22 = pade(step,'Order',[2 2])

stepPade22 =

(3*s^2 - 4*s + 2)/(2*s*(s + 1))

Find the response to the input by multiplying the transfer function and the Padé
approximant of the input.

yPade22 = H(s)*stepPade22

yPade22 =

(a*(3*s^2 - 4*s + 2))/(2*s*(s*tau + 1)*(s + 1))

Find the inverse Laplace transform of yPade22 using ilaplace.

yPade22 = ilaplace(yPade22,s)

yPade22 =

a + (9*a*exp(-s))/(2*tau - 2) - (a*exp(-s/tau)*(2*tau^2 + 4*tau + 3))/(tau*(2*tau - 2))

To plot the response, set parameters a and tau to their values of 1 and 3, respectively.

yPade22 = subs(yPade22,[a tau],[1 3])

yPade22 =

2 Using Symbolic Math Toolbox Software

2-40

(9*exp(-s))/4 - (11*exp(-s/3))/4 + 1

Plot the response of the system y and the response calculated from the Padé approximant
yPade22.

hold on

grid on

ezplot(y,[0 20])

ezplot(yPade22,[0 20])

title(['Pad' char(233) ' Approximant for dead-time step input'])

legend('Response to dead-time step input',...

 ['Pad' char(233) ' approximant [2 2]'],...

 'Location', 'Best');

 Padé Approximant

2-41

The [2 2] Padé approximant does not represent the response well because a pole exists
at the expansion point of 0. To increase the accuracy of pade when there is a pole or zero
at the expansion point, set the OrderMode input argument to Relative and repeat the
steps. For details, see pade.

stepPade22Rel = pade(step,'Order',[2 2],'OrderMode','Relative')

yPade22Rel = H(s)*stepPade22Rel

yPade22Rel = ilaplace(yPade22Rel)

yPade22Rel = subs(yPade22Rel,[a tau],[1 3])

ezplot(yPade22Rel,[0 20])

title(['Pad' char(233) ' Approximant for dead-time step input'])

legend('Response to dead-time step input',...

 ['Pad' char(233) ' approximant [2 2]'],...

 ['Relative Pad' char(233) ' approximant [2 2]'], 'Location', 'Best');

stepPade22Rel =

(3*s^2 - 6*s + 4)/(s*(3*s^2 + 6*s + 4))

yPade22Rel =

(a*(3*s^2 - 6*s + 4))/(s*(s*tau + 1)*(3*s^2 + 6*s + 4))

yPade22Rel =

a - (a*exp(-t/tau)*(4*tau^2 + 6*tau + 3))/(4*tau^2 - 6*tau + 3) + (12*a*tau*exp(-t)*(cos((3^(1/2)*t)/3) - 3^(1/2)*sin((3^(1/2)*t)/3)*((36*a - 72*a*tau)/(36*a*tau) + 1)))/(4*tau^2 - 6*tau + 3)

yPade22Rel =

(12*exp(-t)*(cos((3^(1/2)*t)/3) + (2*3^(1/2)*sin((3^(1/2)*t)/3))/3))/7 - (19*exp(-t/3))/7 + 1

2 Using Symbolic Math Toolbox Software

2-42

The accuracy of the Padé approximant can also be increased by increasing its order.
Increase the order to [4 5] and repeat the steps. The [n-1 n] Padé approximant is
better at approximating the response at t = 0 than the [n n] Padé approximant.

stepPade45 = pade(step,'Order',[4 5])

yPade45 = H(s)*stepPade45

yPade45 = subs(yPade45,[a tau],[1 3])

yPade45 = ilaplace(yPade45)

yPade45 = vpa(yPade45)

ezplot(yPade45,[0 20])

title(['Pad' char(233) ' Approximant for dead-time step input'])

legend('Response to dead-time step input',...

 ['Pad' char(233) ' approximant [2 2]'],...

 ['Relative Pad' char(233) ' approximant [2 2]'],...

 Padé Approximant

2-43

 ['Pad' char(233) ' approximant [4 5]'], 'Location', 'Best');

stepPade45 =

(27*s^4 - 180*s^3 + 540*s^2 - 840*s + 560)/(s*(27*s^4 + 180*s^3 + 540*s^2 + 840*s + 560))

yPade45 =

(a*(27*s^4 - 180*s^3 + 540*s^2 - 840*s + 560))/(s*(s*tau + 1)*(27*s^4 + 180*s^3 + 540*s^2 + 840*s + 560))

yPade45 =

(27*s^4 - 180*s^3 + 540*s^2 - 840*s + 560)/(s*(3*s + 1)*(27*s^4 + 180*s^3 + 540*s^2 + 840*s + 560))

yPade45 =

(294120*symsum((exp(root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)*t)*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)^2)/(12*(45*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)^2 + 9*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)^3 + 90*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k) + 70)), k, 1, 4))/1001 - (2721*exp(-t/3))/1001 + (46440*symsum((exp(root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)*t)*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)^3)/(12*(45*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)^2 + 9*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)^3 + 90*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k) + 70)), k, 1, 4))/1001 + (172560*symsum(exp(root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)*t)/(12*(45*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)^2 + 9*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)^3 + 90*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k) + 70)), k, 1, 4))/143 + (101520*symsum((root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)*exp(root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)*t))/(12*(90*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k) + 45*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)^2 + 9*root(s5^4 + (20*s5^3)/3 + 20*s5^2 + (280*s5)/9 + 560/27, s5, k)^3 + 70)), k, 1, 4))/143 + 1

yPade45 =

3.2418384981662546679005910164486*exp(-1.930807068546914778929595950184*t)*cos(0.57815608595633583454598214328008*t) - 2.7182817182817182817182817182817*exp(-0.33333333333333333333333333333333*t) + 11.595342871672681856604670597166*exp(-1.930807068546914778929595950184*t)*sin(0.57815608595633583454598214328008*t) - 1.5235567798845363861823092981669*exp(-1.4025262647864185544037373831494*t)*cos(1.7716120279045018112388813990878*t) - 1.7803798379230333426855987436911*exp(-1.4025262647864185544037373831494*t)*sin(1.7716120279045018112388813990878*t) + 1.0

2 Using Symbolic Math Toolbox Software

2-44

The following points have been shown:

• Padé approximants can model dead-time step inputs.
• The accuracy of the Padé approximant increases with the increase in the order of the

approximant.
• When a pole or zero exists at the expansion point, the Padé approximant is inaccurate

about the expansion point. To increase the accuracy of the approximant, set
the OrderMode option to Relative. You can also use increase the order of the
denominator relative to the numerator.

 Find Asymptotes, Critical and Inflection Points

2-45

Find Asymptotes, Critical and Inflection Points

This section describes how to analyze a simple function to find its asymptotes, maximum,
minimum, and inflection point. The section covers the following topics:

In this section...

“Define a Function” on page 2-45
“Find Asymptotes” on page 2-46
“Find Maximum and Minimum” on page 2-48
“Find Inflection Point” on page 2-50

Define a Function

The function in this example is

f x
x x

x x
() .=

+ -

+ -

3 6 1

3

2

2

To create the function, enter the following commands:

syms x

num = 3*x^2 + 6*x -1;

denom = x^2 + x - 3;

f = num/denom

f =

(3*x^2 + 6*x - 1)/(x^2 + x - 3)

Plot the function f

ezplot(f)

2 Using Symbolic Math Toolbox Software

2-46

Find Asymptotes

To find the horizontal asymptote of the graph of f, take the limit of f as x approaches
positive infinity:

limit(f, inf)

ans =

3

The limit as x approaches negative infinity is also 3. This tells you that the line y = 3 is a
horizontal asymptote to the graph.

 Find Asymptotes, Critical and Inflection Points

2-47

To find the vertical asymptotes of f, set the denominator equal to 0 and solve by entering
the following command:

roots = solve(denom)

This returns to solutions to x x
2

3 0+ - = :

roots =

 - 13^(1/2)/2 - 1/2

 13^(1/2)/2 - 1/2

This tells you that vertical asymptotes are the lines

x =

- +1 13

2
,

and

x =

- -1 13

2
.

You can plot the horizontal and vertical asymptotes with the following commands. Note
that roots must be converted to double to use the plot command.

ezplot(f)

hold on % Keep the graph of f in the figure

% Plot horizontal asymptote

plot([-2*pi 2*pi], [3 3],'g')

% Plot vertical asymptotes

plot(double(roots(1))*[1 1], [-5 10],'r')

plot(double(roots(2))*[1 1], [-5 10],'r')

title('Horizontal and Vertical Asymptotes')

hold off

2 Using Symbolic Math Toolbox Software

2-48

Find Maximum and Minimum

You can see from the graph that f has a local maximum somewhere between the points x
= –2 and x = 0, and might have a local minimum between x = –6 and x = –2. To find the x-
coordinates of the maximum and minimum, first take the derivative of f:

f1 = diff(f)

f1 =

(6*x + 6)/(x^2 + x - 3) - ((2*x + 1)*(3*x^2 + 6*x - 1))/(x^2 + x - 3)^2

To simplify this expression, enter

f1 = simplify(f1)

 Find Asymptotes, Critical and Inflection Points

2-49

f1 =

 -(3*x^2 + 16*x + 17)/(x^2 + x - 3)^2

You can display f1 in a more readable form by entering

pretty(f1)

which returns

 2

 3 x + 16 x + 17

 - ----------------

 2 2

 (x + x - 3)

Next, set the derivative equal to 0 and solve for the critical points:

crit_pts = solve(f1)

crit_pts =

 - 13^(1/2)/3 - 8/3

 13^(1/2)/3 - 8/3

It is clear from the graph of f that it has a local minimum at

x1

8 13

3
=

- -

,

and a local maximum at

x
2

8 13

3
=

- +
.

Note MATLAB does not always return the roots to an equation in the same order.

You can plot the maximum and minimum of f with the following commands:

2 Using Symbolic Math Toolbox Software

2-50

ezplot(f)

hold on

plot(double(crit_pts), double(subs(f,crit_pts)),'ro')

title('Maximum and Minimum of f')

text(-5.5,3.2,'Local minimum')

text(-2.5,2,'Local maximum')

hold off

Find Inflection Point

To find the inflection point of f, set the second derivative equal to 0 and solve.

f2 = diff(f1);

 Find Asymptotes, Critical and Inflection Points

2-51

inflec_pt = solve(f2,'MaxDegree',3);

double(inflec_pt)

This returns

ans =

 -5.2635 + 0.0000i

 -1.3682 - 0.8511i

 -1.3682 + 0.8511i

In this example, only the first entry is a real number, so this is the only inflection point.
(Note that in other examples, the real solutions might not be the first entries of the
answer.) Since you are only interested in the real solutions, you can discard the last two
entries, which are complex numbers.

inflec_pt = inflec_pt(1);

To see the symbolic expression for the inflection point, enter

pretty(simplify(inflec_pt))

 2/3 1/3 1/3 2/3 1/3 1/3

 2 13 (13 - 3 sqrt(13)) 2 13 (3 sqrt(13) + 13) 8

- ------------------------------- - ------------------------------- - -

 6 6 3

Plot the inflection point. The extra argument, [-9 6], in ezplot extends the range
of x values in the plot so that you see the inflection point more clearly, as shown in the
following figure.

ezplot(f, [-9 6])

hold on

plot(double(inflec_pt), double(subs(f,inflec_pt)),'ro')

title('Inflection Point of f')

text(-7,2,'Inflection point')

hold off

2 Using Symbolic Math Toolbox Software

2-52

 Simplify Symbolic Expressions

2-53

Simplify Symbolic Expressions

Simplification of a mathematical expression is not a clearly defined subject. There
is no universal idea as to which form of an expression is simplest. The form of a
mathematical expression that is simplest for one problem turns out to be complicated
or even unsuitable for another problem. For example, the following two mathematical
expressions present the same polynomial in different forms:

(x + 1)(x - 2)(x + 3)(x - 4),

 x4 - 2x3 - 13x2 + 14x + 24.

The first form clearly shows the roots of this polynomial. This form is simpler for working
with the roots. The second form serves best when you want to see the coefficients of the
polynomial. For example, this form is convenient when you differentiate or integrate
polynomials.

If the problem you want to solve requires a particular form of an expression, the best
approach is to choose the appropriate simplification function. See “Choose Function to
Rearrange Expression” on page 2-61.

Besides specific simplifiers, Symbolic Math Toolbox offers a general simplifier,
simplify.

If you do not need a particular form of expressions (expanded, factored, or expressed in
particular terms), use simplify to shorten mathematical expressions. For example, use
this simplifier to find a shorter form for a final result of your computations.

simplify works on various types of symbolic expressions, such as polynomials,
expressions with trigonometric, logarithmic, and special functions. For example, simplify
these polynomials.

syms x y

simplify((1 - x^2)/(1 - x))

simplify((x - 1)*(x + 1)*(x^2 + x + 1)*(x^2 + 1)*(x^2 - x + 1)*(x^4 - x^2 + 1))

ans =

x + 1

ans =

x^12 - 1

Simplify expressions involving trigonometric functions.

2 Using Symbolic Math Toolbox Software

2-54

simplify(cos(x)^(-2) - tan(x)^2)

simplify(cos(x)^2 - sin(x)^2)

ans =

1

ans =

cos(2*x)

Simplify expressions involving exponents and logarithms. In the third expression, use
log(sym(3)) instead of log(3). If you use log(3), then MATLAB calculates log(3)
with the double precision, and then converts the result to a symbolic number.

simplify(exp(x)*exp(y))

simplify(exp(x) - exp(x/2)^2)

simplify(log(x) + log(sym(3)) - log(3*x) + (exp(x) - 1)/(exp(x/2) + 1))

ans =

exp(x + y)

ans =

0

ans =

exp(x/2) - 1

Simplify expressions involving special functions.

simplify(gamma(x + 1) - x*gamma(x))

simplify(besselj(2, x) + besselj(0, x))

ans =

0

ans =

(2*besselj(1, x))/x

You also can simplify symbolic functions by using simplify.

syms f(x,y)

f(x,y) = exp(x)*exp(y)

f = simplify(f)

f(x, y) =

exp(x)*exp(y)

 Simplify Symbolic Expressions

2-55

f(x, y) =

exp(x + y)

Simplify Using Options

By default, simplify uses strict simplification rules and ensures that simplified
expressions are always mathematically equivalent to initial expressions. For example, it
does not combine logarithms.

syms x

simplify(log(x^2) + log(x))

ans =

log(x^2) + log(x)

You can apply additional simplification rules which are not correct for all values of
parameters and all cases, but using which simplify can return shorter results. For
this approach, use IgnoreAnalyticConstraints. For example, simplifying the same
expression with IgnoreAnalyticConstraints, you get the result with combined
logarithms.

simplify(log(x^2) + log(x),'IgnoreAnalyticConstraints',true)

ans =

3*log(x)

IgnoreAnalyticConstraints provides a shortcut allowing you to simplify expressions
under commonly used assumptions about values of the variables. Alternatively, you can
set appropriate assumptions on variables explicitly. For example, combining logarithms
is not valid for complex values in general. If you assume that x is a real value, simplify
combines logarithms without IgnoreAnalyticConstraints.

assume(x,'real')

simplify(log(x^2) + log(x))

ans =

log(x^3)

For further computations, clear the assumption on x.

syms x clear

Another approach that can improve simplification of an expression or function is the
syntax simplify(f,'Steps',n), where n is a positive integer that controls how many

2 Using Symbolic Math Toolbox Software

2-56

steps simplify takes. Specifying more simplification steps can help you simplify the
expression better, but it takes more time. By default, n = 1. For example, create and
simplify this expression. The result is shorter than the original expression, but it can be
simplified further.

syms x

y = (cos(x)^2 - sin(x)^2)*sin(2*x)*(exp(2*x) - 2*exp(x) + 1)/...

 ((cos(2*x)^2 - sin(2*x)^2)*(exp(2*x) - 1));

simplify(y)

ans =

(sin(4*x)*(exp(x) - 1))/(2*cos(4*x)*(exp(x) + 1))

Specify the number of simplification steps for the same expression. First, use 25 steps.

simplify(y,'Steps',25)

ans =

(tan(4*x)*(exp(x) - 1))/(2*(exp(x) + 1))

Use 50 steps to simplify the expression even further.

simplify(y,'Steps',50)

ans =

(tan(4*x)*tanh(x/2))/2

Suppose, you already simplified an expression or function, but want to simplify it further.
The more efficient approach is to simplify the result instead of simplifying the original
expression.

syms x

y = (cos(x)^2 - sin(x)^2)*sin(2*x)*(exp(2*x) - 2*exp(x) + 1)/...

 ((cos(2*x)^2 - sin(2*x)^2)*(exp(2*x) - 1));

 y = simplify(y)

y =

(sin(4*x)*(exp(x) - 1))/(2*cos(4*x)*(exp(x) + 1))

y = simplify(y,'Steps',25)

y =

(tan(4*x)*(exp(x) - 1))/(2*(exp(x) + 1))

y = simplify(y,'Steps',50)

 Simplify Symbolic Expressions

2-57

y =

(tan(4*x)*tanh(x/2))/2

Simplify Using Assumptions

Some expressions cannot be simplified in general, but become much shorter under
particular assumptions. For example, simplifying this trigonometric expression without
additional assumptions returns the original expression.

syms n

simplify(sin(2*n*pi))

ans =

sin(2*pi*n)

However, if you assume that variable n represents an integer, the same trigonometric
expression simplifies to 0.

assume(n,'integer')

simplify(sin(2*n*pi))

ans =

0

For further computations, clear the assumption.

syms n clear

Simplify Fractions

You can use the general simplification function, simplify, to simplify fractions.
However, Symbolic Math Toolbox offers a more efficient function specifically for this task:
simplifyFraction. The statement simplifyFraction(f) represents the expression
f as a fraction, where both the numerator and denominator are polynomials whose
greatest common divisor is 1. For example, simplify these expressions.

syms x y

simplifyFraction((x^3 - 1)/(x - 1))

ans =

x^2 + x + 1

simplifyFraction((x^3 - x^2*y - x*y^2 + y^3)/(x^3 + y^3))

2 Using Symbolic Math Toolbox Software

2-58

ans =

(x^2 - 2*x*y + y^2)/(x^2 - x*y + y^2)

By default, simplifyFraction does not expand expressions in the numerator and
denominator of the returned result. To expand the numerator and denominator in the
resulting expression, use the Expand option. For comparison, first simplify this fraction
without Expand.

simplifyFraction((1 - exp(x)^4)/(1 + exp(x))^4)

ans =

(exp(2*x) - exp(3*x) - exp(x) + 1)/(exp(x) + 1)^3

Now, simplify the same expressions with Expand.

simplifyFraction((1 - exp(x)^4)/(1 + exp(x))^4,'Expand',true)

ans =

(exp(2*x) - exp(3*x) - exp(x) + 1)/(3*exp(2*x) + exp(3*x) + 3*exp(x) + 1)

 Abbreviate Common Terms in Long Expressions

2-59

Abbreviate Common Terms in Long Expressions

Often, long expressions contain several instances of the same subexpression. Such
expressions look shorter if you replace the subexpression with an abbreviation. For
example, solve this equation.

syms x

s = solve(sqrt(x) + 1/x == 1, x)

s =

 (1/(18*(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)) -...

 (3^(1/2)*(1/(9*(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)) -...

 (25/54 - (23^(1/2)*108^(1/2))/108)^(1/3))*1i)/2 +...

 (25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)/2 + 1/3)^2

 ...

 ((3^(1/2)*(1/(9*(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)) -...

 (25/54 - (23^(1/2)*108^(1/2))/108)^(1/3))*1i)/2 + 1/(18*(25/54 -...

 (23^(1/2)*108^(1/2))/108)^(1/3)) +...

 (25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)/2 + 1/3)^2

The returned result is a long expression that might be difficult to parse. To represent
it in a more familiar typeset form, use pretty. When displaying results, the pretty
function can use abbreviations to shorten long expressions.

pretty(s)

/ / 1 #2 1 \2 \

| | ----- - #1 + -- + - | |

| \ 18 #2 2 3 / |

| |

| / 1 #2 1 \2 |

| | #1 + ----- + -- + - | |

\ \ 18 #2 2 3 / /

where

 / 1 \

 sqrt(3) | ---- - #2 | 1i

 \ 9 #2 /

 #1 == ------------------------

 2

 / 25 sqrt(23) sqrt(108) \1/3

2 Using Symbolic Math Toolbox Software

2-60

 #2 == | -- - ------------------ |

 \ 54 108 /

pretty uses an internal algorithm to choose which subexpressions to abbreviate. It
also can use nested abbreviations. For example, the term #1 contains the subexpression
abbreviated as #2. This function does not provide any options to enable, disable, or
control abbreviations.

subexpr is another function that you can use to shorten long expressions. This function
abbreviates only one common subexpression and, unlike pretty, it does not support
nested abbreviations. It also does not let you choose which subexpressions to replace.

Use the second input argument of subexpr to specify the variable name that replaces
the common subexpression. For example, replace the common subexpression in s by
variable t.

[s1,t] = subexpr(s,'t')

s1 =

 (1/(18*t^(1/3)) - (3^(1/2)*(1/(9*t^(1/3)) -...

 t^(1/3))*1i)/2 + t^(1/3)/2 + 1/3)^2

 ...

 ((3^(1/2)*(1/(9*t^(1/3)) - t^(1/3))*1i)/2 +...

 1/(18*t^(1/3)) + t^(1/3)/2 + 1/3)^2

t =

25/54 - (23^(1/2)*108^(1/2))/108

For the syntax with one input argument, subexpr uses variable sigma to abbreviate
the common subexpression. Output arguments do not affect the choice of abbreviation
variable.

[s2,sigma] = subexpr(s)

s2 =

 (1/(18*sigma^(1/3)) - (3^(1/2)*(1/(9*sigma^(1/3)) -...

 sigma^(1/3))*1i)/2 + sigma^(1/3)/2 + 1/3)^2

 ...

 ((3^(1/2)*(1/(9*sigma^(1/3)) - sigma^(1/3))*1i)/2 +...

 1/(18*sigma^(1/3)) + sigma^(1/3)/2 + 1/3)^2

sigma =

25/54 - (23^(1/2)*108^(1/2))/108

 Choose Function to Rearrange Expression

2-61

Choose Function to Rearrange Expression

Type of Transformation Function

“Combine Terms of Same Algebraic
Structures” on page 2-61

combine

“Expand Expressions” on page 2-63 expand

“Factor Expressions” on page 2-64 factor

“Extract Subexpressions from Expression”
on page 2-66

children

“Collect Terms with Same Powers” on page
2-67

collect

“Rewrite Expressions in Terms of Other
Functions” on page 2-68

rewrite

“Compute Partial Fraction Decompositions
of Expressions” on page 2-69

partfrac

“Compute Normal Forms of Rational
Expressions” on page 2-70

simplifyFraction

“Represent Polynomials Using Horner
Nested Forms” on page 2-70

horner

Combine Terms of Same Algebraic Structures

Symbolic Math Toolbox provides the combine function for combining subexpressions
of an original expression. The combine function uses mathematical identities for the
functions you specify. For example, combine the trigonometric expression.

syms x y

combine(2*sin(x)*cos(x),'sincos')

ans =

sin(2*x)

If you do not specify a target function, combine uses the identities for powers wherever
these identities are valid:

• ab ac = ab + c

2 Using Symbolic Math Toolbox Software

2-62

• ac bc = (a b)c

• (ab)c = abc

For example, by default the function combines the following square roots.

combine(sqrt(2)*sqrt(x))

ans =

(2*x)^(1/2)

The function does not combine these square roots because the identity is not valid for
negative values of variables.

combine(sqrt(x)*sqrt(y))

ans =

x^(1/2)*y^(1/2)

To combine these square roots, use the IgnoreAnalyticConstraints option.

combine(sqrt(x)*sqrt(y),'IgnoreanalyticConstraints',true)

ans =

(x*y)^(1/2)

IgnoreAnalyticConstraints provides a shortcut allowing you to combine expressions
under commonly used assumptions about values of the variables. Alternatively, you can
set appropriate assumptions on variables explicitly. For example, assume that x and y
are positive values.

assume([x,y],'positive')

combine(sqrt(x)*sqrt(y))

ans =

(x*y)^(1/2)

For further computations, clear the assumptions on x and y.

syms x y clear

As target functions, combine accepts atan, exp, gamma, int, log, sincos, and
sinhcosh.

 Choose Function to Rearrange Expression

2-63

Expand Expressions

For elementary expressions, use the expand function to transform the original
expression by multiplying sums of products. This function provides an easy way to
expand polynomials.

expand((x - 1)*(x - 2)*(x - 3))

ans =

 x^3 - 6*x^2 + 11*x - 6

expand(x*(x*(x - 6) + 11) - 6)

ans =

x^3 - 6*x^2 + 11*x - 6

The function also expands exponential and logarithmic expressions. For example, expand
this expression containing exponentials.

expand(exp(x + y)*(x + exp(x - y)))

ans =

exp(2*x) + x*exp(x)*exp(y)

Expand this logarithm. Expanding logarithms is not valid for generic complex values, but
it is valid for positive values.

syms a b c positive

expand(log(a*b*c))

ans =

log(a) + log(b) + log(c)

For further computations, clear the assumptions.

syms a b c clear

Alternatively, use the IgnoreAnalyticConstraints option when expanding
logarithms.

expand(log(a*b*c),'IgnoreAnalyticConstraints',true)

ans =

log(a) + log(b) + log(c)

expand also works on trigonometric expressions. For example, expand this expression.

2 Using Symbolic Math Toolbox Software

2-64

expand(cos(x + y))

ans =

cos(x)*cos(y) - sin(x)*sin(y)

expand uses mathematical identities between the functions.

expand(sin(5*x))

ans =

sin(x) - 12*cos(x)^2*sin(x) + 16*cos(x)^4*sin(x)

expand(cos(3*acos(x)))

ans =

4*x^3 - 3*x

expand works recursively for all subexpressions.

expand((sin(3*x) + 1)*(cos(2*x) - 1))

ans =

2*sin(x) + 2*cos(x)^2 - 10*cos(x)^2*sin(x) + 8*cos(x)^4*sin(x) - 2

To prevent the expansion of all trigonometric, logarithmic, and exponential
subexpressions, use the option ArithmeticOnly.

expand(exp(x + y)*(x + exp(x - y)),'ArithmeticOnly',true)

ans =

exp(x - y)*exp(x + y) + x*exp(x + y)

expand((sin(3*x) + 1)*(cos(2*x) - 1),'ArithmeticOnly',true)

ans =

cos(2*x) - sin(3*x) + cos(2*x)*sin(3*x) - 1

Factor Expressions

To return all irreducible factors of an expression, use the factor function. For example,
find all irreducible polynomial factors of this polynomial expression. The result shows
that this polynomial has three roots: x = 1, x = 2, and x = 3.

syms x

factor(x^3 - 6*x^2 + 11*x - 6)

 Choose Function to Rearrange Expression

2-65

ans =

[x - 3, x - 1, x - 2]

If a polynomial expression is irreducible, factor returns the original expression.

factor(x^3 - 6*x^2 + 11*x - 5)

ans =

x^3 - 6*x^2 + 11*x - 5

Find irreducible polynomial factors of this expression. By default, factor uses
factorization over rational numbers keeping rational numbers in their exact symbolic
form. The resulting factors for this expression do not show polynomial roots.

factor(x^6 + 1)

ans =

[x^2 + 1, x^4 - x^2 + 1]

Using other factorization modes lets you factor this expression further. For example,
factor the same expression over complex numbers.

factor(x^6 + 1,'FactorMode','complex')

ans =

[x - 0.86602540378443864676372317075294 + 0.5i,...

 x - 1.0i,...

 x + 0.86602540378443864676372317075294 + 0.5i,...

 x - 0.86602540378443864676372317075294 - 0.5i,...

 x + 1.0i,...

 x + 0.86602540378443864676372317075294 - 0.5i]

factor also works on expressions other than polynomials and rational expressions. For
example, you can factor the following expression that contains logarithm, sine, and cosine
functions. Internally, factor converts such expressions into polynomials and rational
expressions by substituting subexpressions with variables. After computing irreducible
factors, the function restores original subexpressions.

factor((log(x)^2 - 1)/(cos(x)^2 - sin(x)^2))

ans =

[log(x) - 1, log(x) + 1, 1/(cos(x) - sin(x)), 1/(cos(x) + sin(x))]

Use factor to factor symbolic integers and symbolic rational numbers.

factor(sym(902834092))

2 Using Symbolic Math Toolbox Software

2-66

factor(1/sym(210))

ans =

[2, 2, 47, 379, 12671]

ans =

[1/2, 1/3, 1/5, 1/7]

factor also can factor numbers larger than flintmax that the MATLAB factor
cannot. To represent a large number accurately, place the number in quotation marks.

factor(sym('41758540882408627201'))

ans =

[479001599, 87178291199]

Extract Subexpressions from Expression

The children function returns the subexpressions of an expression.

Define an expression f with several subexpressions.

syms x y

f = exp(3*x)*y^3 + exp(2*x)*y^2 + exp(x)*y;

Extract the subexpressions of f by using chlidren.

expr = children(f)

expr =

[y^2*exp(2*x), y^3*exp(3*x), y*exp(x)]

You can extract lower-level subexpressions by calling children repeatedly on the
results.

Extract the subexpressions of expr(1) by calling children repeatedly. When the input
to children is a vector, the output is a cell array.

expr1 = children(expr(1))

expr2 = children(expr1)

expr1 =

[y^2, exp(2*x)]

expr2 =

 [1x2 sym] [1x1 sym]

 Choose Function to Rearrange Expression

2-67

Access the contents of the cell array expr2 using braces.

expr2{1}

expr2{2}

ans =

[y, 2]

ans =

2*x

Collect Terms with Same Powers

If a mathematical expression contains terms with the same powers of a specified
variable or expression, the collect function reorganizes the expression by rouping such
terms. When calling collect, specify the variables that the function must consider as
unknowns. The collect function regards the original expression as a polynomial in the
specified unknowns, and groups the coefficients with equal powers. Group the terms of
an expression with the equal powers of x.

syms x y z

collect(x*y^4 + x*z + 2*x^3 + x^2*y*z +...

 3*x^3*y^4*z^2 + y*z^2 + 5*x*y*z, x)

ans =

(3*y^4*z^2 + 2)*x^3 + (y*z)*x^2 + (y^4 + 5*z*y + z)*x + y*z^2

Group the terms of the same expression with the equal powers of y.

collect(x*y^4 + x*z + 2*x^3 + x^2*y*z +...

 3*x^3*y^4*z^2 + y*z^2 + 5*x*y*z, y)

ans =

(3*x^3*z^2 + x)*y^4 + (x^2*z + 5*x*z + z^2)*y + 2*x^3 + z*x

Group the terms of the same expression with the equal powers of z.

collect(x*y^4 + x*z + 2*x^3 + x^2*y*z +...

 3*x^3*y^4*z^2 + y*z^2 + 5*x*y*z, z)

ans =

(3*x^3*y^4 + y)*z^2 + (x + 5*x*y + x^2*y)*z + 2*x^3 + x*y^4

If you do not specify variables that collect must consider as unknowns, the function
uses symvar to determine the default variable.

2 Using Symbolic Math Toolbox Software

2-68

collect(x*y^4 + x*z + 2*x^3 + x^2*y*z +...

 3*x^3*y^4*z^2 + y*z^2 + 5*x*y*z)

ans =

(3*y^4*z^2 + 2)*x^3 + (y*z)*x^2 + (y^4 + 5*z*y + z)*x + y*z^2

Collect terms of an expression with respect to several unknowns by specifying those
unknowns as a vector.

collect(x*y^4 + x*z + 2*x^3 + x^2*y*z +...

 3*x^3*y^4*z^2 + y*z^2 + 5*x*y*z, [y,z])

ans =

(3*x^3)*y^4*z^2 + x*y^4 + y*z^2 + (x^2 + 5*x)*y*z + x*z + 2*x^3

Rewrite Expressions in Terms of Other Functions

To present an expression in terms of a particular function, use rewrite. This function
uses mathematical identities between functions. For example, rewrite an expression
containing trigonometric functions in terms of a particular trigonometric function.

syms x

rewrite(sin(x),'tan')

ans =

(2*tan(x/2))/(tan(x/2)^2 + 1)

rewrite(cos(x),'tan')

ans =

-(tan(x/2)^2 - 1)/(tan(x/2)^2 + 1)

rewrite(sin(2*x) + cos(3*x)^2,'tan')

ans =

(tan((3*x)/2)^2 - 1)^2/(tan((3*x)/2)^2 + 1)^2 +...

(2*tan(x))/(tan(x)^2 + 1)

Use rewrite to express these trigonometric functions in terms of the exponential
function.

rewrite(sin(x),'exp')

ans =

(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2

 Choose Function to Rearrange Expression

2-69

rewrite(cos(x),'exp')

ans =

exp(-x*1i)/2 + exp(x*1i)/2

Use rewrite to express these hyperbolic functions in terms of the exponential function.

rewrite(sinh(x),'exp')

ans =

exp(x)/2 - exp(-x)/2

rewrite(cosh(x),'exp')

ans =

exp(-x)/2 + exp(x)/2

rewrite also expresses inverse hyperbolic functions in terms of logarithms.

rewrite(asinh(x),'log')

ans =

log(x + (x^2 + 1)^(1/2))

rewrite(acosh(x),'log')

ans =

log(x + (x^2 - 1)^(1/2))

Compute Partial Fraction Decompositions of Expressions

The partfrac function returns a rational expression in the form of a sum of a
polynomial and rational terms. In each rational term, the degree of the numerator is
smaller than the degree of the denominator. For some expressions, partfrac returns
visibly simpler forms.

syms x

n = x^6 + 15*x^5 + 94*x^4 + 316*x^3 + 599*x^2 + 602*x + 247;

d = x^6 + 14*x^5 + 80*x^4 + 238*x^3 + 387*x^2 + 324*x + 108;

partfrac(n/d, x)

ans =

1/(x + 1) + 1/(x + 2)^2 + 1/(x + 3)^3 + 1

The denominators in rational terms represent the factored common denominator of the
original expression.

2 Using Symbolic Math Toolbox Software

2-70

factor(d)

ans =

[x + 1, x + 2, x + 2, x + 3, x + 3, x + 3]

Compute Normal Forms of Rational Expressions

The simplifyFraction function represents the original rational expression as a single
rational term with expanded numerator and denominator. The greatest common divisor
of the numerator and denominator of the returned expression is 1. This function is more
efficient for simplifying fractions than the simplify function.

syms x y

simplifyFraction((x^3 + 3*y^2)/(x^2 - y^2) + 3)

ans =

(x^3 + 3*x^2)/(x^2 - y^2)

simplifyFraction cancels common factors that appear in numerator and denominator.

simplifyFraction(x^2/(x + y) - y^2/(x + y))

ans =

x - y

simplifyFraction also handles expressions other than polynomials and rational
functions. Internally, it converts such expressions into polynomials or rational functions
by substituting subexpressions with identifiers. After normalizing the expression with
temporary variables, simplifyFraction restores the original subexpressions.

simplifyFraction((exp(2*x) - exp(2*y))/(exp(x) - exp(y)))

ans =

exp(x) + exp(y)

Represent Polynomials Using Horner Nested Forms

The Horner, or nested, form of a polynomial expression is efficient for numerical
evaluation because it often involves fewer arithmetical operations than other
mathematically equivalent forms of the same polynomial. Typically, this form of an
expression is numerically stable. To represent a polynomial expression in a nested form,
use the horner function.

 Choose Function to Rearrange Expression

2-71

syms x

horner(x^3 - 6*x^2 + 11*x - 6)

ans =

x*(x*(x - 6) + 11) - 6

If polynomial coefficients are floating-point numbers, the resulting Horner form
represents them as rational numbers.

horner(1.1 + 2.2*x + 3.3*x^2)

ans =

x*((33*x)/10 + 11/5) + 11/10

To convert the coefficients in the result to floating-point numbers, use vpa.

vpa(ans)

ans =

x*(3.3*x + 2.2) + 1.1

2 Using Symbolic Math Toolbox Software

2-72

Extract Polynomial Coefficients

Symbolic Math Toolbox provides two functions, coeffs and sym2poly, for extracting
coefficients of polynomials.

• coeffs works on univariate and multivariate polynomials with numeric or symbolic
parameters. It returns a symbolic vector containing nonzero coefficients. This function
returns coefficients in order of ascending powers of the polynomial variable and omits
all zero coefficients. For example, coeffs(x^3 + 3/2) returns [3/2,1].

• sym2poly works on univariate polynomials with numeric coefficients. It returns
a vector of double-precision numbers. This function returns coefficients in order of
descending powers of the polynomial variable and includes zero coefficients in the
result. For example, sym2poly(x^3 + 3/2) returns [1.0000,0,0,1.5000].

To extract coefficients of this univariate polynomial, use coeffs. This function returns a
symbolic vector of coefficients, even if all coefficients can be converted to numeric values.
This approach lets you obtain exact values of coefficients.

syms x

p = sin(sym(1))*x^2 + sqrt(sym(2))*x + sym(pi);

coeffs(p)

ans =

[pi, 2^(1/2), sin(1)]

Extract coefficients of the same polynomial using sym2poly. This function converts
coefficients to double-precision values. The resulting vector is an acceptable input
argument for MATLAB functions.

sym2poly(p)

ans =

 0.8415 1.4142 3.1416

coeffs also lets you extract symbolic coefficients of a polynomial. For polynomials with
symbolic coefficients, always specify which variables must be treated as polynomial
variables.

syms a b c

coeffs(a*x^2 + 2*b*x + 3*c, x)

ans =

[3*c, 2*b, a]

 Extract Polynomial Coefficients

2-73

If you do not specify polynomial variables, coeffs treats all variables as polynomial
variables.

coeffs(a*x^2 + 2*b*x + 3*c)

ans =

[1, 2, 3]

To find a vector of polynomial coefficients and a vector of the corresponding terms, use
coeffs with two output arguments.

[coefficients,terms] = coeffs(a*x^2 + 2*b*x + 3*c, x)

coefficients =

[a, 2*b, 3*c]

terms =

[x^2, x, 1]

[coefficients,terms] = coeffs(a*x^2 + 2*b*x + 3*c)

coefficients =

[1, 2, 3]

terms =

[a*x^2, b*x, c]

2 Using Symbolic Math Toolbox Software

2-74

Extract Numerators and Denominators of Rational Expressions

To extract the numerator and denominator of a rational symbolic expression, use the
numden function. The first output argument of numden is a numerator, the second
output argument is a denominator. Use numden to find numerators and denominators of
symbolic rational numbers.

[n,d] = numden(1/sym(3))

n =

1

d =

3

Use numden to find numerators and denominators of a symbolic expressions.

syms x y

[n,d] = numden((x^2 - y^2)/(x^2 + y^2))

n =

x^2 - y^2

d =

x^2 + y^2

Use numden to find numerators and denominators of symbolic functions. If the input
is a symbolic function, numden returns the numerator and denominator as symbolic
functions.

syms f(x) g(x)

f(x) = sin(x)/x^2;

g(x) = cos(x)/x;

[n,d] = numden(f)

n(x) =

sin(x)

d(x) =

x^2

[n,d] = numden(f/g)

n(x) =

 Extract Numerators and Denominators of Rational Expressions

2-75

sin(x)

d(x) =

x*cos(x)

numden converts the input to its one-term rational form, such that the greatest common
divisor of the numerator and denominator is 1. Then it returns the numerator and
denominator of that form of the expression.

[n,d] = numden(x/y + y/x)

n =

x^2 + y^2

d =

x*y

numden works on vectors and matrices. If an input is a vector or matrix, numden returns
two vectors or two matrices of the same size as the input. The first vector or matrix
contains numerators of each element. The second vector or matrix contains denominators
of each element. For example, find numerators and denominators of each element of the
3-by-3 Hilbert matrix.

H = sym(hilb(3))

H =

[1, 1/2, 1/3]

[1/2, 1/3, 1/4]

[1/3, 1/4, 1/5]

[n,d] = numden(H)

n =

[1, 1, 1]

[1, 1, 1]

[1, 1, 1]

d =

[1, 2, 3]

[2, 3, 4]

[3, 4, 5]

2 Using Symbolic Math Toolbox Software

2-76

Substitute Variables in Symbolic Expressions

Solve the following trigonometric equation using the ReturnConditions option of the
solver to obtain the complete solution. The solver returns the solution, parameters used
in the solution, and conditions on those parameters.

syms x

eqn = sin(2*x) + cos(x) == 0;

[solx, params, conds] = solve(eqn, x, 'ReturnConditions', true)

solx =

 pi/2 + pi*k

 2*pi*k - pi/6

 (7*pi)/6 + 2*pi*k

params =

k

conds =

 in(k, 'integer')

 in(k, 'integer')

 in(k, 'integer')

Replace the parameter k with a new symbolic variable alpha. First, create symbolic
variables k and alpha. (The solver does not create variable k in the MATLAB
workspace.)

syms k alpha

Now, use the subs function to replace k by alpha in the solution vector solx,
parameters params, and conditions conds.

solx = subs(solx, k, alpha)

params = subs(params, k, alpha)

conds = subs(conds, k, alpha)

solx =

 pi/2 + pi*alpha

 2*pi*alpha - pi/6

 (7*pi)/6 + 2*pi*alpha

params =

alpha

 Substitute Variables in Symbolic Expressions

2-77

conds =

 in(alpha, 'integer')

 in(alpha, 'integer')

 in(alpha, 'integer')

Suppose, you know that the value of the parameter alpha is 2. Substitute alpha with 2
in the solution vector solx.

subs(solx, alpha, 2)

ans =

 (5*pi)/2

 (23*pi)/6

 (31*pi)/6

Alternatively, substitute params with 2. This approach returns the same result.

subs(solx, params, 2)

ans =

 (5*pi)/2

 (23*pi)/6

 (31*pi)/6

Substitute parameter alpha with a floating-point number. The toolbox converts numbers
to floating-point values, but it keeps intact the symbolic expressions, such as sym(pi),
exp(sym(1)), and so on.

subs(solx, params, vpa(2))

ans =

 2.5*pi

 3.8333333333333333333333333333333*pi

 5.1666666666666666666666666666667*pi

Approximate the result of substitution with floating-point values by using vpa on the
result returned by subs.

vpa(subs(solx, params, 2))

ans =

 7.8539816339744830961566084581988

 12.042771838760874080773466302571

 16.231562043547265065390324146944

2 Using Symbolic Math Toolbox Software

2-78

Substitute Elements in Symbolic Matrices

Create a 3-by-3 circulant matrix using the backward shift.

syms a b c

M = [a b c; b c a; c a b]

M =

[a, b, c]

[b, c, a]

[c, a, b]

Replace variable b in this matrix by the expression a + 1. The subs function replaces
all b elements in matrix M with the expression a + 1.

M = subs(M, b, a + 1)

M =

[a, a + 1, c]

[a + 1, c, a]

[c, a, a + 1]

You also can specify the value to replace by indexing into matrix. That is, to replace all
elements whose value is c, you can specify the value to replace as c, M(1,3) or M(3,1).

Replace all elements whose value is M(1,3) = c with the expression a + 2.

M = subs(M, M(1,3), a + 2)

M =

[a, a + 1, a + 2]

[a + 1, a + 2, a]

[a + 2, a, a + 1]

Tip To replace a particular element of a matrix with a new value while keeping all other
elements unchanged, use the assignment operation. For example, M(1,1) = 2 replaces
only the first element of the matrix M with the value 2.

Find eigenvalues and eigenvectors of the matrix.

[V,E] = eig(M)

V =

 Substitute Elements in Symbolic Matrices

2-79

[1, 3^(1/2)/2 - 1/2, - 3^(1/2)/2 - 1/2]

[1, - 3^(1/2)/2 - 1/2, 3^(1/2)/2 - 1/2]

[1, 1, 1]

E =

[3*a + 3, 0, 0]

[0, 3^(1/2), 0]

[0, 0, -3^(1/2)]

Replace the symbolic parameter a with the value 1.

subs(E, a, 1)

ans =

[6, 0, 0]

[0, 3^(1/2), 0]

[0, 0, -3^(1/2)]

2 Using Symbolic Math Toolbox Software

2-80

Substitute Scalars with Matrices

Create the following expression representing the sine function.

syms w t

f = sin(w*t);

Suppose, your task involves creating a matrix whose elements are sine functions with
angular velocities represented by a Toeplitz matrix. First, create a 4-by-4 Toeplitz
matrix.

W = toeplitz(sym([3 2 1 0]))

W =

[3, 2, 1, 0]

[2, 3, 2, 1]

[1, 2, 3, 2]

[0, 1, 2, 3]

Next, replace the variable w in the expression f with the Toeplitz matrix W. When you
replace a scalar in a symbolic expression with a matrix, subs expands the expression
into a matrix. In this example, subs expands f = sin(w*t) into a 4-by-4 matrix
whose elements are sin(w*t). Then it replaces w in that matrix with the corresponding
elements of the Toeplitz matrix W.

F = subs(f, w, W)

F =

[sin(3*t), sin(2*t), sin(t), 0]

[sin(2*t), sin(3*t), sin(2*t), sin(t)]

[sin(t), sin(2*t), sin(3*t), sin(2*t)]

[0, sin(t), sin(2*t), sin(3*t)]

Find the sum of these sine waves at t = π, t = π/2, t = π/3, t = π/4, t = π/5,
and t = π/6. First, find the sum of all elements of matrix F. Here, the first call to sum
returns a row vector containing sums of elements in each column. The second call to sum
returns the sum of elements of that row vector.

S = sum(sum(F))

S =

6*sin(2*t) + 4*sin(3*t) + 4*sin(t)

Now, use subs to evaluate S for particular values of the variable t.

 Substitute Scalars with Matrices

2-81

subs(S, t, sym(pi)./[1:6])

[0,...

 0,...

 5*3^(1/2), 4*2^(1/2) + 6,...

 2^(1/2)*(5 - 5^(1/2))^(1/2) + (5*2^(1/2)*(5^(1/2) + 5)^(1/2))/2,...

 3*3^(1/2) + 6]

You also can use subs to replace a scalar element of a matrix with another matrix. In
this case, subs expands the matrix to accommodate new elements. For example, replace
zero elements of the matrix F with a column vector [1;2]. The original 4-by-4 matrix
F expands to an 8-by-4 matrix. The subs function duplicates each row of the original
matrix, not only the rows containing zero elements.

F = subs(F, 0, [1;2])

F =

[sin(3*t), sin(2*t), sin(t), 1]

[sin(3*t), sin(2*t), sin(t), 2]

[sin(2*t), sin(3*t), sin(2*t), sin(t)]

[sin(2*t), sin(3*t), sin(2*t), sin(t)]

[sin(t), sin(2*t), sin(3*t), sin(2*t)]

[sin(t), sin(2*t), sin(3*t), sin(2*t)]

[1, sin(t), sin(2*t), sin(3*t)]

[2, sin(t), sin(2*t), sin(3*t)]

2 Using Symbolic Math Toolbox Software

2-82

Use subs to Evaluate Expressions and Functions

In this section...

“Evaluate Expressions” on page 2-82
“Evaluate Functions” on page 2-83

Evaluate Expressions

Evaluation is one of the most common mathematical operations. Therefore, it is
important to understand how and when Symbolic Math Toolbox performs evaluations.
For example, create a symbolic variable, x, and then assign the expression x^2 to
another variable, y.

syms x

y = x^2;

Now, assign a numeric value to x.

x = 2;

This second assignment does not change the value of y, which is still x^2. If later you
change the value of x to some other number, variable, expression, or matrix, the toolbox
remembers that the value of y is defined as x^2. When displaying results, Symbolic Math
Toolbox does not automatically evaluate the value of x^2 according to the new value of x.

y

y =

x^2

To enforce evaluation of y according to the new value of x, use the subs function.

subs(y)

ans =

4

The displayed value (assigned to ans) is now 4. However, the value of y does not change.
To replace the value of y, assign the result returned by subs to y.

y = subs(y)

 Use subs to Evaluate Expressions and Functions

2-83

y =

4

After this assignment, y is independent of x.

x = 5;

subs(y)

ans =

4

Evaluate Functions

Create a symbolic function and assign an expression to it.

syms f(x)

f(x) = x^2;

Now, assign a numeric value to x.

x = 2;

The function itself does not change: the body of the function is still the symbolic
expression x^2.

f

f(x) =

x^2

In case of symbolic expressions, the recommended approach is to use subs to evaluate
the expression with the most recent values of its parameters. This approach is not
recommended for symbolic functions. For example, if you evaluate f using the subs
function, the result is the expected value 4, but it is assigned to a symbolic function,
fnew. This new symbolic function formally depends on the variable x.

fnew = subs(f)

fnew(x) =

4

The function call, f(x), returns the value of f for the current value of x. For example,
if you assigned the value 2 to the variable x, then calling f(x) is equivalent to calling
f(2).

2 Using Symbolic Math Toolbox Software

2-84

f2 = f(x)

f2 =

4

f2 = f(2)

f2 =

4

f remains independent of the value assigned to x.

f

[f(1),f(2),f(3)]

f(x) =

x^2

ans =

[1, 4, 9]

 Choose Symbolic or Numeric Arithmetic

2-85

Choose Symbolic or Numeric Arithmetic

Symbolic Math Toolbox operates on numbers by using either symbolic or numeric
arithmetic. Numeric arithmetic is either variable precision or double precision. The
following information compares symbolic, variable-precision, and double-precision
arithmetic.

 Symbolic Variable Precision Double Precision

Example a = sym(pi)

sin(a)

a =

pi

ans =

0

b = vpa(pi)

sin(b)

b =

3.1415926535897932384626433832795

ans =

-3.2101083013100396069547145883568e-40

c = double(pi)

sin(c)

c =

 3.1416

ans =

 1.2246e-16

Functions Used sym vpa

digits

double

Round-Off Errors No, finds exact
results

Yes, magnitude
depends on precision
used

Yes

Speed Slowest Faster, depends on
precision used

Faster

Memory Usage Greatest Adjustable, depends
on precision used

Least

Symbolic Arithmetic

By default, Symbolic Math Toolbox uses exact numbers, such as 1/3, sqrt(2), or pi, to
perform exact “Perform Symbolic Computations” on page 1-12.

Variable-Precision Arithmetic

Variable-precision arithmetic using vpa is the recommended approach for numeric
calculations in Symbolic Math Toolbox. For greater precision, “Control Precision of
Numerical Computations” on page 2-87. For faster computations and decreased
memory usage, “Improve Performance of Numeric Computations” on page 2-94.

2 Using Symbolic Math Toolbox Software

2-86

Double-Precision Arithmetic

Double-precision, floating-point arithmetic uses the same precision as most numeric
computations in MATLAB. This arithmetic is recommended when you intend to use your
computations on a computer that does not have a license for Symbolic Math Toolbox.
Otherwise, exact symbolic numbers and variable-precision arithmetic are recommended.
To approximate a value with double precision, use the double function.

 Control Precision of Numerical Computations

2-87

Control Precision of Numerical Computations

When you “Choose Symbolic or Numeric Arithmetic” on page 2-85, the accuracy of
approximations depends on the value of the global variable digits. This variable
determines the number of decimal digits for numerical computations. By default, the
toolbox uses 32 significant decimal digits, which roughly corresponds to double-precision
floating-point accuracy. For example, approximate a sum using the default number of
digits:

vpa(sym(1/3) + 1/2)

ans =

0.83333333333333333333333333333333

Now, approximate the same sum with 5 and 50 decimal digits:

old = digits;

digits(5)

s5 = vpa(sym(1/3) + 1/2)

digits(50)

s50 = vpa(sym(1/3) + 1/2)

digits(old)

s5 =

0.83333

s50 =

0.8333

To get the current digits setting, call digits without input arguments:

digits

Digits = 32

To change the accuracy for one operation without changing the current digits setting,
use the vpa function with two input arguments. The second input argument must be
an integer between 1 to 229 specifying the accuracy of approximation. For example,
approximate the value pi with 10 and 50 digits:

vpa(sym(pi), 10)

2 Using Symbolic Math Toolbox Software

2-88

vpa(sym(pi), 50)

digits

ans =

3.141592654

ans =

3.1415926535897932384626433832795028841971693993751

Digits = 32

Note that digits and vpa control the number of significant decimal digits. Thus, when
you approximate the value 1/111 with 4-digit accuracy, the result has six digits after the
decimal point. The first two of them are zeros:

vpa(sym(1/111), 4)

ans =

0.009009

 Recognize and Avoid Round-Off Errors

2-89

Recognize and Avoid Round-Off Errors

When approximating a value numerically, remember that floating-point results can be
sensitive to the precision used. Also, floating-point results are prone to round-off errors.
The following approaches can help you recognize and avoid incorrect results.

In this section...

“Use Symbolic Computations When Possible” on page 2-89
“Perform Calculations with Increased Precision” on page 2-90
“Compare Symbolic and Numeric Results” on page 2-92
“Plot the Function or Expression” on page 2-92

Use Symbolic Computations When Possible

Performing “Choose Symbolic or Numeric Arithmetic” on page 2-85 is recommended
because exact symbolic computations are not prone to round-off errors. For example,
standard mathematical constants have their own symbolic representations in Symbolic
Math Toolbox:

pi

sym(pi)

ans =

 3.1416

ans =

pi

Avoid unnecessary use of numeric approximations. A floating-point number
approximates a constant; it is not the constant itself. Using this approximation, you can
get incorrect results. For example, the heaviside special function returns different
results for the sine of sym(pi) and the sine of the numeric approximation of pi:

heaviside(sin(sym(pi)))

heaviside(sin(pi))

ans =

1/2

2 Using Symbolic Math Toolbox Software

2-90

ans =

 1

Perform Calculations with Increased Precision

The Riemann hypothesis states that all nontrivial zeros of the Riemann Zeta function ζ(z)
have the same real part ℜ(z) = 1/2. To locate possible zeros of the Zeta function, plot its
absolute value |ζ(1/2 + iy)|. The following plot shows the first three nontrivial roots of
the Zeta function |ζ(1/2 + iy)|.

syms y

ezplot(abs(zeta(1/2 + i*y)), 0, 30)

 Recognize and Avoid Round-Off Errors

2-91

Use the numeric solver vpasolve to approximate the first three zeros of this Zeta
function:

vpasolve(zeta(1/2 + i*y), y, 15)

vpasolve(zeta(1/2 + i*y), y, 20)

vpasolve(zeta(1/2 + i*y), y, 25)

ans =

14.134725141734693790457251983562

ans =

21.022039638771554992628479593897

ans =

25.010857580145688763213790992563

Now, consider the same function, but slightly increase the real part,

z 1000000001

2000000000
+Ê

ËÁ
ˆ
¯̃

iy . According to the Riemann hypothesis, this function does not have a

zero for any real value y. If you use vpasolve with the 10 significant decimal digits, the
solver finds the following (nonexisting) zero of the Zeta function:

old = digits;

digits(10)

vpasolve(zeta(1000000001/2000000000 + i*y), y, 15)

ans =

14.13472514

Increasing the number of digits shows that the result is incorrect. The Zeta function

z 1000000001

2000000000
+Ê

ËÁ
ˆ
¯̃

iy does not have a zero for any real value 14 < y < 15:

digits(15)

vpasolve(zeta(1000000001/2000000000 + i*y), y, 15)

digits(old)

ans =

14.1347251417347 + 0.000000000499989207306345i

For further computations, restore the default number of digits:

digits(old)

2 Using Symbolic Math Toolbox Software

2-92

Compare Symbolic and Numeric Results

Bessel functions with half-integer indices return exact symbolic expressions.
Approximating these expressions by floating-point numbers can produce very unstable
results. For example, the exact symbolic expression for the following Bessel function is:

B = besselj(53/2, sym(pi))

B =

(351*2^(1/2)*(119409675/pi^4 - 20300/pi^2 - 315241542000/pi^6...

 + 445475704038750/pi^8 - 366812794263762000/pi^10 +...

 182947881139051297500/pi^12 - 55720697512636766610000/pi^14...

 + 10174148683695239020903125/pi^16 - 1060253389142977540073062500/pi^18...

 + 57306695683177936040949028125/pi^20 - 1331871030107060331702688875000/pi^22...

 + 8490677816932509614604641578125/pi^24 + 1))/pi^2

Use vpa to approximate this expression with the 10-digit accuracy:

vpa(B, 10)

ans =

-2854.225191

Now, call the Bessel function with the floating-point parameter. Significant difference
between these two approximations indicates that one or both results are incorrect:

besselj(53/2, pi)

ans =

 6.9001e-23

Increase the numeric working precision to obtain a more accurate approximation for B:

vpa(B, 50)

ans =

0.000000000000000000000069001456069172842068862232841396473796597233761161

Plot the Function or Expression

Plotting the results can help you recognize incorrect approximations. For example, the
numeric approximation of the following Bessel function returns:

B = besselj(53/2, sym(pi));

 Recognize and Avoid Round-Off Errors

2-93

vpa(B, 10)

ans =

-2854.225191

Plot this Bessel function for the values of x around 53/2. The function plot shows that
the approximation is incorrect:

syms x

ezplot(besselj(x, sym(pi)), 26, 27)

2 Using Symbolic Math Toolbox Software

2-94

Improve Performance of Numeric Computations

When you “Choose Symbolic or Numeric Arithmetic” on page 2-85, you are trading-off the
accuracy of computations against code performance. If you have Symbolic Math Toolbox,
then the best approach is to use variable-precision arithmetic. Variable-precision
arithmetic provides flexibility in terms of accuracy and performance, letting you choose
the appropriate number of digits for your particular task. You can always convert the
final results of your variable-precision computations to the double format, if that is
needed for further tasks.

While increasing the number of significant decimal digits lets you perform numeric
computations with better accuracy, decreasing that number might help you get the
results in a reasonable amount of time. For example, compute the Riemann Zeta function
of the elements of the 101-by-301 matrix C:

[X,Y] = meshgrid((0:0.0025:.75),(5:-0.05:0));

C = X + Y*i;

Computing the Zeta function of these elements directly takes a long time:

tic

D = zeta(C);

toc

Elapsed time is 340.204407 seconds.

Computing the Zeta function of the same elements with 10-digit precision is much faster:

digits(10)

tic

D = zeta(vpa(C));

toc

Elapsed time is 113.792543 seconds.

For larger matrices, the difference in computation time can be more significant. For
example, for the 1001-by-301 matrix C:

[X,Y] = meshgrid((0:0.00025:.75),(5:-0.005:0));

C = X + Y*i;

executing D = zeta(vpa(C)) with 10-digit precision finishes in several minutes, while
executing D = zeta(C) takes more than an hour.

 Numeric to Symbolic Conversion

2-95

Numeric to Symbolic Conversion

This topic shows how Symbolic Math Toolbox converts numbers into symbolic form.
For an overview of symbolic and numeric arithmetic, see “Choose Symbolic or Numeric
Arithmetic” on page 2-85.

To convert numeric input to symbolic form, use the sym command. By default, sym
returns a rational approximation of a numeric expression.

t = 0.1;

sym(t)

ans =

1/10

sym determines that the double-precision value 0.1 approximates the exact symbolic
value 1/10. In general, sym tries to correct the round-off error in floating-point inputs
to return the exact symbolic form. Specifically, sym corrects round-off error in numeric
inputs that match the forms p/q, pπ/q, (p/q)1/2, 2q, and 10q, where p and q are modest-
sized integers.

For these forms, demonstrate that sym converts floating-point inputs to the exact
symbolic form. First, numerically approximate 1/7, pi, and 1 2/ .

N1 = 1/7

N2 = pi

N3 = 1/sqrt(2)

N1 =

 0.1429

N2 =

 3.1416

N3 =

 0.7071

Convert the numeric approximations to exact symbolic form. sym corrects the round-off
error.

S1 = sym(N1)

S2 = sym(N2)

S3 = sym(N3)

S1 =

2 Using Symbolic Math Toolbox Software

2-96

1/7

S2 =

pi

S3 =

2^(1/2)/2

To return the error between the input and the estimated exact form, use the syntax
sym(num,'e'). See “Conversion to Rational Symbolic Form with Error Term” on page
2-97.

You can force sym to accept the input as is by placing the input in quotes. Demonstrate
this behavior on the previous input 0.142857142857143. The sym function does not
convert the input to 1/7.

sym('0.142857142857143')

ans =

0.142857142857143

When you convert large numbers, use quotes to exactly represent them.
Demonstrate this behavior by comparing sym(133333333333333333333) with
sym('133333333333333333333').

sym(1333333333333333333)

sym('1333333333333333333')

ans =

1333333333333333248

ans =

1333333333333333333

You can specify the technique used by sym to convert floating-point numbers using the
optional second argument, which can be 'f', 'r', 'e', or 'd'. The default flag is 'r',
for rational form.

In this section...

“Conversion to Rational Symbolic Form” on page 2-97
“Conversion by Using Floating-Point Expansion” on page 2-97
“Conversion to Rational Symbolic Form with Error Term” on page 2-97
“Conversion to Decimal Form” on page 2-97

 Numeric to Symbolic Conversion

2-97

Conversion to Rational Symbolic Form

Convert input to exact rational form by calling sym with the 'r' flag. This is the default
behavior when you call sym without flags.

sym(t, 'r')

ans =

1/10

Conversion by Using Floating-Point Expansion

If you call sym with the flag 'f', sym converts double-precision, floating-point numbers
to their numeric value by using N*2^e, where N and e are the exponent and mantissa
respectively.

Convert t by using a floating-point expansion.

sym(t, 'f')

ans =

3602879701896397/36028797018963968

Conversion to Rational Symbolic Form with Error Term

If you call sym with the flag 'e', sym returns the rational form of t plus the error
between the estimated, exact value for t and its floating-point representation. This error
is expressed in terms of eps (the floating-point relative precision).

Convert t to symbolic form. Return the error between its estimated symbolic form and its
floating-point value.

sym(t, 'e')

ans =

eps/40 + 1/10

The error term eps/40 is the difference between sym('0.1') and sym(0.1).

Conversion to Decimal Form

If you call sym with the flag 'd', sym returns the decimal expansion of the input. The
digits function specifies the number of significant digits used. The default value of
digits is 32.

2 Using Symbolic Math Toolbox Software

2-98

sym(t,'d')

ans =

0.10000000000000000555111512312578

Change the number of significant digits by using digits.

digitsOld = digits(7);

sym(t,'d')

ans =

0.1

For further calculations, restore the old value of digits.

digits(digitsOld)

 Basic Algebraic Operations

2-99

Basic Algebraic Operations

Basic algebraic operations on symbolic objects are the same as operations on MATLAB
objects of class double. This is illustrated in the following example.

The Givens transformation produces a plane rotation through the angle t. The
statements

syms t

G = [cos(t) sin(t); -sin(t) cos(t)]

create this transformation matrix.

G =

[cos(t), sin(t)]

[-sin(t), cos(t)]

Applying the Givens transformation twice should simply be a rotation through twice the
angle. The corresponding matrix can be computed by multiplying G by itself or by raising
G to the second power. Both

A = G*G

and

A = G^2

produce

A =

[cos(t)^2 - sin(t)^2, 2*cos(t)*sin(t)]

[-2*cos(t)*sin(t), cos(t)^2 - sin(t)^2]

The simplify function

A = simplify(A)

uses a trigonometric identity to return the expected form by trying several different
identities and picking the one that produces the shortest representation.

A =

[cos(2*t), sin(2*t)]

[-sin(2*t), cos(2*t)]

2 Using Symbolic Math Toolbox Software

2-100

The Givens rotation is an orthogonal matrix, so its transpose is its inverse. Confirming
this by

I = G.' *G

which produces

I =

[cos(t)^2 + sin(t)^2, 0]

[0, cos(t)^2 + sin(t)^2]

and then

I = simplify(I)

I =

[1, 0]

[0, 1]

 Linear Algebraic Operations

2-101

Linear Algebraic Operations

The following examples show how to do several basic linear algebraic operations using
Symbolic Math Toolbox software.

2 Using Symbolic Math Toolbox Software

2-102

The command

H = hilb(3)

generates the 3-by-3 Hilbert matrix. With format short, MATLAB prints

H =

 1.0000 0.5000 0.3333

 0.5000 0.3333 0.2500

 0.3333 0.2500 0.2000

The computed elements of H are floating-point numbers that are the ratios of small
integers. Indeed, H is a MATLAB array of class double. Converting H to a symbolic
matrix

H = sym(H)

gives

H =

[1, 1/2, 1/3]

[1/2, 1/3, 1/4]

[1/3, 1/4, 1/5]

This allows subsequent symbolic operations on H to produce results that correspond
to the infinitely precise Hilbert matrix, sym(hilb(3)), not its floating-point
approximation, hilb(3). Therefore,

inv(H)

produces

ans =

[9, -36, 30]

[-36, 192, -180]

[30, -180, 180]

and

det(H)

yields

ans =

1/2160

 Linear Algebraic Operations

2-103

You can use the backslash operator to solve a system of simultaneous linear equations.
For example, the commands

% Solve Hx = b

b = [1; 1; 1];

x = H\b

produce the solution

 x =

 3

 -24

 30

All three of these results, the inverse, the determinant, and the solution to the linear
system, are the exact results corresponding to the infinitely precise, rational, Hilbert
matrix. On the other hand, using digits(16), the command

digits(16)

V = vpa(hilb(3))

returns

V =

[1.0, 0.5, 0.3333333333333333]

[0.5, 0.3333333333333333, 0.25]

[0.3333333333333333, 0.25, 0.2]

The decimal points in the representation of the individual elements are the signal to use
variable-precision arithmetic. The result of each arithmetic operation is rounded to 16
significant decimal digits. When inverting the matrix, these errors are magnified by the
matrix condition number, which for hilb(3) is about 500. Consequently,

inv(V)

which returns

ans =

[9.0, -36.0, 30.0]

[-36.0, 192.0, -180.0]

[30.0, -180.0, 180.0]

shows the loss of two digits. So does

1/det(V)

2 Using Symbolic Math Toolbox Software

2-104

which gives

ans =

 2160.000000000018

and

V\b

which is

ans =

 3.0

 -24.0

 30.0

Since H is nonsingular, calculating the null space of H with the command

null(H)

returns an empty matrix:

ans =

Empty sym: 1-by-0

Calculating the column space of H with

colspace(H)

returns a permutation of the identity matrix:

ans =

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

A more interesting example, which the following code shows, is to find a value s for
H(1,1) that makes H singular. The commands

syms s

H(1,1) = s

Z = det(H)

sol = solve(Z)

produce

 Linear Algebraic Operations

2-105

H =

[s, 1/2, 1/3]

[1/2, 1/3, 1/4]

[1/3, 1/4, 1/5]

Z =

s/240 - 1/270

sol =

8/9

Then

H = subs(H, s, sol)

substitutes the computed value of sol for s in H to give

H =

[8/9, 1/2, 1/3]

[1/2, 1/3, 1/4]

[1/3, 1/4, 1/5]

Now, the command

det(H)

returns

ans =

0

and

inv(H)

produces the message

ans =

 FAIL

because H is singular. For this matrix, null space and column space are nontrivial:

Z = null(H)

C = colspace(H)

Z =

2 Using Symbolic Math Toolbox Software

2-106

3/10

 -6/5

 1

C =

[1, 0]

[0, 1]

[-3/10, 6/5]

It should be pointed out that even though H is singular, vpa(H) is not. For any integer
value d, setting digits(d), and then computing inv(vpa(H)) results in an inverse
with elements on the order of 10^d.

 Eigenvalues

2-107

Eigenvalues

The symbolic eigenvalues of a square matrix A or the symbolic eigenvalues and
eigenvectors of A are computed, respectively, using the commands E = eig(A) and
[V,E] = eig(A).

The variable-precision counterparts are E = eig(vpa(A)) and [V,E] =
eig(vpa(A)).

The eigenvalues of A are the zeros of the characteristic polynomial of A, det(A-x*I),
which is computed by charpoly(A).

The matrix H from the last section provides the first example:

H = sym([8/9 1/2 1/3; 1/2 1/3 1/4; 1/3 1/4 1/5])

H =

[8/9, 1/2, 1/3]

[1/2, 1/3, 1/4]

[1/3, 1/4, 1/5]

The matrix is singular, so one of its eigenvalues must be zero. The statement

[T,E] = eig(H)

produces the matrices T and E. The columns of T are the eigenvectors of H and the
diagonal elements of E are the eigenvalues of H:
T =

[3/10, 218/285 - (4*12589^(1/2))/285, (4*12589^(1/2))/285 + 218/285]

[-6/5, 292/285 - 12589^(1/2)/285, 12589^(1/2)/285 + 292/285]

[1, 1, 1]

E =

[0, 0, 0]

[0, 32/45 - 12589^(1/2)/180, 0]

[0, 0, 12589^(1/2)/180 + 32/45]

It may be easier to understand the structure of the matrices of eigenvectors, T, and
eigenvalues, E, if you convert T and E to decimal notation. To do so, proceed as follows.
The commands

Td = double(T)

Ed = double(E)

return

2 Using Symbolic Math Toolbox Software

2-108

Td =

 0.3000 -0.8098 2.3397

 -1.2000 0.6309 1.4182

 1.0000 1.0000 1.0000

Ed =

 0 0 0

 0 0.0878 0

 0 0 1.3344

The first eigenvalue is zero. The corresponding eigenvector (the first column of Td)
is the same as the basis for the null space found in the last section. The other two

eigenvalues are the result of applying the quadratic formula to x x
2 64

45

253

2160
- + which is

the quadratic factor in factor(charpoly(H, x)):

syms x

g = factor(charpoly(H, x))/x

solve(g(3))

g =

[1/(2160*x), 1, (2160*x^2 - 3072*x + 253)/x]

ans =

 32/45 - 12589^(1/2)/180

 12589^(1/2)/180 + 32/45

Closed form symbolic expressions for the eigenvalues are possible only when the
characteristic polynomial can be expressed as a product of rational polynomials of degree
four or less. The Rosser matrix is a classic numerical analysis test matrix that illustrates
this requirement. The statement

R = sym(rosser)

generates

R =

[611, 196, -192, 407, -8, -52, -49, 29]

[196, 899, 113, -192, -71, -43, -8, -44]

[-192, 113, 899, 196, 61, 49, 8, 52]

[407, -192, 196, 611, 8, 44, 59, -23]

[-8, -71, 61, 8, 411, -599, 208, 208]

[-52, -43, 49, 44, -599, 411, 208, 208]

[-49, -8, 8, 59, 208, 208, 99, -911]

[29, -44, 52, -23, 208, 208, -911, 99]

 Eigenvalues

2-109

The commands

p = charpoly(R, x);

pretty(factor(p))

produce
(2 2)

 x, x - 1020, x - 1040500, x - 1020 x + 100, x - 1000, x - 1000

The characteristic polynomial (of degree 8) factors nicely into the product of two linear
terms and three quadratic terms. You can see immediately that four of the eigenvalues
are 0, 1020, and a double root at 1000. The other four roots are obtained from the
remaining quadratics. Use

eig(R)

to find all these values

ans =

 0

 1000

 1000

 1020

 510 - 100*26^(1/2)

 100*26^(1/2) + 510

 -10*10405^(1/2)

 10*10405^(1/2)

The Rosser matrix is not a typical example; it is rare for a full 8-by-8 matrix to have
a characteristic polynomial that factors into such simple form. If you change the two
“corner” elements of R from 29 to 30 with the commands

S = R;

S(1,8) = 30;

S(8,1) = 30;

and then try

p = charpoly(S, x)

you find

p =

x^8 - 4040*x^7 + 5079941*x^6 + 82706090*x^5...

 - 5327831918568*x^4 + 4287832912719760*x^3...

2 Using Symbolic Math Toolbox Software

2-110

 - 1082699388411166000*x^2 + 51264008540948000*x...

 + 40250968213600000

You also find that factor(p) is p itself. That is, the characteristic polynomial cannot be
factored over the rationals.

For this modified Rosser matrix

F = eig(S)

returns

F =

 -1020.053214255892

 -0.17053529728769

 0.2180398054830161

 999.9469178604428

 1000.120698293384

 1019.524355263202

 1019.993550129163

 1020.420188201505

Notice that these values are close to the eigenvalues of the original Rosser matrix.
Further, the numerical values of F are a result of MuPAD software's floating-point
arithmetic. Consequently, different settings of digits do not alter the number of digits
to the right of the decimal place.

It is also possible to try to compute eigenvalues of symbolic matrices, but closed form
solutions are rare. The Givens transformation is generated as the matrix exponential of
the elementary matrix

A =
-

È

Î
Í

˘

˚
˙

0 1

1 0
.

Symbolic Math Toolbox commands

syms t

A = sym([0 1; -1 0]);

G = expm(t*A)

return

G =

 Eigenvalues

2-111

[exp(-t*1i)/2 + exp(t*1i)/2,

 (exp(-t*1i)*1i)/2 - (exp(t*1i)*1i)/2]

[- (exp(-t*1i)*1i)/2 + (exp(t*1i)*1i)/2,

 exp(-t*1i)/2 + exp(t*1i)/2]

You can simplify this expression using simplify:

G = simplify(G)

G =

[cos(t), sin(t)]

[-sin(t), cos(t)]

Next, the command

g = eig(G)

produces

g =

 cos(t) - sin(t)*1i

 cos(t) + sin(t)*1i

You can rewrite g in terms of exponents:

g = rewrite(g, 'exp')

g =

 exp(-t*1i)

 exp(t*1i)

2 Using Symbolic Math Toolbox Software

2-112

Jordan Canonical Form

The Jordan canonical form results from attempts to convert a matrix to its diagonal form
by a similarity transformation. For a given matrix A, find a nonsingular matrix V, so that
inv(V)*A*V, or, more succinctly, J = V\A*V, is “as close to diagonal as possible.” For
almost all matrices, the Jordan canonical form is the diagonal matrix of eigenvalues and
the columns of the transformation matrix are the eigenvectors. This always happens if
the matrix is symmetric or if it has distinct eigenvalues. Some nonsymmetric matrices
with multiple eigenvalues cannot be converted to diagonal forms. The Jordan form has
the eigenvalues on its diagonal, but some of the superdiagonal elements are one, instead
of zero. The statement

J = jordan(A)

computes the Jordan canonical form of A. The statement

[V,J] = jordan(A)

also computes the similarity transformation. The columns of V are the generalized
eigenvectors of A.

The Jordan form is extremely sensitive to perturbations. Almost any change in A causes
its Jordan form to be diagonal. This makes it very difficult to compute the Jordan form
reliably with floating-point arithmetic. It also implies that A must be known exactly (i.e.,
without round-off error, etc.). Its elements must be integers, or ratios of small integers.
In particular, the variable-precision calculation, jordan(vpa(A)), is not allowed.

For example, let

A = sym([12,32,66,116;-25,-76,-164,-294;

 21,66,143,256;-6,-19,-41,-73])

A =

[12, 32, 66, 116]

[-25, -76, -164, -294]

[21, 66, 143, 256]

[-6, -19, -41, -73]

Then

[V,J] = jordan(A)

produces

 Jordan Canonical Form

2-113

V =

[4, -2, 4, 3]

[-6, 8, -11, -8]

[4, -7, 10, 7]

[-1, 2, -3, -2]

J =

[1, 1, 0, 0]

[0, 1, 0, 0]

[0, 0, 2, 1]

[0, 0, 0, 2]

Therefore A has a double eigenvalue at 1, with a single Jordan block, and a double
eigenvalue at 2, also with a single Jordan block. The matrix has only two eigenvectors,
V(:,1) and V(:,3). They satisfy

A*V(:,1) = 1*V(:,1)

A*V(:,3) = 2*V(:,3)

The other two columns of V are generalized eigenvectors of grade 2. They satisfy

A*V(:,2) = 1*V(:,2) + V(:,1)

A*V(:,4) = 2*V(:,4) + V(:,3)

In mathematical notation, with vj = v(:,j), the columns of V and eigenvalues satisfy the
relationships

()A I v v- =l1 2 1

() .A I v v- =l2 4 3

2 Using Symbolic Math Toolbox Software

2-114

Singular Value Decomposition

Singular value decomposition expresses an m-by-n matrix A as A = U*S*V'. Here, S
is an m-by-n diagonal matrix with singular values of A on its diagonal. The columns of
the m-by-m matrix U are the left singular vectors for corresponding singular values. The
columns of the n-by-n matrix V are the right singular vectors for corresponding singular
values. V' is the Hermitian transpose (the complex conjugate of the transpose) of V.

To compute the singular value decomposition of a matrix, use svd. This function lets
you compute singular values of a matrix separately or both singular values and singular
vectors in one function call. To compute singular values only, use svd without output
arguments

svd(A)

or with one output argument

S = svd(A)

To compute singular values and singular vectors of a matrix, use three output
arguments:

[U,S,V] = svd(A)

svd returns two unitary matrices, U and V, the columns of which are singular vectors.
It also returns a diagonal matrix, S, containing singular values on its diagonal. The
elements of all three matrices are floating-point numbers. The accuracy of computations
is determined by the current setting of digits.

Create the n-by-n matrix A with elements defined by A(i,j) = 1/(i - j + 1/2). The
most obvious way of generating this matrix is

n = 3;

for i = 1:n

 for j = 1:n

 A(i,j) = sym(1/(i-j+1/2));

 end

end

For n = 3, the matrix is

A

A =

 Singular Value Decomposition

2-115

[2, -2, -2/3]

[2/3, 2, -2]

[2/5, 2/3, 2]

Compute the singular values of this matrix. If you use svd directly, it will return exact
symbolic result. For this matrix, the result is very long. If you prefer a shorter numeric
result, convert the elements of A to floating-point numbers using vpa. Then use svd to
compute singular values of this matrix using variable-precision arithmetic:

S = svd(vpa(A))

S =

 3.1387302525015353960741348953506

 3.0107425975027462353291981598225

 1.6053456783345441725883965978052

Now, compute the singular values and singular vectors of A:

[U,S,V] = svd(A)

U =

[0.53254331027335338470683368360204, 0.76576895948802052989304092179952,...

 0.36054891952096214791189887728353]

[-0.82525689650849463222502853672224, 0.37514965283965451993171338605042,...

 0.42215375485651489522488031917364]

[0.18801243961043281839917114171742, -0.52236064041897439447429784257224,...

 0.83173955292075192178421874331406]

S =

[3.1387302525015353960741348953506, 0,...

 0]

[0, 3.0107425975027462353291981598225,...

 0]

[0, 0,...

 1.6053456783345441725883965978052]

V =

[0.18801243961043281839917114171742, 0.52236064041897439447429784257224,...

 0.83173955292075192178421874331406]

[-0.82525689650849463222502853672224, -0.37514965283965451993171338605042,...

 0.42215375485651489522488031917364]

[0.53254331027335338470683368360204, -0.76576895948802052989304092179952,...

 0.36054891952096214791189887728353]

2 Using Symbolic Math Toolbox Software

2-116

Solve Algebraic Equation

Symbolic Math Toolbox offers both symbolic and numeric equation solvers. This topic
shows you how to solve an equation symbolically using the symbolic solver solve. To
compare symbolic and numeric solvers, see “Select Numeric or Symbolic Solver” on page
2-121.

In this section...

“Solve an Equation” on page 2-116
“Return the Full Solution to an Equation” on page 2-117
“Work with the Full Solution, Parameters, and Conditions Returned by solve” on page
2-117
“Visualize and Plot Solutions Returned by solve” on page 2-118
“Simplify Complicated Results and Improve Performance” on page 2-120

Solve an Equation

If eqn is an equation, solve(eqn, x) solves eqn for the symbolic variable x.

Use the == operator to specify the familiar quadratic equation and solve it using solve.

syms a b c x

eqn = a*x^2 + b*x + c == 0;

solx = solve(eqn, x)

solx =

 -(b + (b^2 - 4*a*c)^(1/2))/(2*a)

 -(b - (b^2 - 4*a*c)^(1/2))/(2*a)

solx is a symbolic vector containing the two solutions of the quadratic equation. If the
input eqn is an expression and not an equation, solve solves the equation eqn == 0.

To solve for a variable other than x, specify that variable instead. For example, solve eqn
for b.

solb = solve(eqn, b)

solb =

 Solve Algebraic Equation

2-117

-(a*x^2 + c)/x

If you do not specify a variable, solve uses symvar to select the variable to solve for. For
example, solve(eqn) solves eqn for x.

Return the Full Solution to an Equation

solve does not automatically return all solutions of an equation. Solve the equation
cos(x) == -sin(x). The solve function returns one of many solutions.

syms x

solx = solve(cos(x) == -sin(x), x)

solx =

-pi/4

To return all solutions along with the parameters in the solution and the conditions on
the solution, set the ReturnConditions option to true. Solve the same equation for the
full solution. Provide three output variables: for the solution to x, for the parameters in
the solution, and for the conditions on the solution.

syms x

[solx param cond] = solve(cos(x) == -sin(x), x, 'ReturnConditions', true)

solx =

pi*k - pi/4

param =

k

cond =

in(k, 'integer')

solx contains the solution for x, which is pi*k - pi/4. The param variable specifies
the parameter in the solution, which is k. The cond variable specifies the condition
in(k, 'integer') on the solution, which means k must be an integer. Thus, solve
returns a periodic solution starting at pi/4 which repeats at intervals of pi*k, where k
is an integer.

Work with the Full Solution, Parameters, and Conditions Returned by
solve

You can use the solutions, parameters, and conditions returned by solve to find
solutions within an interval or under additional conditions.

2 Using Symbolic Math Toolbox Software

2-118

To find values of x in the interval -2*pi<x<2*pi, solve solx for k within that interval
under the condition cond. Assume the condition cond using assume.

assume(cond)

solk = solve(-2*pi<solx, solx<2*pi, param)

solk =

 -1

 0

 1

 2

To find values of x corresponding to these values of k, use subs to substitute for k in
solx.

xvalues = subs(solx, solk)

xvalues =

 -(5*pi)/4

 -pi/4

 (3*pi)/4

 (7*pi)/4

To convert these symbolic values into numeric values for use in numeric calculations, use
vpa.

xvalues = vpa(xvalues)

xvalues =

 -3.9269908169872415480783042290994

 -0.78539816339744830961566084581988

 2.3561944901923449288469825374596

 5.4977871437821381673096259207391

Visualize and Plot Solutions Returned by solve

The previous sections used solve to solve the equation cos(x) == -sin(x). The
solution to this equation can be visualized using plotting functions such as ezplot and
scatter.

Plot both sides of equation cos(x) == -sin(x).

ezplot(cos(x))

hold on

 Solve Algebraic Equation

2-119

grid on

ezplot(-sin(x))

title('Both sides of equation cos(x) = -sin(x)')

legend('cos(x)','-sin(x)','Location','Best')

Calculate the values of the functions at the values of x, and superimpose the solutions as
points using scatter.

yvalues = cos(xvalues)

scatter(xvalues, yvalues)

yvalues =

2 Using Symbolic Math Toolbox Software

2-120

 -0.70710678118654752440084436210485

 0.70710678118654752440084436210485

 -0.70710678118654752440084436210485

 0.70710678118654752440084436210485

As expected, the solutions appear at the intersection of the two plots.

Simplify Complicated Results and Improve Performance

If results look complicated, solve is stuck, or if you want to improve performance, see,
“Resolve Complicated Solutions or Stuck Solver” on page 2-134.

 Select Numeric or Symbolic Solver

2-121

Select Numeric or Symbolic Solver
You can solve equations to obtain a symbolic or numeric answer. For example, a solution
to cos x() = -1 is pi in symbolic form and 3.14159 in numeric form. The symbolic
solution is exact, while the numeric solution approximates the exact symbolic solution.
Symbolic Math Toolbox offers both symbolic and numeric equation solvers. This table can
help you choose either the symbolic solver (solve) or the numeric solver (vpasolve).
A possible strategy is to try the symbolic solver first, and use the numeric solver if the
symbolic solver is stuck.

Solve Equations Symbolically Using solve Solve Equations Numerically Using vpasolve

Returns exact solutions. Solutions can then
be approximated using vpa.

Returns approximate solutions. Precision
can be controlled arbitrarily using digits.

Returns a general form of the solution. For polynomial equations, returns
all numeric solutions that exist. For
nonpolynomial equations, returns the first
numeric solution found.

General form allows insight into the
solution.

Numeric solutions provide less insight.

Runs slower. Runs faster.
Search ranges can be specified using
inequalities.

Search ranges and starting points can be
specified.

solve solves equations and inequalities
that contain parameters.

vpasolve does not solve inequalities,
nor does it solve equations that contain
parameters.

solve can return parameterized solutions. vpasolve does not return parameterized
solutions.

vpasolve uses variable-precision arithmetic. You can control precision arbitrarily using
digits. For examples, see “Control Precision of Numerical Computations” on page 2-87.

See Also
solve | vpasolve

Related Examples
• “Solve Algebraic Equation” on page 2-116

2 Using Symbolic Math Toolbox Software

2-122

• “Solve Equations Numerically” on page 2-142
• “Solve System of Linear Equations” on page 2-139

 Solve System of Algebraic Equations

2-123

Solve System of Algebraic Equations

This topic shows you how to solve a system of equations symbolically using Symbolic
Math Toolbox. This toolbox offers both numeric and symbolic equation solvers. For a
comparison of numeric and symbolic solvers, see “Select Numeric or Symbolic Solver” on
page 2-121.

In this section...

“Handle the Output of solve” on page 2-123
“Solve a Linear System of Equations” on page 2-125
“Return the Full Solution of a System of Equations” on page 2-126
“Solve a System of Equations Under Conditions” on page 2-128
“Work with Solutions, Parameters, and Conditions Returned by solve” on page 2-129
“Convert Symbolic Results to Numeric Values” on page 2-132
“Simplify Complicated Results and Improve Performance” on page 2-133

Handle the Output of solve

Suppose you have the system

x y

x
y

2 2
0

2

=

- = a,

and you want to solve for x and y. First, create the necessary symbolic objects.

syms x y alpha

There are several ways to address the output of solve. One way is to use a two-output
call.

[solx,soly] = solve(x^2*y^2 == 0, x-y/2 == alpha)

The call returns the following.

solx =

 0

 alpha

2 Using Symbolic Math Toolbox Software

2-124

soly =

 -2*alpha

 0

Modify the first equation to x2y2 = 1. The new system has more solutions.

[solx,soly] = solve(x^2*y^2 == 1, x-y/2 == alpha)

Four distinct solutions are produced.

solx =

 alpha/2 - (alpha^2 - 2)^(1/2)/2

 alpha/2 - (alpha^2 + 2)^(1/2)/2

 alpha/2 + (alpha^2 - 2)^(1/2)/2

 alpha/2 + (alpha^2 + 2)^(1/2)/2

soly =

 - alpha - (alpha^2 - 2)^(1/2)

 - alpha - (alpha^2 + 2)^(1/2)

 (alpha^2 - 2)^(1/2) - alpha

 (alpha^2 + 2)^(1/2) - alpha

Since you did not specify the dependent variables, solve uses symvar to determine the
variables.

This way of assigning output from solve is quite successful for “small” systems. For
instance, if you have a 10-by-10 system of equations, typing the following is both
awkward and time consuming.

[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] = solve(...)

To circumvent this difficulty, solve can return a structure whose fields are the solutions.
For example, solve the system of equations u^2 - v^2 = a^2, u + v = 1, a^2 - 2*a
= 3.

syms u v a

S = solve(u^2 - v^2 == a^2, u + v == 1, a^2 - 2*a == 3)

The solver returns its results enclosed in this structure.

S =

 a: [2x1 sym]

 u: [2x1 sym]

 v: [2x1 sym]

The solutions for a reside in the “a-field” of S.

 Solve System of Algebraic Equations

2-125

S.a

ans =

 -1

 3

Similar comments apply to the solutions for u and v. The structure S can now be
manipulated by the field and index to access a particular portion of the solution. For
example, to examine the second solution, you can use the following statement to extract
the second component of each field.

s2 = [S.a(2), S.u(2), S.v(2)]

s2 =

[3, 5, -4]

The following statement creates the solution matrix M whose rows comprise the distinct
solutions of the system.

M = [S.a, S.u, S.v]

M =

[-1, 1, 0]

[3, 5, -4]

Clear solx and soly for further use.

clear solx soly

Solve a Linear System of Equations

Linear systems of equations can also be solved using matrix division. For example, solve
this system.

clear u v x y

syms u v x y

eqns = [x + 2*y == u, 4*x + 5*y == v];

S = solve(eqns);

sol = [S.x; S.y]

[A,b] = equationsToMatrix(eqns,x,y);

z = A\b

sol =

 (2*v)/3 - (5*u)/3

2 Using Symbolic Math Toolbox Software

2-126

 (4*u)/3 - v/3

z =

 (2*v)/3 - (5*u)/3

 (4*u)/3 - v/3

Thus,sol and z produce the same solution, although the results are assigned to different
variables.

Return the Full Solution of a System of Equations

solve does not automatically return all solutions of an equation. To return all solutions
along with the parameters in the solution and the conditions on the solution, set the
ReturnConditions option to true.

Consider the following system of equations:

sin cos

sin cos

x y

x y

()+ () =

() () =

4

5

1

10

Visualize the system of equations using ezplot. To set the x-axis and y-axis values in
terms of pi, get the axes handles using axes in a. Create the symbolic array S of the
values -2*pi to 2*pi at intervals of pi/2. To set the ticks to S, use the XTick and
YTick properties of a. To set the labels for the x-and y-axes, convert S to character
strings. Use arrayfun to apply char to every element of S to return T. Set the
XTickLabel and YTickLabel properties of a to T.

syms x y

eqn1 = sin(x)+cos(y) == 4/5;

eqn2 = sin(x)*cos(y) == 1/10;

a = axes;

h = ezplot(eqn1);

h.LineColor = 'blue';

hold on

grid on

g = ezplot(eqn2);

g.LineColor = 'magenta';

L = sym(-2*pi:pi/2:2*pi);

a.XTick = double(L);

a.YTick = double(L);

 Solve System of Algebraic Equations

2-127

M = arrayfun(@char, L, 'UniformOutput', false);

a.XTickLabel = M;

a.YTickLabel = M;

title('Plot of System of Equations')

legend('sin(x)+cos(y) == 4/5','sin(x)*cos(y) == 1/10', 'Location', 'best')

The solutions lie at the intersection of the two plots. This shows the system has repeated,
periodic solutions. To solve this system of equations for the full solution set, use solve
and set the ReturnConditions option to true.

S = solve(eqn1, eqn2, 'ReturnConditions', true)

S =

 x: [2x1 sym]

2 Using Symbolic Math Toolbox Software

2-128

 y: [2x1 sym]

 parameters: [1x2 sym]

 conditions: [2x1 sym]

solve returns a structure S with the fields S.x for the solution to x, S.y for the solution
to y, S.parameters for the parameters in the solution, and S.conditions for the
conditions on the solution. Elements of the same index in S.x, S.y, and S.conditions
form a solution. Thus, S.x(1), S.y(1), and S.conditions(1) form one solution to the
system of equations. The parameters in S.parameters can appear in all solutions.

Index into S to return the solutions, parameters, and conditions.

S.x

S.y

S.parameters

S.conditions

ans =

 z1

 z1

ans =

 z

 z

ans =

[z, z1]

ans =

 (in((z - acos(6^(1/2)/10 + 2/5))/(2*pi), 'integer') |...

 in((z + acos(6^(1/2)/10 + 2/5))/(2*pi), 'integer')) &...

 (in(-(pi - z1 + asin(6^(1/2)/10 - 2/5))/(2*pi), 'integer') |...

 in((z1 + asin(6^(1/2)/10 - 2/5))/(2*pi), 'integer'))

 (in((z1 - asin(6^(1/2)/10 + 2/5))/(2*pi), 'integer') |...

 in((z1 - pi + asin(6^(1/2)/10 + 2/5))/(2*pi), 'integer')) &...

 (in((z - acos(2/5 - 6^(1/2)/10))/(2*pi), 'integer') |...

 in((z + acos(2/5 - 6^(1/2)/10))/(2*pi), 'integer'))

Solve a System of Equations Under Conditions

To solve the system of equations under conditions, specify the conditions in the input to
solve.

Solve the system of equations considered above for x and y in the interval -2*pi to
2*pi. Overlay the solutions on the plot using scatter.

Srange = solve(eqn1, eqn2, -2*pi<x, x<2*pi, -2*pi<y, y<2*pi, 'ReturnConditions', true);

 Solve System of Algebraic Equations

2-129

scatter(Srange.x, Srange.y)

Work with Solutions, Parameters, and Conditions Returned by solve

You can use the solutions, parameters, and conditions returned by solve to find
solutions within an interval or under additional conditions. This section has the same
goal as the previous section, to solve the system of equations within a search range, but
with a different approach. Instead of placing conditions directly, it shows how to work
with the parameters and conditions returned by solve.

For the full solution S of the system of equations, find values of x and y in the interval
-2*pi to 2*pi by solving the solutions S.x and S.y for the parameters S.parameters
within that interval under the condition S.conditions.

2 Using Symbolic Math Toolbox Software

2-130

Before solving for x and y in the interval, assume the conditions in S.conditions using
assume so that the solutions returned satisfy the condition. Assume the conditions for
the first solution.

assume(S.conditions(1))

Find the parameters in S.x and S.y.

paramx = intersect(symvar(S.x), S.parameters)

paramy = intersect(symvar(S.y), S.parameters)

paramx =

z1

paramy =

z

Solve the first solution of x for the parameter paramx.

solparamx(1,:) = solve(S.x(1) > -2*pi, S.x(1) < 2*pi, paramx)

solparamx =

[pi + asin(6^(1/2)/10 - 2/5), asin(6^(1/2)/10 - 2/5) - pi,

 -asin(6^(1/2)/10 - 2/5), - 2*pi - asin(6^(1/2)/10 - 2/5)]

Similarly, solve the first solution of y for paramy.

solparamy(1,:) = solve(S.y(1) > -2*pi, S.y(1) < 2*pi, paramy)

solparamy =

[acos(6^(1/2)/10 + 2/5), acos(6^(1/2)/10 + 2/5) - 2*pi,

 -acos(6^(1/2)/10 + 2/5), 2*pi - acos(6^(1/2)/10 + 2/5)]

Clear the assumptions set by S.conditions(1) using assume. Call asumptions to
check that the assumptions are cleared.

assume(S.parameters,'clear')

assumptions

ans =

Empty sym: 1-by-0

Assume the conditions for the second solution.

assume(S.conditions(2))

Solve the second solution to x and y for the parameters paramx and paramy.

 Solve System of Algebraic Equations

2-131

solparamx(2,:) = solve(S.x(2) > -2*pi, S.x(2) < 2*pi, paramx)

solparamy(2,:) = solve(S.y(2) > -2*pi, S.y(2) < 2*pi, paramy)

solparamx =

[pi + asin(6^(1/2)/10 - 2/5), asin(6^(1/2)/10 - 2/5) - pi,

 -asin(6^(1/2)/10 - 2/5), - 2*pi - asin(6^(1/2)/10 - 2/5)]

[asin(6^(1/2)/10 + 2/5), pi - asin(6^(1/2)/10 + 2/5),

 asin(6^(1/2)/10 + 2/5) - 2*pi, - pi - asin(6^(1/2)/10 + 2/5)]

solparamy =

[acos(6^(1/2)/10 + 2/5), acos(6^(1/2)/10 + 2/5) - 2*pi,

 -acos(6^(1/2)/10 + 2/5), 2*pi - acos(6^(1/2)/10 + 2/5)]

[acos(2/5 - 6^(1/2)/10), acos(2/5 - 6^(1/2)/10) - 2*pi,

 -acos(2/5 - 6^(1/2)/10), 2*pi - acos(2/5 - 6^(1/2)/10)]

The first rows of paramx and paramy form the first solution to the system of equations,
and the second rows form the second solution.

To find the values of x and y for these values of paramx and paramy, use subs to
substitute for paramx and paramy in S.x and S.y.

solx(1,:) = subs(S.x(1), paramx, solparamx(1,:));

solx(2,:) = subs(S.x(2), paramx, solparamx(2,:))

soly(1,:) = subs(S.y(1), paramy, solparamy(1,:));

soly(2,:) = subs(S.y(2), paramy, solparamy(2,:))

solx =

[pi + asin(6^(1/2)/10 - 2/5), asin(6^(1/2)/10 - 2/5) - pi,

 -asin(6^(1/2)/10 - 2/5), - 2*pi - asin(6^(1/2)/10 - 2/5)]

[asin(6^(1/2)/10 + 2/5), pi - asin(6^(1/2)/10 + 2/5),

 asin(6^(1/2)/10 + 2/5) - 2*pi, - pi - asin(6^(1/2)/10 + 2/5)]

soly =

[acos(6^(1/2)/10 + 2/5), acos(6^(1/2)/10 + 2/5) - 2*pi,

 -acos(6^(1/2)/10 + 2/5), 2*pi - acos(6^(1/2)/10 + 2/5)]

[acos(2/5 - 6^(1/2)/10), acos(2/5 - 6^(1/2)/10) - 2*pi,

 -acos(2/5 - 6^(1/2)/10), 2*pi - acos(2/5 - 6^(1/2)/10)]

Note that solx and soly are the two sets of solutions to x and to y. The full sets of
solutions to the system of equations are the two sets of points formed by all possible
combinations of the values in solx and soly.

Plot these two sets of points using scatter. Overlay them on the plot of the equations.
As expected, the solutions appear at the intersection of the plots of the two equations.

for i = 1:length(solx(1,:))

2 Using Symbolic Math Toolbox Software

2-132

 for j = 1:length(soly(1,:))

 scatter(solx(1,i), soly(1,j), 'black')

 scatter(solx(2,i), soly(2,j), 'black')

 end

end

Convert Symbolic Results to Numeric Values

Symbolic calculations provide exact accuracy, while numeric calculations are
approximations. Despite this loss of accuracy, you might need to convert symbolic
results to numeric approximations for use in numeric calculations. For a high-accuracy
conversion, use variable-precision arithmetic provided by the vpa function. For standard
accuracy and better performance, convert to double precision using double.

 Solve System of Algebraic Equations

2-133

Use vpa to convert the symbolic solutions solx and soly to numeric form.

vpa(solx)

vpa(soly)

ans =

[2.9859135500977407388300518406219,...

 -3.2972717570818457380952349259371,...

 0.15567910349205249963259154265761,...

 -6.1275062036875339772926952239014]

...

[0.70095651347102524787213653614929,...

 2.4406361401187679905905068471302,...

 -5.5822287937085612290531502304097,...

 -3.8425491670608184863347799194288]

ans =

[0.86983981332387137135918515549046,...

 -5.4133454938557151055661016110685,...

 -0.86983981332387137135918515549046,...

 5.4133454938557151055661016110685]

...

[1.4151172233028441195987301489821,...

 -4.8680680838767423573265566175769,...

 -1.4151172233028441195987301489821,...

 4.8680680838767423573265566175769]

Simplify Complicated Results and Improve Performance

If results look complicated, solve is stuck, or if you want to improve performance, see,
“Resolve Complicated Solutions or Stuck Solver” on page 2-134.

2 Using Symbolic Math Toolbox Software

2-134

Resolve Complicated Solutions or Stuck Solver

If solve returns solutions that look complicated, or if solve cannot handle an input,
there are many options. These options simplify the solution space for solve. These
options also help solve when the input is complicated, and might allow solve to return
a solution where it was previously stuck.

In this section...

“Return Only Real Solutions” on page 2-134
“Apply Simplification Rules” on page 2-134
“Use Assumptions to Narrow Results” on page 2-135
“Simplify Solutions” on page 2-137
“Tips” on page 2-137

Return Only Real Solutions

Solve the equation x^5 - 1 == 0. This equation has five solutions.

syms x

solve(x^5 - 1 == 0, x)

ans =

 1

 - (2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 - 5^(1/2)/4 - 1/4

 (2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 - 5^(1/2)/4 - 1/4

 5^(1/2)/4 - (2^(1/2)*(5^(1/2) + 5)^(1/2)*1i)/4 - 1/4

 5^(1/2)/4 + (2^(1/2)*(5^(1/2) + 5)^(1/2)*1i)/4 - 1/4

If you only need real solutions, specify the Real option as true. The solve function
returns the one real solution.

solve(x^5 - 1, x, 'Real', true)

ans =

1

Apply Simplification Rules

Solve the following equation. The solve function returns a complicated solution.

 Resolve Complicated Solutions or Stuck Solver

2-135

syms x

solve(x^(5/2) + 1/x^(5/2) == 1, x)

ans =

 1/(1/2 - (3^(1/2)*1i)/2)^(2/5)

 1/((3^(1/2)*1i)/2 + 1/2)^(2/5)

 -(5^(1/2)/4 - (2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 + 1/4)/(1/2 - (3^(1/2)*1i)/2)^(2/5)

 -((2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 + 5^(1/2)/4 + 1/4)/(1/2 - (3^(1/2)*1i)/2)^(2/5)

 -(5^(1/2)/4 - (2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 + 1/4)/(1/2 + (3^(1/2)*1i)/2)^(2/5)

 -((2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 + 5^(1/2)/4 + 1/4)/(1/2 + (3^(1/2)*1i)/2)^(2/5)

To apply simplification rules when solving equations, specify the
IgnoreAnalyticConstraints option as true. The applied simplification rules are
not generally correct mathematically but might produce useful solutions, especially in
physics and engineering. With this option, the solver does not guarantee the correctness
and completeness of the result.

solve(x^(5/2) + 1/x^(5/2) == 1, x, 'IgnoreAnalyticConstraints', true)

ans =

 1/(1/2 - (3^(1/2)*1i)/2)^(2/5)

 1/((3^(1/2)*1i)/2 + 1/2)^(2/5)

This solution is simpler and more usable.

Use Assumptions to Narrow Results

For solutions to specific cases, set assumptions to return appropriate solutions. Solve the
following equation. The solve function returns seven solutions.

syms x

solve(x^7 + 2*x^6 - 59*x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800, x)

ans =

 1

 - 5^(1/2) - 1

 - 17^(1/2)/2 - 1/2

 17^(1/2)/2 - 1/2

 -5*2^(1/2)

 5*2^(1/2)

 5^(1/2) - 1

Assume x is a positive number and solve the equation again. The solve function only
returns the four positive solutions.

assume(x > 0)

2 Using Symbolic Math Toolbox Software

2-136

solve(x^7 + 2*x^6 - 59*x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800, x)

ans =

 1

 17^(1/2)/2 - 1/2

 5*2^(1/2)

 5^(1/2) - 1

Place the additional assumption that x is an integer using in(x,'integer'). Place
additional assumptions on variables using assumeAlso.

assumeAlso(in(x,'integer'))

solve(x^7 + 2*x^6 - 59*x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800, x)

ans =

1

solve returns the only positive, integer solution to x.

Clear the assumptions on x for further computations.

syms x clear

Alternatively, to make several assumptions, use the & operator. Make the following
assumptions, and solve the following equations.

syms a b c f g h y

assume(f == c & a == h & a~= 0)

S = solve([a*x + b*y == c, h*x - g*y == f], [x, y], 'ReturnConditions', true);

S.x

S.y

S.conditions

ans =

f/h

ans =

0

ans =

b + g ~= 0

Under the specified assumptions, the solution is x = f/h and y = 0 under the condition
b + g ~= 0.

Clear the assumptions on the variables for further computations.

syms a c f h clear

 Resolve Complicated Solutions or Stuck Solver

2-137

Simplify Solutions

The solve function does not call simplification functions for the final results. To simplify
the solutions, call simplify.

Solve the following equation. Convert the numbers to symbolic numbers using sym to
return a symbolic result.
syms x

[S, params, conds] = solve(((exp(-x*i)*i)/2 - (exp(x*i)*i)/2)/(exp(-x*i)/2 + exp(x*i)/2)...

 == tan(1/sym(2)), x, 'ReturnConditions', true)

S =

pi*l - (log(-(tan(1/2) - 1i)/(tan(1/2) + 1i))*1i)/2

params =

l

conds =

in(l, 'integer')

Call simplify to simplify the result.

S = simplify(S)

S =

pi*l - (log(cos(1) + sin(1)*1i)*1i)/2

Call simplify with more steps to simplify the result even further.

S = simplify(S, 'Steps', 50)

S =

pi*l + 1/2

Tips

• To represent a number exactly, use sym to convert the number to a floating-point
object. For example, use sym(13)/5 instead of 13/5. This represents 13/5 exactly
instead of converting 13/5 to a floating-point number. For a large number, place the
number in quotes. Compare sym(13)/5, sym(133333333333333333333)/5, and
sym('133333333333333333333')/5.

sym(13)/5

sym(133333333333333333333)/5

2 Using Symbolic Math Toolbox Software

2-138

sym('133333333333333333333')/5

ans =

13/5

ans =

133333333333333327872/5

ans =

133333333333333333333/5

Placing the number in quotes and using sym provides the highest accuracy.
• If possible, simplify the system of equations manually before using solve. Try to

reduce the number of equations, parameters, and variables.

 Solve System of Linear Equations

2-139

Solve System of Linear Equations

This section shows you how to solve a system of linear equations using the Symbolic
Math Toolbox.

In this section...

“Solve System of Linear Equations Using linsolve” on page 2-139
“Solve System of Linear Equations Using solve” on page 2-140

Solve System of Linear Equations Using linsolve

A system of linear equations

a x a x a x b

a x a x a x b

a x a x

n n

n n

m m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =

+ + + =

+ +

…

…

L

…++ =a x bmn n m

can be represented as the matrix equation A x b◊ =

r r

, where A is the coefficient matrix,

A

a a

a a

n

m mn

=
Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

11 1

1

…

M O M

L

and b
r

 is the vector containing the right sides of equations,

b

b

bm

r
M=

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

1

If you do not have the system of linear equations in the form AX = B, use
equationsToMatrix to convert the equations into this form. Consider the following
system.

2 Using Symbolic Math Toolbox Software

2-140

2 2

3

2 3 10

x y z

x y z

x y z

+ + =

- + - =

+ + = -

Declare the system of equations.

syms x y z

eqn1 = 2*x + y + z == 2;

eqn2 = -x + y - z == 3;

eqn3 = x + 2*y + 3*z == -10;

Use equationsToMatrix to convert the equations into the form AX = B. The second
input to equationsToMatrix specifies the independent variables in the equations.

[A,B] = equationsToMatrix([eqn1, eqn2, eqn3], [x, y, z])

A =

[2, 1, 1]

[-1, 1, -1]

[1, 2, 3]

B =

 2

 3

 -10

Use linsolve to solve AX = B for the vector of unknowns X.

X = linsolve(A,B)

X =

 3

 1

 -5

From X, x = 3, y = 1 and z = -5.

Solve System of Linear Equations Using solve

Use solve instead of linsolve if you have the equations in the form of expressions and
not a matrix of coefficients. Consider the same system of linear equations.

 Solve System of Linear Equations

2-141

2 2

3

2 3 10

x y z

x y z

x y z

+ + =

- + - =

+ + = -

Declare the system of equations.

syms x y z

eqn1 = 2*x + y + z == 2;

eqn2 = -x + y - z == 3;

eqn3 = x + 2*y + 3*z == -10;

Solve the system of equations using solve. The inputs to solve are a vector of
equations, and a vector of variables to solve the equations for.

sol = solve([eqn1, eqn2, eqn3], [x, y, z]);

xSol = sol.x

ySol = sol.y

zSol = sol.z

xSol =

3

ySol =

1

zSol =

-5

solve returns the solutions in a structure array. To access the solutions, index into the
array.

2 Using Symbolic Math Toolbox Software

2-142

Solve Equations Numerically

The Symbolic Math Toolbox offers both numeric and symbolic equation solvers. For a
comparison of numeric and symbolic solvers, please see “Select Numeric or Symbolic
Solver” on page 2-121. An equation or a system of equations can have multiple solutions.
To find these solutions numerically, use the function vpasolve. For polynomial
equations, vpasolve returns all solutions. For nonpolynomial equations, vpasolve
returns the first solution it finds. This shows you how to use vpasolve to find solutions
to both polynomial and nonpolynomial equations, and how to obtain these solutions to
arbitrary precision.

In this section...

“Find All Roots of a Polynomial Function” on page 2-142
“Find Zeros of a Nonpolynomial Function Using Search Ranges and Starting Points” on
page 2-143
“Obtain Solutions to Arbitrary Precision” on page 2-147
“Solve Multivariate Equations Using Search Ranges” on page 2-148

Find All Roots of a Polynomial Function

Use vpasolve to find all the solutions to function f x x x x() = - + -6 2 3 8
7 6 3 .

syms f(x)

f(x) = 6*x^7-2*x^6+3*x^3-8;

sol = vpasolve(f)

sol =

 1.0240240759053702941448316563337

 - 0.22974795226118163963098570610724 + 0.96774615576744031073999010695171i

 - 0.22974795226118163963098570610724 - 0.96774615576744031073999010695171i

 - 0.88080620051762149639205672298326 - 0.50434058840127584376331806592405i

 0.7652087814927846556172932675903 + 0.83187331431049713218367239317121i

 - 0.88080620051762149639205672298326 + 0.50434058840127584376331806592405i

 0.7652087814927846556172932675903 - 0.83187331431049713218367239317121i

vpasolve returns seven roots of the function, as expected, because the function is a
polynomial of degree seven.

 Solve Equations Numerically

2-143

Find Zeros of a Nonpolynomial Function Using Search Ranges and
Starting Points

Consider the function f x e x
x

() =
()/

cos()
7

2 . A plot of the function reveals periodic zeros,
with increasing slopes at the zero points as x increases.

syms x y

h = ezplot(y == exp(x/7)*cos(2*x),[-2, 25, -10, 10]);

grid on;

2 Using Symbolic Math Toolbox Software

2-144

Use vpasolve to find a zero of the function f. Note that vpasolve returns only one
solution of a nonpolynomial equation, even if multiple solutions exist. On repeated calls,
vpasolve returns the same result, even if multiple zeros exist.

for i = 1:3

 vpasolve(exp(-x/20)*cos(2*x),x)

end

ans =

19.634954084936207740391521145497

ans =

19.634954084936207740391521145497

ans =

19.634954084936207740391521145497

To find multiple solutions, set the option random to true. This makes vpasolve choose
starting points randomly. For information on the algorithm that chooses random starting
points, see “Algorithms” on page 4-1279 on the vpasolve page.

for i = 1:3

 vpasolve(exp(-x/20)*cos(2*x),x,'random',true)

end

ans =

-226.98006922186256147892598444194

ans =

98.174770424681038701957605727484

ans =

58.904862254808623221174563436491

To find a zero close to x = 10 and to x = 1000, set the starting point to 10, and then to
1000.

vpasolve(exp(-x/20)*cos(2*x),x,10)

vpasolve(exp(-x/20)*cos(2*x),x,1000)

ans =

10.210176124166828025003590995658

ans =

999.8118620049516981407362567287

To find a zero in the range 15 25£ £x , set the search range to [15 25].

vpasolve(exp(-x/20)*cos(2*x),x,[15 25])

 Solve Equations Numerically

2-145

ans =

21.205750411731104359622842837137

To find multiple zeros in the range [15 25], you cannot call vpasolve repeatedly as it
returns the same result on each call, as previously shown. Instead, set random to true in
conjunction with the search range.

for i = 1:3

vpasolve(exp(-x/20)*cos(2*x),x,[15 25],'random',true)

end

ans =

21.205750411731104359622842837137

ans =

16.493361431346414501928877762217

ans =

16.493361431346414501928877762217

If you specify the random option while also specifying a starting point, vpasolve warns
you that the two options are incompatible.

vpasolve(exp(-x/20)*cos(2*x),x,15,'random',true)

Warning: All variables have a starting value for the numeric...

 search. The option 'random' has no effect in this case.

> In sym.vpasolve at 166

ans =

14.922565104551517882697556070578

Create the function findzeros below to systematically find all zeros for f in a given
search range, within the error tolerance. It starts with the input search range and calls
vpasolve to find a zero. Then, it splits the search range into two around the zero’s
value, and recursively calls itself with the new search ranges as inputs to find more
zeros. The first input is the function, the second input is the range, and the optional third
input allows you to specify the error between a zero and the higher and lower bounds
generated from it.

The function is explained section by section here.

Declare the function with the two inputs and one output.

function sol = findzeros(f,range,err)

If you do not specify the optional argument for error tolerance, findzeros sets err to
0.001.

2 Using Symbolic Math Toolbox Software

2-146

if nargin < 2

 err = 1e-3;

end

Find a zero in the search range using vpasolve.

sol = vpasolve(f,range);

If vpasolve does not find a zero, exit.

if(isempty(sol))

 return

If vpasolve finds a zero, split the search range into two search ranges above and below
the zero.

else

 lowLimit = sol-err;

 highLimit = sol+err;

Call findzeros with the lower search range. If findzeros returns zeros, copy the
values into the solution array and sort them.

 temp = findzeros(f,[range(1) lowLimit],1);

 if ~isempty(temp)

 sol = sort([sol temp]);

 end

Call findzeros with the higher search range. If findzeros returns zeros, copy the
values into the solution array and sort them.

 temp = findzeros(f,[highLimit range(2)],1);

 if ~isempty(temp)

 sol = sort([sol temp]);

 end

 return

end

end

The entire function findzeros is as follows.

function sol = findzeros(f,range,err)

if nargin < 3

 Solve Equations Numerically

2-147

 err = 1e-3;

end

sol = vpasolve(f,range);

if(isempty(sol))

 return

else

 lowLimit = sol-err;

 highLimit = sol+err;

 temp = findzeros(f,[range(1) lowLimit],1);

 if ~isempty(temp)

 sol = sort([sol temp]);

 end

 temp = findzeros(f,[highLimit range(2)],1);

 if ~isempty(temp)

 sol = sort([sol temp]);

 end

 return

end

end

Call findzeros with search range [10 20] to find all zeros in that range for f(x) =
exp(-x/20)*cos(2*x), within the default error tolerance.

syms f(x)

f(x) = exp(-x/20)*cos(2*x);

findzeros(f,[10 20])

ans =

[10.210176124166828025003590995658, 11.780972450961724644234912687298,...

 13.351768777756621263466234378938, 14.922565104551517882697556070578,...

 16.493361431346414501928877762217, 18.064157758141311121160199453857,...

 19.634954084936207740391521145497]

Obtain Solutions to Arbitrary Precision

Use digits to set the precision of the solutions. By default, vpasolve returns solutions
to a precision of 32 significant figures. Use digits to increase the precision to 64
significant figures. When modifying digits, ensure that you save its current value so
that you can restore it.

vpasolve(exp(x/7)*cos(2*x))

digitsOld = digits;

digits(64)

2 Using Symbolic Math Toolbox Software

2-148

vpasolve(exp(x/7)*cos(2*x))

digits(digitsOld)

ans =

-7.0685834705770347865409476123789

ans =

-7.068583470577034786540947612378881489443631148593988097193625333

Solve Multivariate Equations Using Search Ranges

Consider the following system of equations.

10 0 1
2 2

cos cos .x y x y x y() + ()() = + -

A plot of the equations for 0 3£ £x and 0 3£ £y shows that the three surfaces intersect
in two points. To better visualize the plot, use view. To scale the colormap values, use
caxis.

syms x y z

exp1 = 10*(cos(x)+cos(y));

exp2 = x+y^2-0.1*x^2*y;

exp3 = y+x-2.7;

ezsurf(exp1,[0, 2.5])

hold on

grid on

ezsurf(exp2,[0, 2.5])

x1 = @(s,t) s;

y1 = @(s,t) 2.7-s;

z1 = @(s,t) t;

ezsurf(x1,y1,z1,[0,2.5,-20,10])

title('System of Multivariate Equations')

view(69, 28)

caxis([-15 10])

 Solve Equations Numerically

2-149

Use vpasolve to find a point where the surfaces intersect. The function vpasolve
returns a structure. To access the solution, index into the structure.

sol = vpasolve([z == exp1, z == exp2, exp3 == 0]);

[sol.x sol.y sol.z]

ans =

[2.3697477224547979209101337160174, 0.33025227754520207908986628398261, 2.2933543768232277431243854708612]

2 Using Symbolic Math Toolbox Software

2-150

To search a region of the solution space, specify search ranges for the variables. If you
specify the ranges 0 1 5£ £x . and 1 5 2 5. .£ £y , then vpasolve function searches the
bounded area shown in the picture.

Use vpasolve to find a solution for this search range 0 1 5£ £x . and 1 5 2 5. .£ £y .

sol = vpasolve([z == exp1, z == exp2, 0 == exp3],[x y z],[0 1.5; 1.5 2.5;NaN NaN]);

[sol.x sol.y sol.z]

ans =

 Solve Equations Numerically

2-151

[0.91062661725633361176950031551069, 1.7893733827436663882304996844893, 3.9641015721356254724107884666807]

To find multiple solutions, you can set the random option to true. This makes vpasolve
use random starting points on successive runs. The random option can be used in
conjunction with search ranges to make vpasolve use random starting points within a
search range. To omit a search range for z, set the search range to [NaN NaN]. Because
random selects starting points randomly, the same solution might be found on successive
calls. Call vpasolve repeatedly to ensure you find both solutions.

clear sol

for i = 1:5

 temp = vpasolve([z == exp1, z == exp2, exp3 == 0],[x y z],[0 3; 0 3;NaN NaN],...

 'random',true);

 sol(i,1) = temp.x;

 sol(i,2) = temp.y;

 sol(i,3) = temp.z;

end

sol

sol =

[0.91062661725633361176950031551069, 1.7893733827436663882304996844893, 3.9641015721356254724107884666807]

[2.3697477224547979209101337160174, 0.33025227754520207908986628398261, 2.2933543768232277431243854708612]

[0.91062661725633361176950031551069, 1.7893733827436663882304996844893, 3.9641015721356254724107884666807]

[0.91062661725633361176950031551069, 1.7893733827436663882304996844893, 3.9641015721356254724107884666807]

[0.91062661725633361176950031551069, 1.7893733827436663882304996844893, 3.9641015721356254724107884666807]

Plot the equations using ezsurf. Superimpose the solutions as a scatter plot of points
with yellow X markers using scatter3. To better visualize the plot, make two of the
surfaces transparent using alpha. Scale the colormap to the plot values using caxis,
and change the perspective using view.

clf

ax = axes;

ezsurf(exp1,[-3 2.5 0 2.5])

grid on

hold on

ezsurf(exp2,[0 2.5 0 2.5])

ezsurf(x1,y1,z1,[0,2.5,-20,10])

scatter3(sol(:,1),sol(:,2),sol(:,3),600,'yellow','X','LineWidth',2)

title('Randomly found solutions in specified search range')

2 Using Symbolic Math Toolbox Software

2-152

cz = ax.Children;

alpha(cz(2),0)

alpha(cz(3),0)

caxis([0 20])

view(69,28)

vpasolve finds solutions at the intersection of the surfaces formed by the equations as
shown.

 Solve a Single Differential Equation

2-153

Solve a Single Differential Equation

Use dsolve to compute symbolic solutions to ordinary differential equations. You can
specify the equations as symbolic expressions containing diff or as strings with the
letter D to indicate differentiation.

Note: Because D indicates differentiation, the names of symbolic variables must not
contain D.

Before using dsolve, create the symbolic function for which you want to solve an
ordinary differential equation. Use sym or syms to create a symbolic function. For
example, create a function y(x):

syms y(x)

For details, see “Create Symbolic Functions” on page 1-8.

To specify initial or boundary conditions, use additional equations. If you do not specify
initial or boundary conditions, the solutions will contain integration constants, such as
C1, C2, and so on.

The output from dsolve parallels the output from solve. That is, you can:

• Call dsolve with the number of output variables equal to the number of dependent
variables.

• Place the output in a structure whose fields contain the solutions of the differential
equations.

First-Order Linear ODE

Suppose you want to solve the equation y'(t) = t*y. First, create the symbolic
function y(t):

syms y(t)

Now use dsolve to solve the equation:

y(t) = dsolve(diff(y,t) == t*y)

2 Using Symbolic Math Toolbox Software

2-154

y(t) =

C2*exp(t^2/2)

y(t) = C2*exp(t^2/2) is a solution to the equation for any constant C2.

Solve the same ordinary differential equation, but now specify the initial condition y(0)
= 2:

syms y(t)

y(t) = dsolve(diff(y,t) == t*y, y(0) == 2)

y(t) =

2*exp(t^2/2)

Nonlinear ODE

Nonlinear equations can have multiple solutions, even if you specify initial conditions.
For example, solve this equation:

syms x(t)

x(t) = dsolve((diff(x,t) + x)^2 == 1, x(0) == 0)

results in

x(t) =

 exp(-t) - 1

 1 - exp(-t)

Second-Order ODE with Initial Conditions

Solve this second-order differential equation with two initial conditions. One initial
condition is a derivative y'(x) at x = 0. To be able to specify this initial condition,
create an additional symbolic function Dy = diff(y). (You also can use any valid
function name instead of Dy.) Then Dy(0) = 0 specifies that Dy = 0 at x = 0.

syms y(x)

Dy = diff(y);

y(x) = dsolve(diff(y, x, x) == cos(2*x) - y, y(0) == 1, Dy(0) == 0);

y(x) = simplify(y)

y(x) =

1 - (8*sin(x/2)^4)/3

 Solve a Single Differential Equation

2-155

Third-Order ODE

Solve this third-order ordinary differential equation:

d u

dx

u

3

3
=

u u u() , () , () ,0 1 0 1 0= ¢ = - ¢¢ = p

Because the initial conditions contain the first- and the second-order derivatives, create
two additional symbolic functions, Dy and D2y to specify these initial conditions:

syms u(x)

Du = diff(u, x);

D2u = diff(u, x, 2);

u(x) = dsolve(diff(u, x, 3) == u, u(0) == 1, Du(0) == -1, D2u(0) == pi)

u(x) =

(pi*exp(x))/3 - exp(-x/2)*cos((3^(1/2)*x)/2)*(pi/3 - 1) -...

(3^(1/2)*exp(-x/2)*sin((3^(1/2)*x)/2)*(pi + 1))/3

More ODE Examples

This table shows examples of differential equations and their Symbolic Math Toolbox
syntax. The last example is the Airy differential equation, whose solution is called the
Airy function.

Differential Equation MATLAB Command

dy

dt
y t e t

+ =
-

4 ()

y(0) = 1

syms y(t)

dsolve(diff(y) + 4*y == exp(-t), y(0) ==

1)

2x2y′′ + 3xy′ – y = 0
(′ = d/dx)

syms y(x)

dsolve(2*x^2*diff(y, 2) + 3*x*diff(y) -

y == 0)

2 Using Symbolic Math Toolbox Software

2-156

Differential Equation MATLAB Command

d y

dx
xy x

2

2
= ()

y y K() , () ()/0 0 3
1

2 31 3= =
p

(The Airy equation)

syms y(x)

dsolve(diff(y, 2) == x*y, y(0) == 0,

y(3) == besselk(1/3, 2*sqrt(3))/pi)

See Also
“Solve a System of Differential Equations” on page 2-157

 Solve a System of Differential Equations

2-157

Solve a System of Differential Equations

dsolve can handle several ordinary differential equations in several variables, with or
without initial conditions.

In this section...

“Solve System of Differential Equations” on page 2-157
“Solve Differential Equations in Matrix Form” on page 2-159

Solve System of Differential Equations

Solve the system of linear first-order differential equations

df

dt
f g

dg

dt
f g

= +

= - +

3 4

4 3

,

.

First, create the symbolic functions f(t) and g(t), and then declare the equations.

syms f(t) g(t)

eqn1 = diff(f) == 3*f + 4*g;

eqn2 = diff(g) == -4*f + 3*g;

Solve the system by using dsolve. The dsolve function returns the solutions as
elements of the structure S.

S = dsolve(eqn1, eqn2)

S =

 g: [1x1 sym]

 f: [1x1 sym]

To return f(t) and g(t), access the elements of S.

fSol(t) = S.f

gSol(t) = S.g

2 Using Symbolic Math Toolbox Software

2-158

fSol(t) =

C2*cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)

gSol(t) =

C1*cos(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)

Alternatively, store f(t) and g(t) directly by providing the output arguments as a
vector.

[fSol(t) gSol(t)] = dsolve(eqn1, eqn2)

fSol(t) =

C2*cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)

gSol(t) =

C1*cos(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)

Specifying initial conditions allows dsolve to find the values of constants.

Specify initial conditions f(0) == 0 and g(0) == 1, and solve the equations. dsolve
replaces the constants with their values.

c1 = f(0) == 0;

c2 = g(0) == 1;

[fSol(t) gSol(t)] = dsolve(eqn1, eqn2, c1, c2)

fSol(t) =

sin(4*t)*exp(3*t)

gSol(t) =

cos(4*t)*exp(3*t)

Visualize the solutions by using ezplot.

ezplot(fSol)

hold on

ezplot(gSol)

grid on

legend('fSol','gSol','Location','best')

 Solve a System of Differential Equations

2-159

Solve Differential Equations in Matrix Form

You can solve differential equations in matrix form by using dsolve.

Consider the system of differential equations

dx

dt
x y

dy

dt
x y t

= + +

= - + +

2 1,

.

The system can be represented in matrix form as

2 Using Symbolic Math Toolbox Software

2-160

x

y

x

y t

’

’
.

È

Î
Í

˘

˚
˙ =

-

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

1 2

1 1

1

Let

Y
x

y
A B

t
=

È

Î
Í

˘

˚
˙ =

-

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙, , .

1 2

1 1

1

The relation is now Y′ = AY + B.

Define these matrices and the matrix equation.

syms x(t) y(t)

A = [1 2; -1 1];

B = [1; t];

Y = [x; y];

eqn = diff(Y) == A*Y + B

eqn(t) =

 diff(x(t), t) == x(t) + 2*y(t) + 1

 diff(y(t), t) == t - x(t) + y(t)

Solve the matrix equation by using dsolve.

[xSol(t) ySol(t)] = dsolve(eqn)

xSol(t) =

2^(1/2)*exp(t)*cos(2^(1/2)*t)*(C2 + (exp(-t)*(4*sin(2^(1/2)*t) +...

 2^(1/2)*cos(2^(1/2)*t) + 6*t*sin(2^(1/2)*t) + 6*2^(1/2)*t*cos(2^(1/2)*t)))/18) +...

 2^(1/2)*exp(t)*sin(2^(1/2)*t)*(C1 - (exp(-t)*(4*cos(2^(1/2)*t) -...

 2^(1/2)*sin(2^(1/2)*t) + 6*t*cos(2^(1/2)*t) - 6*2^(1/2)*t*sin(2^(1/2)*t)))/18)

ySol(t) =

exp(t)*cos(2^(1/2)*t)*(C1 - (exp(-t)*(4*cos(2^(1/2)*t) -...

 2^(1/2)*sin(2^(1/2)*t) + 6*t*cos(2^(1/2)*t) -...

 6*2^(1/2)*t*sin(2^(1/2)*t)))/18) - exp(t)*sin(2^(1/2)*t)*(C2 +...

 (exp(-t)*(4*sin(2^(1/2)*t) + 2^(1/2)*cos(2^(1/2)*t) +...

 6*t*sin(2^(1/2)*t) + 6*2^(1/2)*t*cos(2^(1/2)*t)))/18)

Simplify the solution by using simplify.

xSol(t) = simplify(xSol(t))

 Solve a System of Differential Equations

2-161

ySol(t) = simplify(ySol(t))

xSol(t) =

(2*t)/3 + 2^(1/2)*C2*exp(t)*cos(2^(1/2)*t) + 2^(1/2)*C1*exp(t)*sin(2^(1/2)*t) + 1/9

ySol(t) =

C1*exp(t)*cos(2^(1/2)*t) - t/3 - C2*exp(t)*sin(2^(1/2)*t) - 2/9

To find the value of constants, specify initial conditions. When specifying equations in
matrix form, you must specify initial conditions in matrix form too. Otherwise, dsolve
throws an error.

Specify initial conditions f(0) == 2 and g(0) == -1 in matrix form, and solve the
equations. dsolve replaces the constants with their values.

C = Y(0) == [2; -1];

[xSol(t) ySol(t)] = dsolve(eqn, C)

xSol(t) =

(2*t)/3 + (17*exp(t)*cos(2^(1/2)*t))/9 - (7*2^(1/2)*exp(t)*sin(2^(1/2)*t))/9 + 1/9

ySol(t) =

- t/3 - (7*exp(t)*cos(2^(1/2)*t))/9 - (17*2^(1/2)*exp(t)*sin(2^(1/2)*t))/18 - 2/9

Visualize the solutions by using ezplot.

clf

ezplot(ySol)

hold on

ezplot(xSol)

grid on

legend('ySol','xSol','Location','best')

2 Using Symbolic Math Toolbox Software

2-162

See Also
“Solve a Single Differential Equation” on page 2-153

 Differential Algebraic Equations

2-163

Differential Algebraic Equations

A system of differential algebraic equations is a system of equations involving unknown
functions of one independent variable (typically, the time variable t) and their
derivatives. These functions are often called state variables. A general form of a DAE
system is

F x t x t t& () ()() =, , 0

The number of equations F F F
n

= [, ,]1 … must match the number of state variables

x t x t x t
n() = () ()[, ,]1 … .

The differential order of a DAE system is the highest differential order of its equations.
The differential order of a differential algebraic equation is the highest derivative of its
state variables.

The differential index of a DAE system is the number of differentiations needed to reduce
the system to a system of ordinary differential equations (ODEs).

2 Using Symbolic Math Toolbox Software

2-164

Set Up Your DAE Problem

Often, you can solve a system of differential algebraic equations (DAEs) by converting
it to a system of DAEs with differential index 1 or 0, and then using MATLAB solvers,
such as ode15i, ode15s, or ode23t. These solvers have their own requirements for the
system of equations and initial conditions. Most DAE systems do not directly come in the
form suitable for the MATLAB solvers, but you can convert them to a suitable form.

These preliminary steps help you set up the DAE system using the functions available
in Symbolic Math Toolbox, and then convert the system to numeric function handles
acceptable by MATLAB. After completing these steps, call ode15i, ode15s, or ode23t
while specifying the system by the MATLAB function handles and providing initial
conditions.

 Set Up Your DAE Problem

2-165

Step 1: Equations and Variables

Specify equations and state variables of the system. A system of differential algebraic
equations includes equations, dependent variables (state variables), and an independent
variable t. Specify equations as symbolic equations (using the == operator) or as symbolic
expressions. If you use symbolic expressions, the toolbox assumes that these expressions
are equations with right sides equal to 0.

2 Using Symbolic Math Toolbox Software

2-166

For example, specify the system of equations that describes a two-dimensional pendulum.
The functions x(t) and y(t) are the state variables of the system that describe the
horizontal and vertical positions of the pendulum mass. The function T(t) is the state
variable describing the force that keeps the mass from flying away. The variables
m, r, and g are the mass, length of the rod, and standard surface gravity on Earth,
respectively.

syms x(t) y(t) T(t) m r g;

eqs= [m*diff(x(t), 2) == T(t)/r*x(t), ...

 m*diff(y(t), 2) == T(t)/r*y(t) - m*g, ...

 x(t)^2 + y(t)^2 == r^2];

vars = [x(t); y(t); T(t)];

Alternatively, you can specify the same equations as symbolic expressions.

eqs= [m*diff(x(t), 2) - T(t)/r*x(t), ...

 m*diff(y(t), 2) - T(t)/r*y(t) + m*g, ...

 x(t)^2 + y(t)^2 - r^2];

Step 2: Differential Order

Determine if the differential order of the system is 1. For example, the differential order
of the two-dimensional pendulum system is 2.

If the system involves higher order differential equations, use
reduceDifferentialOrder to convert all higher order equations to first-order
equations by substituting derivatives with additional state variables. See “Reduce
Differential Order of DAE Systems” on page 2-169.

Step 3: Differential Index

Check the differential index of the system. To be able to use the MATLAB solvers
ode15i, ode15s, or ode23t, your DAE system must be of differential index 1 or 0.
(In the latter case, it is a system of ordinary differential equations.) If the differential
index of the system is 2 or higher, then reduce it by using reduceDAEIndex or
reduceDAEToODE. See “Check and Reduce Differential Index” on page 2-171.

Step 4: MATLAB Function Handles

Convert the system to MATLAB functions acceptable by the MATLAB solvers. If you
want to use the ode15i solver, then use daeFunction to convert the system to a

 Set Up Your DAE Problem

2-167

MATLAB function handle. If you want to use the ode15s or ode23t solver, then use
massMatrixForm to extract the mass matrix and the right sides of the system of
equations. Then, convert the resulting matrix and vector to MATLAB function handles by
using matlabFunction. See “Convert DAE Systems to MATLAB Function Handles” on
page 2-175.

Step 5: Consistent Initial Conditions

If you reduced the differential index of the system, then find consistent initial conditions
for the new system. See “Find Consistent Initial Conditions” on page 2-182.

Step 6: ODE Solvers

Use one of the MATLAB solvers, ode15i, ode15s, or ode23t, to solve the system. See
“Solve DAE Systems Using MATLAB ODE Solvers” on page 2-188.

Solving DAE Systems Flow Chart

This flow chart shows possible sequences of steps that you might need to take when
solving a DAE system. The flow chart includes the functions that you might need to use.
The process involves MATLAB functions, as well as functions available in Symbolic Math
Toolbox.

2 Using Symbolic Math Toolbox Software

2-168

 Reduce Differential Order of DAE Systems

2-169

Reduce Differential Order of DAE Systems

Note: This is the second step in solving a DAE problem. For the sequence of steps for
solving DAE problems, see “Set Up Your DAE Problem” on page 2-164.

At this step, your DAE system must be specified as a collection of equations and state
variables. For example, this system of equations describes a two-dimensional pendulum.
The functions x(t) and y(t) are the state variables of the system that describe the
horizontal and vertical positions of the pendulum mass. The function T(t) is the state
variable describing the force that keeps the mass from flying away. The variables
m, r, and g are the mass, length of the rod, and standard surface gravity on Earth,
respectively.

syms x(t) y(t) T(t) m r g;

eqs= [m*diff(x(t), 2) == T(t)/r*x(t), ...

 m*diff(y(t), 2) == T(t)/r*y(t) - m*g, ...

 x(t)^2 + y(t)^2 == r^2];

vars = [x(t); y(t); T(t)];

The first and second equations have second-order derivatives of the coordinates x and
y. The third equation is an algebraic equation. Thus, the differential order of this DAE
system is 2. To visualize where the terms with the state variables and their derivatives
appear in this DAE system, display the incidence matrix of the system. The system
contains three equations and three state variables, so incidenceMatrix returns a 3-
by-3 matrix of 1s and 0s. Here, 1s correspond to the terms containing state variables or
their derivatives.

M = incidenceMatrix(eqs, vars)

M =

 1 0 1

 0 1 1

 1 1 0

Before checking the differential index of the system or solving this DAE
system, you must convert it to a first-order DAE system. For this, use the
reduceDifferentialOrder function that substitutes the derivatives with new
variables, such as Dxt(t) and Dyt(t). You can call reduceDifferentialOrder with

2 Using Symbolic Math Toolbox Software

2-170

two or three output arguments. The syntax with three output arguments shows which
derivatives correspond to new variables.

[eqs, vars, R] = reduceDifferentialOrder(eqs, vars)

eqs =

 m*diff(Dxt(t), t) - (T(t)*x(t))/r

 g*m + m*diff(Dyt(t), t) - (T(t)*y(t))/r

 x(t)^2 + y(t)^2 - r^2

 Dxt(t) - diff(x(t), t)

 Dyt(t) - diff(y(t), t)

vars =

 x(t)

 y(t)

 T(t)

 Dxt(t)

 Dyt(t)

R =

[Dxt(t), diff(x(t), t)]

[Dyt(t), diff(y(t), t)]

Display the incidence matrix of the new system. The index reduction process introduced
two new variables and two new equations. As a result, incidenceMatrix now returns a
5-by-5 matrix of 1s and 0s.

M = incidenceMatrix(eqs, vars)

M =

 1 0 1 1 0

 0 1 1 0 1

 1 1 0 0 0

 1 0 0 1 0

 0 1 0 0 1

For the next step in solving your DAE problem, see “Check and Reduce Differential
Index” on page 2-171.

 Check and Reduce Differential Index

2-171

Check and Reduce Differential Index

Note: This is the third step in solving a DAE problem. For the sequence of steps for
solving DAE problems, see “Set Up Your DAE Problem” on page 2-164.

At this step, your DAE system must be a first-order system. The MATLAB solvers
ode15i, ode15s, and ode23t can solve systems of ordinary differential equations or
systems of differential algebraic equations of differential index 0 or 1. Therefore, before
you can solve a system of DAEs, you must check the differential index of the system.
If the index is higher than 1, the next step is to rewrite the system so that the index
reduces to 0 or 1.

In this section...

“Reduce Differential Index to 1” on page 2-171
“Reduce Differential Index to 0” on page 2-173

Reduce Differential Index to 1

Once you have a first-order DAE system, use the isLowIndexDAE function to check the
differential index of the system. If the index is 0 or 1, then isLowIndexDAE returns
1 (logical true). In this case, skip the index reduction and go to the next step. If the
differential index is 2 or higher, then isLowIndexDAE returns 0 (logical false). For this
system of differential algebraic equations, isLowIndexDAE returns 0 (logical false).

isLowIndexDAE(eqs,vars)

ans =

 0

There are two index reduction functions available in Symbolic Math Toolbox. The
reduceDAEIndex function tries to reduce the differential index by differentiating
the original equations (Pantelides algorithm) and replacing the derivatives by new
variables. The result contains the original equations (with the derivatives replaced
by new variables) followed by the new equations. The vector of variables contains the
original variables followed by variables generated by reduceDAEIndex.

[DAEs,DAEvars] = reduceDAEIndex(eqs,vars)

2 Using Symbolic Math Toolbox Software

2-172

DAEs =

 m*Dxtt(t) - (T(t)*x(t))/r

 g*m + m*Dytt(t) - (T(t)*y(t))/r

 x(t)^2 + y(t)^2 - r^2

 Dxt(t) - Dxt1(t)

 Dyt(t) - Dyt1(t)

 2*Dxt1(t)*x(t) + 2*Dyt1(t)*y(t)

 2*Dxt1t(t)*x(t) + 2*Dxt1(t)^2 + 2*Dyt1(t)^2 + 2*y(t)*diff(Dyt1(t), t)

 Dxtt(t) - Dxt1t(t)

 Dytt(t) - diff(Dyt1(t), t)

 Dyt1(t) - diff(y(t), t)

DAEvars =

 x(t)

 y(t)

 T(t)

 Dxt(t)

 Dyt(t)

 Dytt(t)

 Dxtt(t)

 Dxt1(t)

 Dyt1(t)

 Dxt1t(t)

Often, reduceDAEIndex introduces equations and variables that can be easily
eliminated. You can simplify the system by eliminating redundant equations.

[DAEs,DAEvars] = reduceRedundancies(DAEs,DAEvars)

DAEs =

 -(T(t)*x(t) - m*r*Dxtt(t))/r

 (g*m*r - T(t)*y(t) + m*r*Dytt(t))/r

 x(t)^2 + y(t)^2 - r^2

 2*Dxt(t)*x(t) + 2*Dyt(t)*y(t)

 2*Dxtt(t)*x(t) + 2*Dxt(t)^2 + 2*Dyt(t)^2 + 2*y(t)*diff(Dyt(t), t)

 Dytt(t) - diff(Dyt(t), t)

 Dyt(t) - diff(y(t), t)

DAEvars =

 x(t)

 y(t)

 T(t)

 Dxt(t)

 Dyt(t)

 Dytt(t)

 Check and Reduce Differential Index

2-173

 Dxtt(t)

Check the differential index of the new system. Now isLowIndexDAE returns 1, which
means that the differential index of the system is 0 or 1.

isLowIndexDAE(DAEs,DAEvars)

ans =

 1

For the next step in solving your DAE problem, see “Convert DAE Systems to MATLAB
Function Handles” on page 2-175.

Reduce Differential Index to 0

Once you have a first-order DAE system, use the isLowIndexDAE function to check the
differential index of the system. If the index is 0 or 1, then isLowIndexDAE returns
1 (logical true). In this case, skip the index reduction and go to the next step. If the
differential index is 2 or higher, then isLowIndexDAE returns 0 (logical false). For this
system of differential algebraic equations, isLowIndexDAE returns 0 (logical false).

isLowIndexDAE(eqs,vars)

ans =

 0

The Pantelides algorithm used by reduceDAEIndex can underestimate the differential
index of a system. After index reduction, the reduceDAEIndex function internally calls
isLowIndexDAE to check the differential index of the new DAE system. If the reduced
index is still 2 or higher, it issues the following warning:

Warning: The index of the reduced DAEs is larger...

than 1. [daetools::reduceDAEIndex]

Another index reduction function, reduceDAEToODE, reduces a DAE system to a system
of implicit ordinary differential equations by using a structural algorithm based on
Gaussian elimination of the mass matrix. This function only works on semilinear DAE
systems, and it is typically slower than reduceDAEIndex. The main advantage of using
reduceDAEToODE is that it reliably reduces semilinear DAE systems to ODE systems
(DAEs of index 0).

Use reduceDAEToODE to reduce the differential index of small semilinear DAE systems
or semilinear DAE systems for which reduceDAEIndex fails to reduce the index to 1.

2 Using Symbolic Math Toolbox Software

2-174

For example, the system of equations for a two-dimensional pendulum is relatively small
(five first-order equations in five variables). The reduceDAEToODE function reduces this
system to a system of implicit ordinary differential equations as follows.

[ODEs,constraints] = reduceDAEToODE(eqs,vars)

ODEs =

 Dxt(t) - diff(x(t), t)

 Dyt(t) - diff(y(t), t)

 m*diff(Dxt(t), t) - (T(t)*x(t))/r

 m*diff(Dyt(t), t) - (T(t)*y(t) - g*m*r)/r

 -(4*T(t)*y(t) - 2*g*m*r)*diff(y(t), t) -...

 diff(T(t), t)*(2*x(t)^2 + 2*y(t)^2) -...

 4*T(t)*x(t)*diff(x(t), t) -...

 4*m*r*Dxt(t)*diff(Dxt(t), t) -...

 4*m*r*Dyt(t)*diff(Dyt(t), t)

constraints =

 2*g*m*r*y(t) - 2*T(t)*y(t)^2 - 2*m*r*Dxt(t)^2 -...

 2*m*r*Dyt(t)^2 - 2*T(t)*x(t)^2

 r^2 - y(t)^2 - x(t)^2

 2*Dxt(t)*x(t) + 2*Dyt(t)*y(t)

For the next step in solving your DAE problem, see “Convert DAE Systems to MATLAB
Function Handles” on page 2-175.

 Convert DAE Systems to MATLAB Function Handles

2-175

Convert DAE Systems to MATLAB Function Handles

Note: This is the fourth step in solving a DAE problem. For the sequence of steps for
solving DAE problems, see “Set Up Your DAE Problem” on page 2-164.

At this step, your DAE system must be a first-order system of differential index 0 or 1.
The system is still a system of symbolic expressions and variables. Before you can use the
MATLAB differential solvers, you must convert your DAE or ODE system to a suitable
input for these solvers, that is, a MATLAB function handle.

There are two ways to convert a DAE or ODE system to a MATLAB function handle:

• To use the ode15i solver, convert a DAE or ODE system to a function handle by
using daeFunction.

• To use the ode15s or ode23t solver, find the mass matrix and vector containing
the right sides of equations by using massMatrixForm. Then convert the result to
function handles by using matlabFunction. You can use this approach only with
semilinear systems.

These topics show how to convert your DAE or ODE system to function handles
acceptable by different MATLAB solvers.

In this section...

“DAEs to Function Handles for ode15i” on page 2-175
“ODEs to Function Handles for ode15i” on page 2-177
“DAEs to Function Handles for ode15s and ode23t” on page 2-178
“ODEs to Function Handles for ode15s and ode23t” on page 2-179

DAEs to Function Handles for ode15i

To use ode15i, you need a function handle that describes a DAE system as F(t, y(t),
y'(t)) = 0. Thus, you must convert a DAE system to a function handle F = F(y, y,
yp), where t is a scalar, and y and yp are column vectors.

When you have a first-order low-index DAE system consisting of a vector of equations
and a vector of variables that is ready for conversion to a MATLAB function handle, use
daeFunction to convert the system. If a DAE system contains symbolic parameters

2 Using Symbolic Math Toolbox Software

2-176

(symbolic variables other than those specified in the vector of state variables, DAEvars),
then specify these symbolic parameters as additional input arguments of daeFunction.
For example, the two-dimensional pendulum model contains the variables m, r, and g.
Call daeFunction and provide these variables as additional arguments.

f = daeFunction(DAEs, DAEvars, m, r, g);

Although daeFunction lets you create a function handle containing symbolic
parameters without numeric values assigned to them, you cannot use these function
handles as input arguments for the ode15i solver. Before calling the solvers, you must
assign numeric values to all symbolic parameters.

m = 1.0;

r = 1.0;

g = 9.81;

The function handle f still contains symbolic parameters. Create a purely numeric
function handle F that you can pass to ode15i.

F = @(t, Y, YP) f(t, Y, YP, m, r, g);

If your DAE system does not contain any symbolic parameters, then daeFunction
creates a function handle suitable for ode15i. For example, substitute the parameters
m = 1.0, r = 1.0, and g = 9.81 into the equations DAEs. Now the system does not
contain symbolic variables other than specified in the vector of state variables DAEvars.

DAEs = subs(DAEs)

DAEs =

 Dxtt(t) - T(t)*x(t)

 Dytt(t) - T(t)*y(t) + 981/100

 x(t)^2 + y(t)^2 - 1

 2*Dxt(t)*x(t) + 2*Dyt(t)*y(t)

 2*Dxtt(t)*x(t) + 2*Dxt(t)^2 + 2*Dyt(t)^2 + 2*y(t)*diff(Dyt(t), t)

 Dytt(t) - diff(Dyt(t), t)

 Dyt(t) - diff(y(t), t)

Use daeFunction to create a function handle. The result is a function handle suitable
for ode15i.

F = daeFunction(DAEs, DAEvars);

For the next step in solving your DAE problem, see “Find Consistent Initial Conditions”
on page 2-182.

 Convert DAE Systems to MATLAB Function Handles

2-177

ODEs to Function Handles for ode15i

To use ode15i, you need a function handle that describes an ODE system as F(t,
y(t), y'(t)) = 0. Thus, you must convert an ODE system to a function handle F =
F(y, y, yp), where t is a scalar, and y and yp are column vectors.

When you have a first-order ODE system consisting of a vector of equations and a
vector of variables that is ready for conversion to a MATLAB function handle, use
daeFunction to convert the system. If an ODE system contains symbolic parameters
(symbolic variables other than those specified in the vector of state variables, vars), then
specify these symbolic parameters as additional input arguments of daeFunction. For
example, the two-dimensional pendulum model contains the variables m, r, and g. Call
daeFunction and provide these variables as additional arguments.

f = daeFunction(ODEs, vars, m, r, g);

Although daeFunction lets you create a function handle that contains symbolic
parameters without numeric values assigned to them, you cannot use these function
handles as input arguments for the ode15i solver. Before you call the solvers, you must
assign numeric values to all symbolic parameters.

m = 1.0;

r = 1.0;

g = 9.81;

The function handle f still contains symbolic parameters. Create a purely numeric
function handle F that you can pass to ode15i.

F = @(t, Y, YP) f(t, Y, YP, m, r, g);

If your ODE system does not contain any symbolic parameters, then daeFunction
creates a function handle suitable for ode15i. For example, substitute the parameters
m = 1.0, r = 1.0, and g = 9.81 into the equations ODEs. Now the system does not
contain symbolic variables other than those specified in the vector of state variables
vars.

ODEs = subs(ODEs)

ODEs =

 Dxt(t) - diff(x(t), t)

 Dyt(t) - diff(y(t), t)

 diff(Dxt(t), t) - T(t)*x(t)

2 Using Symbolic Math Toolbox Software

2-178

 diff(Dyt(t), t) - T(t)*y(t) + 981/100

 - (4*T(t)*y(t) - 981/50)*diff(y(t), t) -...

 4*Dxt(t)*diff(Dxt(t), t) -...

 4*Dyt(t)*diff(Dyt(t), t) -...

 diff(T(t), t)*(2*x(t)^2 + 2*y(t)^2) -...

 4*T(t)*x(t)*diff(x(t), t)

Use daeFunction to create a function handle suitable for ode15i.

F = daeFunction(ODEs, vars);

For the next step in solving your DAE problem, see “Find Consistent Initial Conditions”
on page 2-182.

DAEs to Function Handles for ode15s and ode23t

To use ode15s or ode23t, you need two function handles: one must represent the mass
matrix of a DAE system, and the other must represent the vector containing the right
side of the equations. If M is a mass matrix form and F is a vector containing the right
side of equations, then M(t,y(t))*y'(t) = F(t,y(t)).

When you have a first-order low-index semilinear DAE system consisting of a vector of
equations and a vector of variables, use massMatrixForm to find the mass matrix M and
vector F of the right side of the equations.

[M,F] = massMatrixForm(DAEs,DAEvars)

M =

[0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 2*y(t), 0, 0]

[0, 0, 0, 0, -1, 0, 0]

[0, -1, 0, 0, 0, 0, 0]

F =

 (T(t)*x(t) - m*r*Dxtt(t))/r

 -(g*m*r - T(t)*y(t) + m*r*Dytt(t))/r

 r^2 - y(t)^2 - x(t)^2

 - 2*Dxt(t)*x(t) - 2*Dyt(t)*y(t)

 Convert DAE Systems to MATLAB Function Handles

2-179

 - 2*Dxtt(t)*x(t) - 2*Dxt(t)^2 - 2*Dyt(t)^2

 -Dytt(t)

 -Dyt(t)

To convert M and F to MATLAB function handles, use two separate odeFunction calls.

For inputs that do not contain any symbolic parameters, odeFunction creates function
handles suitable for the MATLAB ODE solvers. In the previous code sample, the mass
matrix M does not contain symbolic variables other than specified in the vector of state
variables (DAEvars). Use odaeFunction to create a function handle. The result is a
function handle suitable for ode15s and ode23t.

M = odeFunction(M, DAEvars);

If M or F contain symbolic parameters (symbolic variables other than those specified
in the vector of state variables DAEvars), then specify these symbolic parameters as
additional input arguments of odeFunction. Because F contains the variables m, r, and
g, provide these variables as additional arguments when you call odeFunction for F.

F = odeFunction(F, DAEvars, m, r, g);

Although odeFunction lets you create a function handle containing symbolic
parameters without numeric values assigned to them, you cannot use these function
handles as input arguments for the MATLAB ODE solvers. Before calling the solvers,
you must assign numeric values to all symbolic parameters.

m = 1.0;

r = 1.0;

g = 9.81;

The function handle f still contains symbolic parameters. Create a purely numeric
function handle F that you can pass to ode15s or ode23t.

F = @(t, Y) F(t, Y, m, r, g);

For the next step in solving your DAE problem, see “Find Consistent Initial Conditions”
on page 2-182.

ODEs to Function Handles for ode15s and ode23t

To use ode15s or ode23t, you need two function handles: one must represent the mass
matrix of a ODE system, and the other must represent the vector containing the right

2 Using Symbolic Math Toolbox Software

2-180

side of the equations. If M is a mass matrix form and F is a vector containing the right
side of equations, then M(t,y(t))*y'(t) = F(t,y(t)).

When you have a first-order ODE system consisting of a vector of equations and a vector
of variables, use massMatrixForm to find the mass matrix M and vector F of the right
side of the equations.

[M,F] = massMatrixForm(ODEs,vars)

M =

[-1, 0, 0, 0, 0]

[0, -1, 0, 0, 0]

[0, 0, 0, m, 0]

[0, 0, 0, 0, m]

[-4*T(t)*x(t), 2*g*m*r - 4*T(t)*y(t), - 2*x(t)^2 - 2*y(t)^2, -4*m*r*Dxt(t), -4*m*r*Dyt(t)]

F =

 -Dxt(t)

 -Dyt(t)

 (T(t)*x(t))/r

 (T(t)*y(t) - g*m*r)/r

 0

To convert M and F to MATLAB function handles, use two separate odeFunction calls.

If M or F contain symbolic parameters (symbolic variables other than specified in the
vector of state variables DAEvars), then specify these symbolic parameters as additional
input arguments of odeFunction. In this example, both M and F contain the variables m,
r, and g. Call odeFunction and provide these variables as additional arguments.

M = odeFunction(M, vars, m, r, g);

F = odeFunction(F, vars, m, r, g);

Although odeFunction lets you create function handles containing symbolic parameters
without numeric values assigned to them, you cannot use these function handles as input
arguments for the MATLAB ODE solvers. Before calling the solvers, you must assign
numeric values to all symbolic parameters.

m = 1.0;

r = 1.0;

g = 9.81;

The function handles M and F still contain symbolic parameters. Create purely numeric
function handles that you can pass to ode15s or ode23t.

M = @(t, Y) M(t, Y, m, r, g);

 Convert DAE Systems to MATLAB Function Handles

2-181

F = @(t, Y) F(t, Y, m, r, g);

For the next step in solving your DAE problem, see “Find Consistent Initial Conditions”
on page 2-182.

2 Using Symbolic Math Toolbox Software

2-182

Find Consistent Initial Conditions

Note: This is the fifth step in solving a DAE problem. For the sequence of steps for
solving DAE problems, see “Set Up Your DAE Problem” on page 2-164.

At this step, you search for initial conditions that satisfy all equations of your new low-
index DAE or ODE system. There are two functions that let you find consistent initial
conditions:

• If you used reduceDAEIndex to reduce the differential index of the system to 1, then
use the MATLAB decic function to find consistent initial conditions for the new DAE
system.

• If you used reduceDAEToODE to rewrite the system as a system of implicit ODEs,
then use the decic function available in Symbolic Math Toolbox. As one of its input
arguments, this function accepts algebraic constraints of the original system returned
by reduceDAEToODE and returns consistent initial conditions that satisfy those
constraints.

These topics show how to find consistent initial conditions for your DAE or ODE system
when you use different solvers.

In this section...

“DAEs: Initial Conditions for ode15i” on page 2-182
“ODEs: Initial Conditions for ode15i” on page 2-184
“DAEs: Initial Conditions for ode15s and ode23t” on page 2-185
“ODEs: Initial Conditions for ode15s and ode23t” on page 2-186

DAEs: Initial Conditions for ode15i

The vector of variables for the first-order DAE system of differential index 1 describing a
two-dimensional pendulum is a 7-by-1 vector. Therefore, estimates for initial values of
variables and their derivatives must also be 7-by-1 vectors.

DAEvars

DAEvars =

 Find Consistent Initial Conditions

2-183

 x(t)

 y(t)

 T(t)

 Dxt(t)

 Dyt(t)

 Dytt(t)

 Dxtt(t)

Suppose that the initial angular displacement of the pendulum is 30°, and the origin
of the coordinates is at the suspension point of the pendulum. Since cos(30°) = 0.5 and
sin(30°) ≈ 0.8, you can specify the starting points for the search for consistent values of
the variables and their derivatives at the time t0 = 0 as two 7-by-1 vectors.

y0est = [0.5*r; -0.8*r; 0; 0; 0; 0; 0];

yp0est = zeros(7,1);

Create an option set that specifies numerical tolerances for the numerical search.

opt = odeset('RelTol', 10.0^(-7), 'AbsTol' , 10.0^(-7));

Find consistent initial values for the variables and their derivatives by using the
MATLAB decic function.

[y0, yp0] = decic(F, 0, y0est, [], yp0est, [], opt)

y0 =

 0.4828

 -0.8757

 -8.5909

 0

 0.0000

 -2.2866

 -4.1477

yp0 =

 0

 0.0000

 0

 0

 -2.2866

 0

 0

For the next step in solving your DAE problem, see “Solve DAE Systems Using MATLAB
ODE Solvers” on page 2-188.

2 Using Symbolic Math Toolbox Software

2-184

ODEs: Initial Conditions for ode15i

The vector of variables for the first-order ODE system describing a two-dimensional
pendulum is a 5-by-1 vector, therefore, estimates for initial values of variables and
their derivatives must also be 5-by-1 vectors.

vars

vars =

 x(t)

 y(t)

 T(t)

 Dxt(t)

 Dyt(t)

Suppose that the initial angular displacement of the pendulum is 30°, and the origin
of the coordinates is at the suspension point of the pendulum. Since cos(30°) = 0.5 and
sin(30°) ≈ 0.8, you can specify the starting points for the search for consistent values of
the variables and their derivatives at the time t0 = 0 as two 5-by-1 vectors.

y0est = [0.5*r; -0.8*r; 0; 0; 0];

yp0est = zeros(5,1);

Create an option set that specifies numerical tolerances for the numerical search.

opt = odeset('RelTol', 10.0^(-7), 'AbsTol' , 10.0^(-7));

Find initial values consistent with the system of ODEs and with the algebraic constraints
by using the decic function available in Symbolic Math Toolbox. The parameter
[1,0,0,0,1] in this function call fixes the first and the last element in y0est, so
that decic does not change them during the numerical search. The zero elements in
[1,0,0,0,1] correspond to those values in y0est for which decic solves the constraint
equations.

[y0, yp0] = decic(ODEs, vars, constraints, 0, y0est, [1,0,0,0,1], yp0est, opt)

y0 =

 0.5000

 -0.8660

 -8.4957

 0

 0

 Find Consistent Initial Conditions

2-185

yp0 =

 0

 0

 0

 -4.2479

 -2.4525

For the next step in solving your DAE problem, see “Solve DAE Systems Using MATLAB
ODE Solvers” on page 2-188.

DAEs: Initial Conditions for ode15s and ode23t

Suppose that the initial angular displacement of the pendulum is 30°, and the origin
of the coordinates is at the suspension point of the pendulum. Since cos(30°) = 0.5 and
sin(30°) ≈ 0.8, you can specify the starting points for the search for consistent values of
the variables and their derivatives at the time t0 = 0 as two 7-by-1 vectors.

y0est = [0.5*r; -0.8*r; 0; 0; 0; 0; 0];

yp0est = zeros(7,1);

Create an option set that contains the mass matrix M of the system, a vector yp0est of
initial guesses for the derivatives, and specifies numerical tolerances for the numerical
search.

opt = odeset('Mass', M, 'InitialSlope', yp0est,...

 'RelTol', 10.0^(-7), 'AbsTol' , 10.0^(-7));

Find consistent initial values for the variables and their derivatives by using the
MATLAB decic function. The first argument of decic must be a function handle f
describing the DAE by f(t,y,yp) = f(t,y,y') = 0. In terms of M and F, this means
f(t,y,yp) = M(t,y)*yp - F(t,y).

[y0, yp0] = decic(@(t,y,yp) M(t,y)*yp - F(t,y), 0, y0est, [], yp0est, [], opt)

y0 =

 0.4828

 -0.8757

 -8.5909

 0

 0.0000

 -2.2866

 -4.1477

2 Using Symbolic Math Toolbox Software

2-186

yp0 =

 0

 0.0000

 0

 0

 -2.2866

 0

 0

For the next step in solving your DAE problem, see “Solve DAE Systems Using MATLAB
ODE Solvers” on page 2-188.

ODEs: Initial Conditions for ode15s and ode23t

Suppose that the initial angular displacement of the pendulum is 30°, and the origin
of the coordinates is at the suspension point of the pendulum. Since cos(30°) = 0.5 and
sin(30°) ≈ 0.8, you can specify the starting points for the search for consistent values of
the variables and their derivatives at the time t0 = 0 as two 5-by-1 vectors.

y0est = [0.5*r; -0.8*r; 0; 0; 0];

yp0est = zeros(5,1);

Before you proceed, substitute numeric values for m, r, and g into ODEs, constraints,
and y0est.

m = 1.0;

r = 1.0;

g = 9.81;

ODEs = subs(ODEs);

constraints = subs(constraints);

y0est = subs(y0est);

Create an option set that contains the mass matrix M of the system and specifies
numerical tolerances for the numerical search.

opt = odeset('Mass', M, 'RelTol', 10.0^(-7), 'AbsTol' , 10.0^(-7));

Find initial values consistent with the system of ODEs and with the algebraic constraints
by using the decic function available in Symbolic Math Toolbox. The parameter
[1,0,0,0,1] in this function call fixes the first and the last element in y0est, so
that decic does not change them during the numerical search. The zero elements in

 Find Consistent Initial Conditions

2-187

[1,0,0,0,1] correspond to those values in y0est for which decic solves the constraint
equations.

[y0, yp0] = decic(ODEs, vars, constraints, 0, y0est, [1,0,0,0,1], yp0est, opt)

y0 =

 0.5000

 -0.8660

 -8.4957

 0

 0

yp0 =

 0

 0

 0

 -4.2479

 -2.4525

For the next step in solving your DAE problem, see “Solve DAE Systems Using MATLAB
ODE Solvers” on page 2-188.

2 Using Symbolic Math Toolbox Software

2-188

Solve DAE Systems Using MATLAB ODE Solvers

Note: This is the final step in solving a DAE problem. For the sequence of steps for
solving DAE problems, see “Set Up Your DAE Problem” on page 2-164.

At this step, you must have a MATLAB function handle representing your ODE or
DAE system (of differential index 0 or 1, respectively). You also must have two vectors
specifying initial conditions for the variables of the system and their first derivatives.

ode15i, ode15s, and ode23t are the MATLAB differential equation solvers
recommended for this workflow.

• If you have one function handle representing your DAE system (typically obtained via
daeFunction), then use ode15i.

• If your DAE is semilinear, and you have function handles for the mass matrix and the
right sides of equations of the DAE system, use ode15s or ode23t.

The following examples show how to solve DAE and ODE systems using different
MATLAB solvers.

In this section...

“Solve a DAE System with ode15i” on page 2-188
“Solve an ODE System with ode15i” on page 2-189
“Solve a DAE System with ode15s” on page 2-190
“Solve an ODE System with ode15s” on page 2-191

Solve a DAE System with ode15i

Solve the system integrating over the time span 0 ≤ t ≤ 0.5. Add the grid lines and the
legend to the plot.

ode15i(F, [0, 0.5], y0, yp0, opt)

for k = 1:numel(DAEvars)

 S{k} = char(DAEvars(k));

end

 Solve DAE Systems Using MATLAB ODE Solvers

2-189

legend(S, 'Location', 'Best')

grid on

Solve an ODE System with ode15i

Solve the system integrating over the time span 0 ≤ t ≤ 0.5. Add the grid lines and the
legend to the plot.

ode15i(F, [0, 0.5], y0, yp0, opt)

for k = 1:numel(vars)

2 Using Symbolic Math Toolbox Software

2-190

 S{k} = char(vars(k));

end

legend(S, 'Location', 'Best')

grid on

Solve a DAE System with ode15s

Solve the system integrating over the time span 0 ≤ t ≤ 0.5. Add the grid lines and the
legend to the plot.

ode15s(F, [0, 0.5], y0est, opt)

 Solve DAE Systems Using MATLAB ODE Solvers

2-191

for k = 1:numel(DAEvars)

 S{k} = char(DAEvars(k));

end

legend(S, 'Location', 'Best')

grid on

Solve an ODE System with ode15s

Solve the system integrating over the time span 0 ≤ t ≤ 0.5. Add the grid lines and the
legend to the plot.

2 Using Symbolic Math Toolbox Software

2-192

ode15s(F, [0, 0.5], y0, opt)

for k = 1:numel(vars)

 S{k} = char(vars(k));

end

legend(S, 'Location', 'Best')

grid on

 Compute Fourier and Inverse Fourier Transforms

2-193

Compute Fourier and Inverse Fourier Transforms

The Fourier transform of a function f(x) is defined as

F f w f x e dxiwx[] = -

-•

•

Ú() () ,

and the inverse Fourier transform (IFT) as

F f x f w e dwiwx-

-•

•

[] = Ú1 1

2
() () .

p

This documentation refers to this formulation as the Fourier transform of f with respect
to x as a function of w. Or, more concisely, the Fourier transform of f with respect to x
at w. Mathematicians often use the notation F[f] to indicate the Fourier transform of
f. In this setting, the transform is taken with respect to the independent variable of f
(if f = f(t), then t is the independent variable; f = f(x) implies that x is the independent
variable, etc.) at the default variable w. This documentation refers to F[f] as the Fourier
transform of f at w and F–1[f] is the IFT of f at x. See fourier and ifourier in the
reference pages for tables that show the Symbolic Math Toolbox commands equivalent to
various mathematical representations of the Fourier and inverse Fourier transforms.

For example, consider the Fourier transform of the Cauchy density function, (π(1 + x2))–1:

syms x

cauchy = 1/(pi*(1+x^2));

fcauchy = fourier(cauchy)

fcauchy =

exp(-abs(w))

ezplot(fcauchy)

2 Using Symbolic Math Toolbox Software

2-194

The Fourier transform is symmetric, since the original Cauchy density function is
symmetric.

To recover the Cauchy density function from the Fourier transform, call ifourier:

finvfcauchy = ifourier(fcauchy)

finvfcauchy =

1/(pi*(x^2 + 1))

An application of the Fourier transform is the solution of ordinary and partial differential
equations over the real line. Consider the deformation of an infinitely long beam resting
on an elastic foundation with a shock applied to it at a point. A “real world” analogy to
this phenomenon is a set of railroad tracks atop a road bed.

 Compute Fourier and Inverse Fourier Transforms

2-195

The shock could be induced by a pneumatic hammer blow.

The differential equation idealizing this physical setting is

d y

dx

k

EI
y

EI
x x

4

4

1
+ = - • < < •d(), .

Here, E represents elasticity of the beam (railroad track), I is the “beam constant,” and
k is the spring (road bed) stiffness. The shock force on the right side of the differential
equation is modeled by the Dirac Delta function δ(x). The Dirac Delta function has the
following important property:

f x y y dy f x() () ().- =

-•

•

Ú d

A definition of the Dirac Delta function is

d c() lim (),(/ , /)x n x

n

n n
=

Æ•
-1 2 1 2

where

2 Using Symbolic Math Toolbox Software

2-196

c(/ , /) ()- =
- < <Ï

Ì
Ô

ÓÔ
1 2 1 2

1
1

2

1

2

0
n n

x n

x

n

for

otherwise.

Let Y(w) = F[y(x)](w) and Δ(w) = F[δ(x)](w). Indeed, try the command
fourier(dirac(x), x, w). The Fourier transform turns differentiation into
exponentiation, and, in particular,

F
d y

dx
w w Y w

4

4

4
È

Î
Í

˘

˚
˙ =() ().

See a demonstration of this property:

syms w y(x)

fourier(diff(y(x), x, 4), x, w)

ans =

w^4*fourier(y(x), x, w)

Note that you can call the fourier command with one, two, or three inputs (see the
reference pages for fourier). With a single input argument, fourier(f) returns a
function of the default variable w. If the input argument is a function of w, fourier(f)
returns a function of t. All inputs to fourier must be symbolic objects.

Applying the Fourier transform to the differential equation above yields the algebraic
equation

w
k

EI
Y w w

4 +Ê
Ë
Á

ˆ
¯
˜ =() (),D

or

Y(w) = Δ(w)G(w),

where

G w

w
k

EI

F g x w() () ()=

+

= []
1

4

 Compute Fourier and Inverse Fourier Transforms

2-197

for some function g(x). That is, g is the inverse Fourier transform of G:

g(x) = F–1[G(w)](x)

The Symbolic Math Toolbox counterpart to the IFT is ifourier. This behavior of
ifourier parallels fourier with one, two, or three input arguments (see the reference
pages for ifourier).

Continuing with the solution of the differential equation, observe that the ratio

K

EI

is a relatively “large” number since the road bed has a high stiffness constant k and
a railroad track has a low elasticity E and beam constant I. Make the simplifying
assumption that

K

EI
= 1024.

This is done to ease the computation of F –1[G(w)](x). Now type

G = 1/(w^4 + 1024);

g = ifourier(G, w, x);

g = simplify(g)

g =

(pi*exp(x*(- 4 - 4i))*(sign(x) + 1)*(1/1024 + 1i/1024) +...

 pi*exp(x*(- 4 + 4i))*(sign(x) + 1)*(1/1024 - 1i/1024) -...

 pi*exp(x*(4 - 4i))*(sign(x) - 1)*(1/1024 - 1i/1024) -...

 pi*exp(x*(4 + 4i))*(sign(x) - 1)*(1/1024 + 1i/1024))/(2*pi)

Since Y is the product of Fourier transforms, y is the convolution of the transformed
functions. That is, F[y] = Y(w) = Δ(w) G(w) = F[δ] F[g] implies

y x g x g x y y dy g x() ()() () () ().= * = - =

-•

•

Úd d

by the special property of the Dirac Delta function. To plot this function, substitute the
domain of x into y(x), using the subs command. The resulting graph shows that the
impact of a blow on a beam is highly localized; the greatest deflection occurs at the point
of impact and falls off sharply from there.

2 Using Symbolic Math Toolbox Software

2-198

XX = -3:0.05:3;

YY = double(subs(g, x, XX));

plot(XX, YY)

title('Beam Deflection for a Point Shock')

xlabel('x')

ylabel('y(x)')

 Compute Laplace and Inverse Laplace Transforms

2-199

Compute Laplace and Inverse Laplace Transforms

The Laplace transform of a function f(t) is defined as

L f s f t e dtts[] () = -
•

Ú () ,

0

while the inverse Laplace transform (ILT) of f(s) is

L f t
i

f s e dsst

c i

c i
-

- •

+ •

[] = Ú1 1

2
() () ,

p

where c is a real number selected so that all singularities of f(s) are to the left of the line
s = c. The notation L[f] indicates the Laplace transform of f at s. Similarly, L–1[f] is the
ILT of f at t.

The Laplace transform has many applications including the solution of ordinary
differential equations/initial value problems. Consider the resistance-inductor-capacitor
(RLC) circuit below.

2 Using Symbolic Math Toolbox Software

2-200

Let Rj and Ij, j = 1, 2, 3 be resistances (measured in ohms) and currents (amperes),
respectively; L be inductance (henrys), and C be capacitance (farads); E(t) be the
electromotive force, and Q(t) be the charge.

By applying Kirchhoff's voltage and current laws, Ohm's Law, and Faraday's Law, you
can arrive at the following system of simultaneous ordinary differential equations.

dI

dt

R

L

dQ

dt

R R

L
I I I1 2 2 1
1 1 00+ =

-

=, () .

dQ

dt R R
E t

C
Q t

R

R R
I Q Q=

+
-Ê

ËÁ
ˆ
¯̃

+
+

=
1 1

0
3 2

2

3 2
1 0() () , () .

Solve this system of differential equations using laplace. First treat the Rj, L, and C as
(unknown) real constants and then supply values later on in the computation.

clear E

syms R1 R2 R3 L C real

 Compute Laplace and Inverse Laplace Transforms

2-201

syms I1(t) Q(t) s

dI1(t) = diff(I1(t), t);

dQ(t) = diff(Q(t),t);

E(t) = sin(t); % Voltage

eq1(t) = dI1(t) + R2*dQ(t)/L - (R2 - R1)*I1(t)/L;

eq2(t) = dQ(t) - (E(t) - Q/C)/(R2 + R3) - R2*I1(t)/(R2 + R3);

At this point, you have constructed the equations in the MATLAB workspace. An
approach to solving the differential equations is to apply the Laplace transform, which
you will apply to eq1(t) and eq2(t). Transforming eq1(t) and eq2(t)

L1(t) = laplace(eq1,t,s)

L2(t) = laplace(eq2,t,s)

returns

L1(t) =

s*laplace(I1(t), t, s) - I1(0)

+ ((R1 - R2)*laplace(I1(t), t, s))/L

- (R2*(Q(0) - s*laplace(Q(t), t, s)))/L

L2(t) =

s*laplace(Q(t), t, s) - Q(0)

- (R2*laplace(I1(t), t, s))/(R2 + R3) - (C/(s^2 + 1)

- laplace(Q(t), t, s))/(C*(R2 + R3))

Now you need to solve the system of equations L1 = 0, L2 = 0 for
laplace(I1(t),t,s) and laplace(Q(t),t,s), the Laplace transforms of I1 and
Q, respectively. To do this, make a series of substitutions. For the purposes of this
example, use the quantities R1 = 4 Ω (ohms), R2 = 2 Ω, R3 = 3 Ω, C = 1/4 farads, L =
1.6 H (henrys), I1(0) = 15 A (amperes), and Q(0) = 2 A*sec. Substituting these values in
L1

syms LI1 LQ

NI1 = subs(L1(t),{R1,R2,R3,L,C,I1(0),Q(0)}, ...

 {4,2,3,1.6,1/4,15,2})

returns

NI1 =

s*laplace(I1(t), t, s) + (5*s*laplace(Q(t), t, s))/4

 + (5*laplace(I1(t), t, s))/4 - 35/2

The substitution

2 Using Symbolic Math Toolbox Software

2-202

NQ = subs(L2,{R1,R2,R3,L,C,I1(0),Q(0)},{4,2,3,1.6,1/4,15,2})

returns

NQ(t) =

s*laplace(Q(t), t, s) - 1/(5*(s^2 + 1)) -...

(2*laplace(I1(t), t, s))/5 + (4*laplace(Q(t), t, s))/5 - 2

To solve for laplace(I1(t),t,s) and laplace(Q(t),t,s), make a final
pair of substitutions. First, replace the strings laplace(I1(t),t,s) and
laplace(Q(t),t,s) by the sym objects LI1 and LQ, using

NI1 = subs(NI1,{laplace(I1(t),t,s),laplace(Q(t),t,s)},{LI1,LQ})

to obtain

NI1 =

(5*LI1)/4 + LI1*s + (5*LQ*s)/4 - 35/2

Collecting terms

NI1 = collect(NI1,LI1)

gives

NI1 =

(s + 5/4)*LI1 + (5*LQ*s)/4 - 35/2

A similar string substitution

NQ = ...

subs(NQ,{laplace(I1(t),t,s), laplace(Q(t),t,s)}, {LI1,LQ})

yields

NQ(t) =

(4*LQ)/5 - (2*LI1)/5 + LQ*s - 1/(5*(s^2 + 1)) - 2

which, after collecting terms,

NQ = collect(NQ,LQ)

gives

NQ(t) =

(s + 4/5)*LQ - (2*LI1)/5 - 1/(5*(s^2 + 1)) - 2

 Compute Laplace and Inverse Laplace Transforms

2-203

Now, solving for LI1 and LQ

[LI1, LQ] = solve(NI1, NQ, LI1, LQ)

you obtain
LI1 =

(5*(60*s^3 + 56*s^2 + 59*s + 56))/((s^2 + 1)*(20*s^2 + 51*s + 20))

LQ =

(40*s^3 + 190*s^2 + 44*s + 195)/((s^2 + 1)*(20*s^2 + 51*s + 20))

To recover I1 and Q, compute the inverse Laplace transform of LI1 and LQ. Inverting
LI1

I1 = ilaplace(LI1, s, t)

produces

I1 =

15*exp(-(51*t)/40)*(cosh((1001^(1/2)*t)/40) -...

(293*1001^(1/2)*sinh((1001^(1/2)*t)/40))/21879) - (5*sin(t))/51

Inverting LQ

Q = ilaplace(LQ, s, t)

yields

Q =

(4*sin(t))/51 - (5*cos(t))/51 +...

(107*exp(-(51*t)/40)*(cosh((1001^(1/2)*t)/40) +...

(2039*1001^(1/2)*sinh((1001^(1/2)*t)/40))/15301))/51

Now plot the current I1(t) and charge Q(t) in two different time domains, 0 ≤ t ≤ 10
and 5 ≤ t ≤ 25. The following statements generate the desired plots.

subplot(2,2,1)

ezplot(I1,[0,10])

title('Current')

ylabel('I1(t)')

grid

subplot(2,2,2)

ezplot(Q,[0,10])

title('Charge')

ylabel('Q(t)')

grid

2 Using Symbolic Math Toolbox Software

2-204

subplot(2,2,3)

ezplot(I1,[5,25])

title('Current')

ylabel('I1(t)')

grid

text(7,0.25,'Transient')

text(16,0.125,'Steady State')

subplot(2,2,4)

ezplot(Q,[5,25])

title('Charge')

ylabel('Q(t)')

grid

text(7,0.25,'Transient')

text(15,0.16,'Steady State')

 Compute Laplace and Inverse Laplace Transforms

2-205

Note that the circuit's behavior, which appears to be exponential decay in the short term,
turns out to be oscillatory in the long term. The apparent discrepancy arises because the
circuit's behavior actually has two components: an exponential part that decays rapidly
(the “transient” component) and an oscillatory part that persists (the “steady-state”
component).

2 Using Symbolic Math Toolbox Software

2-206

Compute Z-Transforms and Inverse Z-Transforms

The (one-sided) z-transform of a function f(n) is defined as

Z f z f n z n

n

[]() = -

=

•

Â () .

0

The notation Z[f] refers to the z-transform of f at z. Let R be a positive number so
that the function g(z) is analytic on and outside the circle |z| = R. Then the inverse z-
transform (IZT) of g at n is defined as

Z g n
i

g z z dz nn

z R

- -

=

[] = =Ú
1 11

2
1 2() () , , , ...

p Ñ

The notation Z–1[f] means the IZT of f at n. The Symbolic Math Toolbox commands
ztrans and iztrans apply the z-transform and IZT to symbolic expressions,
respectively. See ztrans and iztrans for tables showing various mathematical
representations of the z-transform and inverse z-transform and their Symbolic Math
Toolbox counterparts.

The z-transform is often used to solve difference equations. In particular, consider the
famous “Rabbit Problem.” That is, suppose that rabbits reproduce only on odd birthdays
(1, 3, 5, 7, ...). If p(n) is the rabbit population at year n, then p obeys the difference
equation

p(n+2) = p(n+1) + p(n), p(0) = 1, p(1) = 2.

You can use ztrans to find the population each year p(n). First, apply ztrans to the
equations

syms p(n) z

eq = p(n + 2) - p(n + 1) - p(n);

Zeq = ztrans(eq, n, z)

to obtain

Zeq =

z*p(0) - z*ztrans(p(n), n, z) - z*p(1) + z^2*ztrans(p(n), n, z)

 - z^2*p(0) - ztrans(p(n), n, z)

 Compute Z-Transforms and Inverse Z-Transforms

2-207

Next, replace ztrans(p(n), n, z) with Pz and insert the initial conditions for p(0)
and p(1).

syms Pz

Zeq = subs(Zeq,{ztrans(p(n), n, z), p(0), p(1)}, {Pz, 1, 2})

to obtain

Zeq =

Pz*z^2 - z - Pz*z - Pz - z^2

Collecting terms

eq = collect(Zeq, Pz)

yields

eq =

(z^2 - z - 1)*Pz - z^2 - z

Now solve for Pz

P = solve(eq, Pz)

to obtain

P =

-(z^2 + z)/(- z^2 + z + 1)

To recover p(n), take the inverse z-transform of P.

p = iztrans(P, z, n);

p = simplify(p)

The result is a bit complicated, but explicit:

p =

4*(-1)^(n/2)*cos(n*(pi/2 + asinh(1/2)*1i)) +...

1/2^n*((3*5^(1/2))/10 - 3/2)*(5^(1/2) + 1)^n -...

1/2^n*((3*5^(1/2))/10 + 3/2)*(1 - 5^(1/2))^n

Finally, plot p to show the growth in rabbit population over time.

m = 1:10;

y = double(subs(p,n,m));

2 Using Symbolic Math Toolbox Software

2-208

plot(m, real(y),'rO')

title('Rabbit Population')

xlabel('years')

ylabel('p')

grid on

References

[1] Andrews, L.C., Shivamoggi, B.K., Integral Transforms for Engineers and Applied
Mathematicians, Macmillan Publishing Company, New York, 1986

[2] Crandall, R.E., Projects in Scientific Computation, Springer-Verlag Publishers, New
York, 1994

 Compute Z-Transforms and Inverse Z-Transforms

2-209

[3] Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge Press,
Wellesley, MA, 1986

2 Using Symbolic Math Toolbox Software

2-210

Diffraction of Light

This example shows how to model the diffraction of light at the edge of a screen using
classical electrodynamics. See Jackson [1].

Take a plane wave of intensity I0 and wave number k. Assume the wavefronts of the
plane wave are parallel to the xy-plane and the plane wave travels along the z-axis
as shown. This plane wave is called the incident wave. A perfectly-conducting, flat
diffraction screen occupies half of the xy-plane, that is x < 0. The plane wave strikes the
diffraction screen, and you observe the diffracted wave along the line whose coordinates
are (x, 0, z0), where z0 > 0.

The intensity of the diffracted wave is

I
I

C S= () +Ê
Ë
Á

ˆ
¯
˜ + () +Ê

Ë
Á

ˆ
¯
˜

È

Î
Í

˘

˚
˙0

2 2

2

1

2

1

2
z z ,

where

 Diffraction of Light

2-211

z = ◊
k

z
x

2
0

and C()z and S()z are the Fresnel cosine and sine integrals

C t dtz pz
() = Ê

Ë
Á

ˆ
¯
˜Ú cos

0

2

2

S t dtz pz() = Ê
ËÁ

ˆ
¯̃Ú sin .

2

2

0

Since k and z0 are constants independent of x, set

k

z2
1

0

=

and assume an initial intensity of I0 = 1 for simplicity.

The following code generates a plot of intensity as a function of x.

x = -50:50;

C = fresnelc(x);

S = fresnels(x);

I0 = 1;

T = (C+1/2).^2 + (S+1/2).^2;

I = (I0/2)*T;

plot(x,I)

xlabel('x')

ylabel('I(x)')

title('Intensity of Diffracted Wave')

2 Using Symbolic Math Toolbox Software

2-212

The graph shows that the diffraction effect is most prominent near the edge of the
diffraction screen (x = 0), as you expect.

Values of x that are large and positive correspond to observation points far away from
the screen. Here, you would expect the screen to have no effect on the incident wave.
That is, the intensity of the diffracted wave should be the same as that of the incident
wave. Similarly, x values that are large and negative correspond to observation points
under the screen that are far away from the screen edge. Here, you would expect the
diffracted wave to have zero intensity. These results can be verified by setting

x = [Inf -Inf]

in the code to calculate I.

 Diffraction of Light

2-213

References

[1] Jackson, J.D. Classical Electrodynamics. John Wiley & Sons, 1962.

2 Using Symbolic Math Toolbox Software

2-214

Create Plots

In this section...

“Plot with Symbolic Plotting Functions” on page 2-214
“Plot with MATLAB Plotting Functions” on page 2-217
“Plot Multiple Symbolic Functions in One Graph” on page 2-219
“Plot Multiple Symbolic Functions in One Figure” on page 2-221
“Combine Symbolic Function Plots and Numeric Data Plots” on page 2-223

Plot with Symbolic Plotting Functions

MATLAB provides many techniques for plotting numerical data. Graphical capabilities
of MATLAB include plotting tools, standard plotting functions, graphic manipulation and
data exploration tools, and tools for printing and exporting graphics to standard formats.
Symbolic Math Toolbox expands these graphical capabilities and lets you plot symbolic
functions using:

• ezplot to create 2-D plots of symbolic expressions, equations, or functions in
Cartesian coordinates.

• ezplot3 to create 3-D parametric plots. To create animated plots, use the animate
option.

• ezpolar that creates plots in polar coordinates.
• ezsurf to create surface plots. The ezsurfc plotting function creates combined

surface and contour plots.
• ezcontour to create contour plots. The ezcontourf function creates filled contour

plots.
• ezmesh to create mesh plots. The ezmeshc function creates combined mesh and

contour plots.

For example, plot the symbolic expression sin(6x) in Cartesian coordinates. By default,
ezplot uses the range –2π < x < 2π :

syms x

ezplot(sin(6*x))

 Create Plots

2-215

ezplot also can plot symbolic equations that contain two variables. To define an
equation, use ==. For example, plot this trigonometric equation:

syms x y

ezplot(sin(x) + sin(y) == sin(x*y))

2 Using Symbolic Math Toolbox Software

2-216

When plotting a symbolic expression, equation, or function, ezplot uses the default 60-
by-60 grid (mesh setting). The plotting function does not adapt the mesh setting around
steep parts of a function plot or around singularities. (These parts are typically less
smooth than the rest of a function plot.) Also, ezplot does not let you change the mesh
setting.

To plot a symbolic expression or function in polar coordinates r (radius) and θ (polar
angle), use the ezpolar plotting function. By default, ezpolar plots a symbolic
expression or function over the domain 0 < θ < 2π . For example, plot the expression
sin(6t) in polar coordinates:

syms t

ezpolar(sin(6*t))

 Create Plots

2-217

Plot with MATLAB Plotting Functions

When plotting a symbolic expression, you also can use the plotting functions provided
by MATLAB. For example, plot the symbolic expression ex/2 sin(10x). First, use
matlabFunction to convert the symbolic expression to a MATLAB function. The result
is a function handle h that points to the resulting MATLAB function:

syms x

h = matlabFunction(exp(x/2)*sin(10*x));

Now, plot the resulting MATLAB function by using one of the standard plotting functions
that accept function handles as arguments. For example, use the fplot function:

2 Using Symbolic Math Toolbox Software

2-218

fplot(h, [0 10])

hold on

title('exp(x/2)*sin(10*x)')

hold off

An alternative approach is to replace symbolic variables in an expression with numeric
values by using the subs function. For example, in the following expressions u and v,
substitute the symbolic variables x and y with the numeric values defined by meshgrid:

syms x y

u = sin(x^2 + y^2);

v = cos(x*y);

[X, Y] = meshgrid(-1:.1:1,-1:.1:1);

U = subs(u, [x y], {X,Y});

 Create Plots

2-219

V = subs(v, [x y], {X,Y});

Now, you can use standard MATLAB plotting functions to plot the expressions U and V.
For example, create the plot of a vector field defined by the functions U(X, Y) and V(X, Y):

quiver(X, Y, U, V)

Plot Multiple Symbolic Functions in One Graph

To plot several symbolic functions in one graph, add them to the graph sequentially. To
be able to add a new function plot to the graph that already contains a function plot,

2 Using Symbolic Math Toolbox Software

2-220

use the hold on command. This command retains the first function plot in the graph.
Without this command, the system replaces the existing plot with the new one. Now, add
new plots. Each new plot appears on top of the existing plots. While you use the hold
on command, you also can change the elements of the graph (such as colors, line styles,
line widths, titles) or add new elements. When you finish adding new function plots to a
graph and modifying the graph elements, enter the hold off command:

syms x y

ezplot(exp(x)*sin(20*x) - y, [0, 3, -20, 20])

hold on

p1 = ezplot(exp(x) - y, [0, 3, -20, 20]);

p1.Color = 'red';

p1.LineStyle = '--';

p1.LineWidth = 2;

p2 = ezplot(-exp(x) - y, [0, 3, -20, 20]);

p2.Color = 'red';

p2.LineStyle = '--';

p2.LineWidth = 2;

title('exp(x)sin(20x)')

hold off

 Create Plots

2-221

Plot Multiple Symbolic Functions in One Figure

To display several function plots in one figure without overlapping, divide a figure
window into several rectangular panes (tiles). Then, you can display each function plot in
its own pane. For example, you can assign different values to symbolic parameters of a
function, and plot the function for each value of a parameter. Collecting such plots in one
figure can help you compare the plots. To display multiple plots in the same window, use
the subplot command:

subplot(m,n,p)

This command partitions the figure window into an m-by-n matrix of small subplots
and selects the subplot p for the current plot. MATLAB numbers the subplots along the

2 Using Symbolic Math Toolbox Software

2-222

first row of the figure window, then the second row, and so on. For example, plot the
expression sin(x^2 + y^2)/a for the following four values of the symbolic parameter
a:

syms x y

z = x^2 + y^2;

subplot(2, 2, 1)

ezsurf(sin(z/100))

subplot(2, 2, 2)

ezsurf(sin(z/50))

subplot(2, 2, 3)

ezsurf(sin(z/20))

subplot(2, 2, 4)

ezsurf(sin(z/10))

 Create Plots

2-223

Combine Symbolic Function Plots and Numeric Data Plots

The combined graphical capabilities of MATLAB and the Symbolic Math Toolbox
software let you plot numeric data and symbolic functions in one graph. Suppose, you
have two discrete data sets, x and y. Use the scatter plotting function to plot these data
sets as a collection of points with coordinates (x1, y1), (x2, y2), ..., (x3, y3):

x = 0:pi/10:4*pi;

y = sin(x) + (-1).^randi(10, 1, 41).*rand(1, 41)./2;

scatter(x, y)

2 Using Symbolic Math Toolbox Software

2-224

Now, suppose you want to plot the sine function on top of the scatter plot in the same
graph. First, use the hold on command to retain the current plot in the figure. (Without
this command, the symbolic plot that you are about to create replaces the numeric
data plot.) Then, use ezplot to plot the sine function. To change the color or any other
property of the plot, create the handle for the ezplot function call, and then use the set
function:

hold on

syms t

ezplot(sin(t), [0 4*pi])

hold off

 Create Plots

2-225

MATLAB provides the plotting functions that simplify the process of generating spheres,
cylinders, ellipsoids, and so on. The Symbolic Math Toolbox software lets you create
a symbolic function plot in the same graph with these volumes. For example, use
the following commands to generate the spiral function plot wrapped around the top
hemisphere. The animate option switches the ezplot3 function to animation mode. The
red dot on the resulting graph moves along the spiral:

syms t

x = (1-t)*sin(100*t);

y = (1-t)*cos(100*t);

z = sqrt(1 - x^2 - y^2);

ezplot3(x, y, z, [0 1], 'animate')

title('Symbolic Parametric Plot')

2 Using Symbolic Math Toolbox Software

2-226

Add the sphere with radius 1 and the center at (0, 0, 0) to this graph. The sphere
function generates the required sphere, and the mesh function creates a mesh plot for
that sphere. Combining the plots clearly shows that the symbolic parametric function
plot is wrapped around the top hemisphere:

hold on

[X,Y,Z] = sphere;

mesh(X, Y, Z)

colormap(gray)

title('Symbolic Parametric Plot and a Sphere')

hold off

 Create Plots

2-227

2 Using Symbolic Math Toolbox Software

2-228

Explore Function Plots
Plotting a symbolic function can help you visualize and explore the features of the
function. Graphical representation of a symbolic function can also help you communicate
your ideas or results. MATLAB displays a graph in a special window called a figure
window. This window provides interactive tools for further exploration of a function or
data plot.

 Explore Function Plots

2-229

Interactive data exploration tools are available in the Figure Toolbar and also from the
Tools menu. By default, a figure window displays one toolbar that provides shortcuts to
the most common operations. You can enable two other toolbars from the View menu.
When exploring symbolic function plots, use the same operations as you would for the
numeric data plots. For example:

•
Zoom in and out on particular parts of a graph (). Zooming allows you to see
small features of a function plot. Zooming behaves differently for 2-D or 3-D views.

•
Shift the view of the graph with the pan tool (). Panning is useful when you have
zoomed in on a graph and want to move around the plot to view different portions.

•
Rotate 3-D graphs (). Rotating 3-D graphs allows you to see more features of the
surface and mesh function plots.

• Display particular data values on a graph and export them to MATLAB workspace

variables ().

2 Using Symbolic Math Toolbox Software

2-230

Edit Graphs

MATLAB supports the following two approaches for editing graphs:

• Interactive editing lets you use the mouse to select and edit objects on a graph.
• Command-line editing lets you use MATLAB commands to edit graphs.

These approaches work for graphs that display numeric data plots, symbolic function
plots, or combined plots.

To enable the interactive plot editing mode in the MATLAB figure window, click the Edit

Plot button () or select Tools > Edit Plot from the main menu. If you enable plot
editing mode in the MATLAB figure window, you can perform point-and-click editing of
your graph. In this mode, you can modify the appearance of a graphics object by double-
clicking the object and changing the values of its properties.

The complete collection of properties is accessible through a graphical user interface
called the Property Editor. To open a graph in the Property Editor window:

1 Enable plot editing mode in the MATLAB figure window.
2 Double-click any element on the graph.

If you prefer to work from the MATLAB command line or if you want to create a code file,
you can edit graphs by using MATLAB plotting commands. For details, see “2-D and 3-
D Plots”. Also, you can combine the interactive and command-line editing approaches to
achieve the look you want for the graphs you create.

 Save Graphs

2-231

Save Graphs

After you create, edit, and explore a function plot, you might want to save the result.
MATLAB provides three different ways to save graphs:

• Save a graph as a MATLAB FIG-file (a binary format). The FIG-file stores all
information about a graph, including function plots, graph data, annotations, data
tips, menus and other controls. You can open the FIG-file only with MATLAB.

• Export a graph to a different file format. When saving a graph, you can choose a
file format other than FIG. For example, you can export your graphs to EPS, JPEG,
PNG, BMP, TIFF, PDF, and other file formats. You can open the exported file in an
appropriate application.

• Print a graph on paper or print it to file. To ensure the correct plot size, position,
alignment, paper size and orientation, use Print Preview.

• Generate a MATLAB file from a graph. You can use the generated code to reproduce
the same graph or create a similar graph using different data. This approach is useful
for generating MATLAB code for work that you have performed interactively with the
plotting tools.

For details, see “Printing and Saving”.

2 Using Symbolic Math Toolbox Software

2-232

Generate C or Fortran Code

You can generate C or Fortran code fragments from a symbolic expression, or generate
files containing code fragments, using the ccode and fortran functions. These code
fragments calculate numerical values as if substituting numbers for variables in the
symbolic expression.

To generate code from a symbolic expression g, enter either ccode(g) or fortran(g).

For example:

syms x y

z = 30*x^4/(x*y^2 + 10) - x^3*(y^2 + 1)^2;

fortran(z)

ans =

 t0 = (x**4*3.0D1)/(x*y**2+1.0D1)-x**3*(y**2+1.0D0)**2

ccode(z)

ans =

 t0 = ((x*x*x*x)*3.0E1)/(x*(y*y)+1.0E1)-(x*x*x)*pow(y*y+1.0,2.0);

To generate a file containing code, either enter ccode(g,'file','filename') or
fortran(g,'file','filename'). For the example above,

fortran(z, 'file', 'fortrantest')

generates a file named fortrantest in the current folder. fortrantest consists of the
following:

 t12 = x**2

 t13 = y**2

 t14 = t13+1

 t0 = (t12**2*30)/(t13*x+10)-t12*t14**2*x

Similarly, the command

ccode(z,'file','ccodetest')

generates a file named ccodetest that consists of the lines

 t16 = x*x;

 t17 = y*y;

 Generate C or Fortran Code

2-233

 t18 = t17+1.0;

 t0 = ((t16*t16)*3.0E1)/(t17*x+1.0E1)-t16*(t18*t18)*x;

ccode and fortran generate many intermediate variables. This is called optimized
code. MATLAB generates intermediate variables as a lowercase letter t followed by an
automatically generated number, for example t32. Intermediate variables can make
the resulting code more efficient by reusing intermediate expressions (such as t12 in
fortrantest, and t16 in ccodetest). They can also make the code easier to read by
keeping expressions short.

If you work in the MuPAD Notebook app, see generate::C and generate::fortran.

2 Using Symbolic Math Toolbox Software

2-234

Generate MATLAB Functions

You can use matlabFunction to generate a MATLAB function handle that calculates
numerical values as if you were substituting numbers for variables in a symbolic
expression. Also, matlabFunction can create a file that accepts numeric arguments
and evaluates the symbolic expression applied to the arguments. The generated file is
available for use in any MATLAB calculation, whether or not the computer running the
file has a license for Symbolic Math Toolbox functions.

If you work in the MuPAD Notebook app, see “Create MATLAB Functions from MuPAD
Expressions” on page 3-47.

Generating a Function Handle

matlabFunction can generate a function handle from any symbolic expression. For
example:

syms x y

r = sqrt(x^2 + y^2);

ht = matlabFunction(tanh(r))

ht =

 @(x,y)tanh(sqrt(x.^2+y.^2))

You can use this function handle to calculate numerically:

ht(.5,.5)

ans =

 0.6089

You can pass the usual MATLAB double-precision numbers or matrices to the function
handle. For example:

cc = [.5,3];

dd = [-.5,.5];

ht(cc, dd)

ans =

 0.6089 0.9954

 Generate MATLAB Functions

2-235

Control the Order of Variables

matlabFunction generates input variables in alphabetical order from a symbolic
expression. That is why the function handle in “Generating a Function Handle” on page
2-234 has x before y:

ht = @(x,y)tanh((x.^2 + y.^2).^(1./2))

You can specify the order of input variables in the function handle using the vars option.
You specify the order by passing a cell array of strings or symbolic arrays, or a vector of
symbolic variables. For example:

syms x y z

r = sqrt(x^2 + 3*y^2 + 5*z^2);

ht1 = matlabFunction(tanh(r), 'vars', [y x z])

ht1 =

 @(y,x,z)tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))

ht2 = matlabFunction(tanh(r), 'vars', {'x', 'y', 'z'})

ht2 =

 @(x,y,z)tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))

ht3 = matlabFunction(tanh(r), 'vars', {'x', [y z]})

ht3 =

 @(x,in2)tanh(sqrt(x.^2+in2(:,1).^2.*3.0+in2(:,2).^2.*5.0))

Generate a File

You can generate a file from a symbolic expression, in addition to a function handle.
Specify the file name using the file option. Pass a string containing the file name or the
path to the file. If you do not specify the path to the file, matlabFunction creates this
file in the current folder.

This example generates a file that calculates the value of the symbolic matrix F for
double-precision inputs t, x, and y:

syms x y t

z = (x^3 - tan(y))/(x^3 + tan(y));

w = z/(1 + t^2);

F = [w,(1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];

matlabFunction(F,'file','testMatrix.m')

2 Using Symbolic Math Toolbox Software

2-236

The file testMatrix.m contains the following code:

function F = testMatrix(t,x,y)

%TESTMATRIX

% F = TESTMATRIX(T,X,Y)

t2 = x.^2;

t3 = tan(y);

t4 = t2.*x;

t5 = t.^2;

t6 = t5 + 1;

t7 = 1./y;

t8 = t6.*t7.*x;

t9 = t3 + t4;

t10 = 1./t9;

F = [-(t10.*(t3 - t4))./t6,t8; t8,- t10.*(3.*t3 - 3.*t2.*x) - 1];

matlabFunction generates many intermediate variables. This is called optimized
code. MATLAB generates intermediate variables as a lowercase letter t followed by an
automatically generated number, for example t32. Intermediate variables can make the
resulting code more efficient by reusing intermediate expressions (such as t4, t6, t8, t9,
and t10 in the calculation of F). Using intermediate variables can make the code easier
to read by keeping expressions short.

If you don't want the default alphabetical order of input variables, use the vars option to
control the order. Continuing the example,

matlabFunction(F,'file','testMatrix.m','vars',[x y t])

generates a file equivalent to the previous one, with a different order of inputs:

function F = testMatrix(x,y,t)

...

Name Output Variables

By default, the names of the output variables coincide with the names you use calling
matlabFunction. For example, if you call matlabFunction with the variable F

syms x y t

z = (x^3 - tan(y))/(x^3 + tan(y));

w = z/(1 + t^2);

F = [w, (1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];

 Generate MATLAB Functions

2-237

matlabFunction(F,'file','testMatrix.m','vars',[x y t])

the generated name of an output variable is also F:

function F = testMatrix(x,y,t)

...

If you call matlabFunction using an expression instead of individual variables

syms x y t

z = (x^3 - tan(y))/(x^3 + tan(y));

w = z/(1 + t^2);

F = [w,(1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];

matlabFunction(w + z + F,'file','testMatrix.m',...

'vars',[x y t])

the default names of output variables consist of the word out followed by the number, for
example:

function out1 = testMatrix(x,y,t)

...

To customize the names of output variables, use the output option:

syms x y z

r = x^2 + y^2 + z^2;

q = x^2 - y^2 - z^2;

f = matlabFunction(r, q, 'file', 'new_function',...

'outputs', {'name1','name2'})

The generated function returns name1 and name2 as results:

function [name1,name2] = new_function(x,y,z)

...

Convert MuPAD Expressions

You can convert a MuPAD expression or function to a MATLAB function:

syms x y

f = evalin(symengine, 'arcsin(x) + arccos(y)');

matlabFunction(f, 'file', 'new_function');

The created file contains the same expressions written in the MATLAB language:

function f = new_function(x,y)

2 Using Symbolic Math Toolbox Software

2-238

%NEW_FUNCTION

% F = NEW_FUNCTION(X,Y)

f = asin(x) + acos(y);

Tip matlabFunction cannot correctly convert some MuPAD expressions to MATLAB
functions. These expressions do not trigger an error message. When converting a MuPAD
expression or function that is not on the MATLAB vs. MuPAD Expressions list, always
check the results of conversion. To verify the results, execute the resulting function.

 Generate MATLAB Function Blocks

2-239

Generate MATLAB Function Blocks

Using matlabFunctionBlock, you can generate a MATLAB Function block. The
generated block is available for use in Simulink models, whether or not the computer
running the simulations has a license for Symbolic Math Toolbox.

If you work in the MuPAD Notebook app, see “Create MATLAB Function Blocks from
MuPAD Expressions” on page 3-50.

Generate and Edit a Block

Suppose, you want to create a model involving the symbolic expression r = sqrt(x^2 +
y^2). Before you can convert a symbolic expression to a MATLAB Function block, create
an empty model or open an existing one:

new_system('my_system')

open_system('my_system')

Create a symbolic expression and pass it to the matlabFunctionBlock command. Also
specify the block name:

syms x y

r = sqrt(x^2 + y^2);

matlabFunctionBlock('my_system/my_block', r)

If you use the name of an existing block, the matlabFunctionBlock command replaces
the definition of an existing block with the converted symbolic expression.

You can open and edit the generated block. To open a block, double-click it.

function r = my_block(x,y)

%#codegen

r = sqrt(x.^2+y.^2);

Control the Order of Input Ports

matlabFunctionBlock generates input variables and the corresponding input ports in
alphabetical order from a symbolic expression. To change the order of input variables,
use the vars option:

syms x y

2 Using Symbolic Math Toolbox Software

2-240

mu = sym('mu');

dydt = -x - mu*y*(x^2 - 1);

matlabFunctionBlock('my_system/vdp', dydt,...

'vars', [y mu x])

Name the Output Ports

By default, matlabFunctionBlock generates the names of the output ports as the word
out followed by the output port number, for example, out3. The output option allows
you to use the custom names of the output ports:

syms x y

mu = sym('mu');

dydt = -x - mu*y*(x^2 - 1);

matlabFunctionBlock('my_system/vdp', dydt,...

'outputs',{'name1'})

Convert MuPAD Expressions

You can convert a MuPAD expression or function to a MATLAB Function block:

syms x y

f = evalin(symengine, 'arcsin(x) + arccos(y)');

matlabFunctionBlock('my_system/my_block', f)

The resulting block contains the same expressions written in the MATLAB language:

function f = my_block(x,y)

%#codegen

f = asin(x) + acos(y);

Tip Some MuPAD expressions cannot be correctly converted to a block. These expressions
do not trigger an error message. When converting a MuPAD expression or function
that is not on the MATLAB vs. MuPAD Expressions list, always check the results of
conversion. To verify the results, you can run the simulation containing the resulting
block.

 Generate Simscape Equations

2-241

Generate Simscape Equations

Simscape software extends the Simulink product line with tools for modeling and
simulating multidomain physical systems, such as those with mechanical, hydraulic,
pneumatic, thermal, and electrical components. Unlike other Simulink blocks, which
represent mathematical operations or operate on signals, Simscape blocks represent
physical components or relationships directly. With Simscape blocks, you build a model
of a system just as you would assemble a physical system. For more information about
Simscape software see “Simscape”.

You can extend the Simscape modeling environment by creating custom components.
When you define a component, use the equation section of the component file to establish
the mathematical relationships among a component's variables, parameters, inputs,
outputs, time, and the time derivatives of each of these entities. The Symbolic Math
Toolbox and Simscape software let you perform symbolic computations and use the
results of these computations in the equation section. The simscapeEquation function
translates the results of symbolic computations to Simscape language equations.

If you work in the MuPAD Notebook app, see “Create Simscape Equations from MuPAD
Expressions” on page 3-52.

Convert Algebraic and Differential Equations

Suppose, you want to generate a Simscape equation from the solution of the following
ordinary differential equation. As a first step, use the dsolve function to solve the
equation:

syms a y(t)

Dy = diff(y);

s = dsolve(diff(y, 2) == -a^2*y, y(0) == 1, Dy(pi/a) == 0);

s = simplify(s)

The solution is:

s =

cos(a*t)

Then, use the simscapeEquation function to rewrite the solution in the Simscape
language:

simscapeEquation(s)

2 Using Symbolic Math Toolbox Software

2-242

simscapeEquation generates the following code:

ans =

s == cos(a*time);

The variable time replaces all instances of the variable t except for derivatives with
respect to t. To use the generated equation, copy the equation and paste it to the equation
section of the Simscape component file. Do not copy the automatically generated variable
ans and the equal sign that follows it.

simscapeEquation converts any derivative with respect to the variable t to the
Simscape notation, X.der, where X is the time-dependent variable. For example,
convert the following differential equation to a Simscape equation. Also, here you
explicitly specify the left and the right sides of the equation by using the syntax
simscapeEquation(LHS, RHS):

syms a x(t)

simscapeEquation(diff(x), -a^2*x)

ans =

x.der == -a^2*x;

simscapeEquation also translates piecewise expressions to the Simscape language. For
example, the result of the following Fourier transform is a piecewise function:

syms v u x

assume(x, 'real')

f = exp(-x^2*abs(v))*sin(v)/v;

s = fourier(f, v, u)

s =

piecewise([x ~= 0, atan((u + 1)/x^2) - atan((u - 1)/x^2)])

From this symbolic piecewise equation, simscapeEquation generates valid code for the
equation section of a Simscape component file:

simscapeEquation(s)

ans =

if (x ~= 0.0)

 s == -atan(1.0/x^2*(u-1.0))+atan(1.0/x^2*(u+1.0));

 else

 s == NaN;

 end

 Generate Simscape Equations

2-243

Clear the assumption that x is real:

syms x clear

Convert MuPAD Equations

If you perform symbolic computations in the MuPAD Notebook app and want to convert
the results to Simscape equations, use the generate::Simscape function in MuPAD.

Limitations

The equation section of a Simscape component file supports a limited number of
functions. For details and the list of supported functions, see Simscape equations. If
a symbolic equation contains the functions that the equation section of a Simscape
component file does not support. simscapeEquation cannot correctly convert these
equations to Simscape equations. Such expressions do not trigger an error message. The
following types of expressions are prone to invalid conversion:

• Expressions with infinities
• Expressions returned by evalin and feval

3

MuPAD in Symbolic Math Toolbox

• “MuPAD Engines and MATLAB Workspace” on page 3-2
• “Create MuPAD Notebooks” on page 3-3
• “Open MuPAD Notebooks” on page 3-6
• “Save MuPAD Notebooks” on page 3-12
• “Evaluate MuPAD Notebooks from MATLAB” on page 3-13
• “Close MuPAD Notebooks from MATLAB” on page 3-16
• “Edit MuPAD Code in MATLAB Editor” on page 3-18
• “Notebook Files and Program Files” on page 3-20
• “Source Code of the MuPAD Library Functions” on page 3-21
• “Differences Between MATLAB and MuPAD Syntax” on page 3-22
• “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25
• “Reserved Variable and Function Names” on page 3-29
• “Call Built-In MuPAD Functions from MATLAB” on page 3-31
• “Computations in MATLAB Command Window vs. MuPAD Notebook App” on page

3-34
• “Use Your Own MuPAD Procedures” on page 3-38
• “Clear Assumptions and Reset the Symbolic Engine” on page 3-43
• “Create MATLAB Functions from MuPAD Expressions” on page 3-47
• “Create MATLAB Function Blocks from MuPAD Expressions” on page 3-50
• “Create Simscape Equations from MuPAD Expressions” on page 3-52

3 MuPAD in Symbolic Math Toolbox

3-2

MuPAD Engines and MATLAB Workspace

A MuPAD engine is a separate process that runs on your computer in addition to a
MATLAB process. A MuPAD engine starts when you first call a function that needs a
symbolic engine, such as syms. Symbolic Math Toolbox functions that use the symbolic
engine use standard MATLAB syntax, such as y = int(x^2).

Conceptually, each MuPAD notebook has its own symbolic engine, with an associated
workspace. You can have any number of MuPAD notebooks open simultaneously.

One engine exists for use by
Symbolic Math Toolbox.

Each MuPAD notebook also
has its own engine.

MATLAB workspace MuPAD notebook 2MuPAD notebook 1

MuPAD engine

Engine 1

MuPAD engine

Engine 2

MuPAD engine

Engine 3

Engine
Workspace

Engine
Workspace

Engine
Workspace

The engine workspace associated with the MATLAB workspace is generally empty,
except for assumptions you make about variables. For details, see “Clear Assumptions
and Reset the Symbolic Engine” on page 3-43.

 Create MuPAD Notebooks

3-3

Create MuPAD Notebooks

Before creating a MuPAD notebook, it is best to decide which interface you intend to use
primarily for your task. The two approaches are:

• Perform your computations in the MATLAB Command Window using MuPAD
notebooks as an auxiliary tool. This approach implies that you create a MuPAD
notebook, and then execute it, transfer data and results, or close it from the MATLAB
Command Window.

• Perform your computations and obtain the results in the MuPAD Notebook app.
This approach implies that you use the MATLAB Command Window only to access
MuPAD, but do not intend to copy data and results between MATLAB and MuPAD.

If you created a MuPAD notebook without creating a handle, and then realized
that you need to transfer data and results between MATLAB and MuPAD, use
allMuPADNotebooks to create a handle to this notebook:

mupad

nb = allMuPADNotebooks

nb =

Notebook1

This approach does not require saving the notebook. Alternatively, you can save the
notebook and then open it again, creating a handle.

If You Need Communication Between Interfaces

If you perform computations in both interfaces, use handles to notebooks. The toolbox
uses this handle for communication between the MATLAB workspace and the MuPAD
notebook.

To create a blank MuPAD notebook from the MATLAB Command Window, type

nb = mupad

The variable nb is a handle to the notebook. You can use any variable name instead of
nb.

To create several notebooks, use this syntax repeatedly, assigning a notebook handle to
different variables. For example, use the variables nb1, nb2, and so on.

3 MuPAD in Symbolic Math Toolbox

3-4

If You Use MATLAB to Access MuPAD

Use the Apps Tab

To create a new blank notebook:

1 On the MATLAB Toolstrip, click the Apps tab.
2 On the Apps tab, click the down arrow at the end of the Apps section.
3 Under Math, Statistics and Optimization, click the MuPAD Notebook button.

To create several MuPAD notebooks, click the MuPAD Notebook button repeatedly.

Use the mupad Command

To create a new blank notebook, type mupad in the MATLAB Command Window.

Use the Welcome to MuPAD Dialog Box

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open
an existing notebook or program file, and access documentation. To open this dialog box,
type mupadwelcome in the MATLAB Command Window.

 Create MuPAD Notebooks

3-5

Create New Notebooks from MuPAD

If you already opened a notebook, you can create new notebooks and program files
without switching to the MATLAB Command Window:

• To create a new notebook, select File > New Notebook from the main menu or use
the toolbar.

• To open a new Editor window, where you can create a program file, select File > New
Editor from the main menu or use the toolbar.

3 MuPAD in Symbolic Math Toolbox

3-6

Open MuPAD Notebooks

Before opening a MuPAD notebook, it is best to decide which interface you intend to use
primarily for your task. The two approaches are:

• Perform your computations in the MATLAB Command Window using MuPAD
notebooks as an auxiliary tool. This approach implies that you open a MuPAD
notebook, and then execute it, transfer data and results, or close it from the MATLAB
Command Window. If you perform computations in both interfaces, use handles to
notebooks. The toolbox uses these handles for communication between the MATLAB
workspace and the MuPAD notebook.

• Perform your computations and obtain the results in MuPAD. This approach implies
that you use the MATLAB Command Window only to access the MuPAD Notebook
app, but do not intend to copy data and results between MATLAB and MuPAD. If you
use the MATLAB Command Window only to open a notebook, and then perform all
your computations in that notebook, you can skip using a handle.

Tip MuPAD notebook files open in an unevaluated state. In other words, the notebook
is not synchronized with its engine when it opens. To synchronize a notebook with
its engine, select Notebook > Evaluate All or use evaluateMuPADNotebook. For
details, see “Evaluate MuPAD Notebooks from MATLAB” on page 3-13.

If you opened a MuPAD notebook without creating a handle, and then realized
that you need to transfer data and results between MATLAB and MuPAD, use
allMuPADNotebooks to create a handle to this notebook:

mupad

nb = allMuPADNotebooks

nb =

Notebook1

This approach does not require saving changes in the notebook. Alternatively, you can
save the notebook and open it again, this time creating a handle.

If You Need Communication Between Interfaces

The following commands are also useful if you lose the handle to a notebook, in which
case, you can save the notebook file and then reopen it with a new handle.

 Open MuPAD Notebooks

3-7

Use the mupad or openmn Command

Open an existing MuPAD notebook file and create a handle to it by using mupad or
openmn in the MATLAB Command Window:

nb = mupad('file_name')

nb1 = openmn('file_name')

Here, file_name must be a full path, such as H:\Documents\Notes\myNotebook.mn,
unless the notebook is in the current folder.

To open a notebook and automatically jump to a particular location, create a link
target at that location inside a notebook, and refer to it when opening a notebook. For
information about creating link targets, see “Work with Links”. To refer to a link target
when opening a notebook, enter:

nb = mupad('file_name#linktarget_name')

nb = openmn('file_name#linktarget_name')

Use the open Command

Open an existing MuPAD notebook file and create a handle to it by using the open
function in the MATLAB Command Window:

nb1 = open('file_name')

Here, file_name must be a full path, such as H:\Documents\Notes\myNotebook.mn,
unless the notebook is in the current folder.

If You Use MATLAB to Access MuPAD

Double-Click the File Name

You can open an existing MuPAD notebook, program file, or graphic file (.xvc or .xvz)
by double-clicking the file name. The system opens the file in the appropriate interface.

Use the mupad or openmn Command

Open an existing MuPAD notebook file by using the mupad or openmn function in the
MATLAB Command Window:

3 MuPAD in Symbolic Math Toolbox

3-8

mupad('file_name')

openmn('file_name')

Here, file_name must be a full path, such as H:\Documents\Notes\myNotebook.mn,
unless the notebook is in the current folder.

To open a notebook and automatically jump to a particular location, create a link
target at that location inside a notebook, and refer to it when opening a notebook. For
information about creating link targets, see “Work with Links”. To refer to a link target
when opening a notebook, enter:

mupad('file_name#linktarget_name')

openmn('file_name#linktarget_name')

Use the open Command

Open an existing MuPAD notebook file by using open in the MATLAB Command
Window:

open('file_name')

Here, file_name must be a full path, such as H:\Documents\Notes\myNotebook.mn,
unless the notebook is in the current folder.

Use the Welcome to MuPAD Dialog Box

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open
an existing notebook or program file, and access documentation. To open this dialog box,
type mupadwelcome in the MATLAB Command Window.

 Open MuPAD Notebooks

3-9

Open Notebooks in MuPAD

If you already opened a notebook, you can start new notebooks and open existing ones
without switching to the MATLAB Command Window. To open an existing notebook,
select File > Open from the main menu or use the toolbar. Also, you can open the list of
notebooks you recently worked with.

Open MuPAD Program Files and Graphics

Besides notebooks, MuPAD lets you create and use program files (.mu) and graphic files
(.xvc or .xvz). Also, you can use the MuPAD Debugger to diagnose problems in your
MuPAD code.

Do not use a handle when opening program files and graphic files because there is no
communication between these files and the MATLAB Command Window.

Double-Click the File Name

You can open an existing MuPAD notebook, program file, or graphic file by double-
clicking the file name. The system opens the file in the appropriate interface.

3 MuPAD in Symbolic Math Toolbox

3-10

Use the openmn Command

Symbolic Math Toolbox provides these functions for opening MuPAD files in the
interfaces with which these files are associated:

• openmu opens a program file with the extension .mu in the MATLAB Editor.
• openxvc opens an XVC graphic file in the MuPAD Graphics window.
• openxvz opens an XVZ graphic file in the MuPAD Graphics window.

For example, open an existing MuPAD program file by using the openmu function in the
MATLAB Command Window:

openmu('H:\Documents\Notes\myProcedure.mu')

You must specify a full path unless the file is in the current folder.

Use the open Command

Open an existing MuPAD file by using open in the MATLAB Command Window:

open('file_name')

Here, file_name must be a full path, such as H:\Documents\Notes
\myProcedure.mu, unless the notebook is in the current folder.

Use the Welcome to MuPAD Dialog Box

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open
an existing notebook or program file, and access documentation. To open this dialog box,
type mupadwelcome in the MATLAB Command Window.

 Open MuPAD Notebooks

3-11

Open Program Files and Graphics from MuPAD

If you already opened a notebook, you can create new notebooks and program files and
open existing ones without switching to the MATLAB Command Window. To open an
existing file, select File > Open from the main menu or use the toolbar.

You also can open the Debugger window from within a MuPAD notebook. For details, see
“Open the Debugger”.

Note: You cannot access the MuPAD Debugger from the MATLAB Command Window.

3 MuPAD in Symbolic Math Toolbox

3-12

Save MuPAD Notebooks

To save changes in a notebook:

1 Switch to the notebook. (You cannot save changes in a MuPAD notebook from the
MATLAB Command Window.)

2 Select File > Save or File > Save As from the main menu or use the toolbar.

If you want to save and close a notebook, you can use the close function in the MATLAB
Command Window. If the notebook has been modified, then MuPAD brings up the dialog
box asking if you want to save changes. Click Yes to save the modified notebook.

Note: You can lose data when saving a MuPAD notebook. A notebook saves its inputs
and outputs, but not the state of its engine. In particular, MuPAD does not save variables
copied into a notebook using setVar(nb,...).

 Evaluate MuPAD Notebooks from MATLAB

3-13

Evaluate MuPAD Notebooks from MATLAB
When you open a saved MuPAD notebook file, the notebook displays the results
(outputs), but the engine does not “remember” them. For example, suppose you saved the
notebook myFile1.mn in your current folder and then opened it:

nb = mupad('myFile1.mn');

Suppose that myFile1.mn performs these computations.

Open that file and try to use the value w without synchronizing the notebook with its
engine. The variable w currently has no assigned value.

3 MuPAD in Symbolic Math Toolbox

3-14

To synchronize a MuPAD notebook with its engine, you must evaluate the notebook as
follows:

1 Open the notebooks that you want to evaluate. Symbolic Math Toolbox cannot
evaluate MuPAD notebooks without opening them.

2 Use evaluateMuPADNotebook. Alternatively, you can evaluate the notebook by
selecting Notebook > Evaluate All from the main menu of the MuPAD notebook.

3 Perform your computations using data and results obtained from MuPAD notebooks.
4 Close the notebooks. This step is optional.

For example, evaluate the notebook myFile1.mn located in your current folder:

evaluateMuPADNotebook(nb)

Now, you can use the data and results from that notebook in your computations. For
example, copy the variables y and w to the MATLAB workspace:

y = getVar(nb,'y')

w = getVar(nb,'w')

y =

sin(x)/(sin(x)^2 + 1)

w =

 Evaluate MuPAD Notebooks from MATLAB

3-15

sin(x)/(sin(x)^2 - sin(x) + 1)

You can evaluate several notebooks in a single call by passing a vector of notebook
handles to evaluateMuPADNotebook:

nb1 = mupad('myFile1.mn');

nb2 = mupad('myFile2.mn');

evaluateMuPADNotebook([nb1,nb2])

Also, you can use allMuPADNotebooks that returns handles to all currently open
notebooks. For example, if you want to evaluate the notebooks with the handles nb1 and
nb2, and no other notebooks are currently open, then enter:

evaluateMuPADNotebook(allMuPADNotebooks)

If any calculation in a notebook throws an error, then evaluateMuPADNotebook stops.
The error messages appear in the MATLAB Command Window and in the MuPAD
notebook. When you evaluate several notebooks and one of them throws an error,
evaluateMuPADNotebook does not proceed to the next notebook. It stops and displays
an error message immediately. If you want to skip calculations that cause errors and
evaluate all input regions that run without errors, use 'IgnoreErrors',true:

evaluateMuPADNotebook(allMuPADNotebooks,'IgnoreErrors',true)

3 MuPAD in Symbolic Math Toolbox

3-16

Close MuPAD Notebooks from MATLAB

To close notebooks from the MATLAB Command Window, use the close function and
specify the handle to that notebook. For example, create the notebook with the handle
nb:

nb = mupad;

Now, close the notebook:

close(nb)

If you do not have a handle to the notebook (for example, if you created it without
specifying a handle or accidentally deleted the handle later), use allMuPADNotebooks
to return handles to all currently open notebooks. This function returns a vector of
handles. For example, create three notebooks without handles:

mupad

mupad

mupad

Use allMuPADNotebooks to get a vector of handles to these notebooks:

nbhandles = allMuPADNotebooks

nbhandles =

Notebook1

Notebook2

Notebook3

Close the first notebook (Notebook1):

close(nbhandles(1))

Close all notebooks:

close(allMuPADNotebooks)

If you modify a notebook and then try to close it, MuPAD brings up the dialog box asking
if you want to save changes. To suppress this dialog box, call close with the 'force'
flag. You might want to use this flag if your task requires opening many notebooks,
evaluating them, and then closing them. For example, suppose that you want to evaluate
the notebooks myFile1.mn, myFile2.mn, ..., myFile10.mn located in your current
folder. First, open the notebooks. If you do not have any other notebooks open, you can

 Close MuPAD Notebooks from MATLAB

3-17

skip specifying the handles and later use allMuPADNotebooks. Otherwise, do not forget
to specify the handles.

mupad('myFile1.mn')

mupad('myFile2.mn')

...

mupad('myFile10.mn')

Evaluate all notebooks:

evaluateMuPADNotebook(allMuPADNotebooks)

When you evaluate MuPAD notebooks, you also modify them. Therefore, when you try to
close them, the dialog box asking you to save changes will appear for each notebook. To
suppress the dialog box and discard changes, use the 'force' flag:

close(allMuPADNotebooks,'force')

3 MuPAD in Symbolic Math Toolbox

3-18

Edit MuPAD Code in MATLAB Editor

The default interface for editing MuPAD code is the MATLAB Editor. Alternatively,
you can create and edit your code in any text editor. The MATLAB Editor automatically
formats the code and, therefore, helps you avoid errors, or at least reduce their number.

Note: The MATLAB Editor cannot evaluate or debug MuPAD code.

To open an existing MuPAD file with the extension .mu in the MATLAB Editor, double-
click the file name or select Open and navigate to the file.

After editing the code, save the file. Note that the extension .mu allows the Editor to
recognize and open MuPAD program files. Thus, if you intend to open the files in the
MATLAB Editor, save them with the extension .mu. Otherwise, you can specify other
extensions suitable for text files, for example, .txt or .tst.

 Edit MuPAD Code in MATLAB Editor

3-19

Comments in MuPAD Procedures

Enter a comment in a .mu file by entering the // characters. All text following the //
on the same line is ignored. The // characters do not affect text on succeeding lines. To
create a multi-line comment, start with the /* characters and end the comment with the
*/ characters. All text between these characters is ignored. You can nest comments using
/* and */.

3 MuPAD in Symbolic Math Toolbox

3-20

Notebook Files and Program Files

The two main types of files in MuPAD are:

• Notebook files, or notebooks
• Program files

A notebook file has the extension .mn and lets you store the result of the work performed
in the MuPAD Notebook app. A notebook file can contain text, graphics, and any MuPAD
commands and their outputs. A notebook file can also contain procedures and functions.

By default, a notebook file opens in the MuPAD Notebook app. Creating a new notebook
or opening an existing one does not automatically start the MuPAD engine. This means
that although you can see the results of computations as they were saved, MuPAD does
not remember evaluating them. (The “MuPAD Workspace” is empty.) You can evaluate
any or all commands after opening a notebook.

A program file is a text file that contains any code snippet that you want to store
separately from other computations. Saving a code snippet as a program file can be very
helpful when you want to use the code in several notebooks. Typically, a program file
contains a single procedure, but it also can contain one or more procedures or functions,
assignments, statements, tests, or any other valid MuPAD code.

Tip If you use a program file to store a procedure, MuPAD does not require the name of
that program file to match the name of a procedure.

The most common approach is to write a procedure and save it as a program file with the
extension .mu. This extension allows the MATLAB Editor to recognize and open the file
later. Nevertheless, a program file is just a text file. You can save a program file with any
extension that you use for regular text files.

To evaluate the commands from a program file, you must execute a program file in a
notebook. For details about executing program files, see “Read MuPAD Procedures” on
page 3-39.

 Source Code of the MuPAD Library Functions

3-21

Source Code of the MuPAD Library Functions

You can display the source code of the MuPAD built-in library functions. If you work in
the MuPAD Notebook app, enter expose(name), where name is the library function
name. The MuPAD Notebook app displays the code as plain text with the original line
breaks and indentations.

You can also display the code of a MuPAD library function in the MATLAB Command
Window. To do this, use the evalin or feval function to call the MuPAD expose
function:

sprintf(char(feval(symengine, 'expose', 'numlib::tau')))

ans =

proc(a)

 name numlib::tau;

begin

 if args(0) <> 1 then

 error(message("symbolic:numlib:IncorrectNumberOfArguments"))

 else

 if (~testtype(a, Type::Numeric)) then

 return(procname(args()))

 else

 if domtype(a) <> DOM_INT then

 error(message("symbolic:numlib:ArgumentInteger"))

 end_if

 end_if

 end_if;

 numlib::numdivisors(a)

end_proc

MuPAD also includes kernel functions written in C++. You cannot access the source code
of these functions.

3 MuPAD in Symbolic Math Toolbox

3-22

Differences Between MATLAB and MuPAD Syntax

There are several differences between MATLAB and MuPAD syntax. Be aware of which
interface you are using in order to use the correct syntax:

• Use MATLAB syntax in the MATLAB workspace, except for the functions
evalin(symengine,...) and feval(symengine,...), which use MuPAD syntax.

• Use MuPAD syntax in MuPAD notebooks.

You must define MATLAB variables before using them. However, every expression
entered in a MuPAD notebook is assumed to be a combination of symbolic variables
unless otherwise defined. This means that you must be especially careful when working
in MuPAD notebooks, since fewer of your typos cause syntax errors.

This table lists common tasks, meaning commands or functions, and how they differ in
MATLAB and MuPAD syntax.

Common Tasks in MATLAB and MuPAD Syntax

Task MATLAB Syntax MuPAD Syntax

Assignment = :=

List variables whos anames(All, User)

Numerical value of
expression

double(expression) float(expression)

Suppress output ; :

Enter matrix [x11,x12,x13;

x21,x22,x23]

matrix([[x11,x12,x13],

[x21,x22,x23]])

{a,b,c} cell array set
Auto-completion Tab Ctrl+space bar
Equality, inequality
comparison

==, ~= =, <>

The next table lists differences between MATLAB expressions and MuPAD expressions.

MATLAB vs. MuPAD Expressions

MATLAB Expression MuPAD Expression

Inf infinity

 Differences Between MATLAB and MuPAD Syntax

3-23

MATLAB Expression MuPAD Expression

pi PI

i I

NaN undefined

fix trunc

asin arcsin

acos arccos

atan arctan

asinh arcsinh

acosh arccosh

atanh arctanh

acsc arccsc

asec arcsec

acot arccot

acsch arccsch

asech arcsech

acoth arccoth

besselj besselJ

bessely besselY

besseli besselI

besselk besselK

lambertw lambertW

sinint Si

cosint Ci

eulergamma EULER

conj conjugate

catalan CATALAN

The MuPAD definition of exponential integral differs from the Symbolic Math Toolbox
counterpart.

3 MuPAD in Symbolic Math Toolbox

3-24

 Symbolic Math Toolbox Definition MuPAD Definition

Exponential
integral

expint(x) = –Ei(–x) =

exp()-
> =

•

Ú
t

t
dt x

x

 for 0

Ei(1, x).

Ei for () .x
e

t
dt x

tx

= <

-•
Ú 0

Ei(,)
exp()

.n x
xt

t

dt
n

=
-

•

Ú
1

The definitions of Ei extend to the
complex plane, with a branch cut
along the negative real axis.

 Copy Variables and Expressions Between MATLAB and MuPAD

3-25

Copy Variables and Expressions Between MATLAB and MuPAD

You can copy a variable from a MuPAD notebook to a variable in the MATLAB
workspace using a MATLAB command. Similarly, you can copy a variable or symbolic
expression in the MATLAB workspace to a variable in a MuPAD notebook using a
MATLAB command. To do either assignment, you need to know the handle to the
MuPAD notebook you want to address.

The only way to assign variables between a MuPAD notebook and the MATLAB
workspace is to open the notebook using the following syntax:

nb = mupad;

You can use any variable name for the handle nb. To open an existing notebook file, use
the following syntax:

nb = mupad('file_name');

Here file_name must be a full path unless the notebook is in the current folder. The
handle nb is used only for communication between the MATLAB workspace and the
MuPAD notebook.

• To copy a symbolic variable in the MATLAB workspace to a variable in the MuPAD
notebook engine with the same name, enter this command in the MATLAB Command
Window:

setVar(notebook_handle,'MuPADvar',MATLABvar)

For example, if nb is the handle to the notebook and z is the variable, enter:

setVar(nb,'z',z)

There is no indication in the MuPAD notebook that variable z exists. To check that it
exists, enter the command anames(All, User) in the notebook.

• To assign a symbolic expression to a variable in a MuPAD notebook, enter:

setVar(notebook_handle,'variable',expression)

at the MATLAB command line. For example, if nb is the handle to the notebook,
exp(x) - sin(x) is the expression, and z is the variable, enter:

syms x

3 MuPAD in Symbolic Math Toolbox

3-26

setVar(nb,'z',exp(x) - sin(x))

For this type of assignment, x must be a symbolic variable in the MATLAB
workspace.

Again, there is no indication in the MuPAD notebook that variable z exists. Check
that it exists by entering this command in the notebook:

anames(All, User)

• To copy a symbolic variable in a MuPAD notebook to a variable in the MATLAB
workspace, enter in the MATLAB Command Window:

MATLABvar = getVar(notebook_handle,'variable');

For example, if nb is the handle to the notebook, z is the variable in the MuPAD
notebook, and u is the variable in the MATLAB workspace, enter:

u = getVar(nb,'z')

Communication between the MATLAB workspace and the MuPAD notebook occurs in
the notebook's engine. Therefore, variable z must be synchronized into the notebook's
MuPAD engine before using getVar, and not merely displayed in the notebook. If you
try to use getVar to copy an undefined variable z in the MuPAD engine, the resulting
MATLAB variable u is empty. For details, see “Evaluate MuPAD Notebooks from
MATLAB” on page 3-13.

Tip Do all copying and assignments from the MATLAB workspace, not from a MuPAD
notebook.

 Copy Variables and Expressions Between MATLAB and MuPAD

3-27

setvar(nb, ‘z’, z)

Copy and Paste Using the System Clipboard

You can also copy and paste between notebooks and the MATLAB workspace using
standard editing commands. If you copy a result in a MuPAD notebook to the system
clipboard, you might get the text associated with the expression, or a picture, depending
on your operating system and application support.

For example, consider this MuPAD expression:

Select the output with the mouse and copy it to the clipboard:

Paste this into the MATLAB workspace. The result is text:

exp(x)/(x^2 + 1)

3 MuPAD in Symbolic Math Toolbox

3-28

If you paste it into Microsoft® WordPad on a Windows® system, the result is a picture.

 Reserved Variable and Function Names

3-29

Reserved Variable and Function Names

Both MATLAB and MuPAD have their own reserved keywords, such as function names,
special values, and names of mathematical constants. Using reserved keywords as
variable or function names can result in errors. If a variable name or a function name is a
reserved keyword in one or both interfaces, you can get errors or incorrect results. If you
work in one interface and a name is a reserved keyword in another interface, the error
and warning messages are produced by the interface you work in. These messages can
specify the cause of the problem incorrectly.

Tip The best approach is to avoid using reserved keywords as variable or function names,
especially if you use both interfaces.

In MuPAD, function names are protected. Normally, the system does not let you redefine
a standard function or use its name as a variable. (To be able to modify a standard
MuPAD function you must first remove its protection.) Even when you work in the
MATLAB Command Window, the MuPAD engine handles symbolic computations.
Therefore, MuPAD function names are reserved keywords in this case. Using a MuPAD
function name while performing symbolic computations in the MATLAB Command
Window can lead to an error:

solve('D - 10')

The message does not indicate the real cause of the problem:

Error using solve (line 263)

Specify a variable for which you solve.

To fix this issue, use the syms function to declare D as a symbolic variable. Then call the
symbolic solver without using quotes:

syms D

solve(D - 10)

In this case, the toolbox replaces D with some other variable name before passing the
expression to the MuPAD engine:

ans =

10

3 MuPAD in Symbolic Math Toolbox

3-30

To list all MuPAD function names, enter this command in the MATLAB Command
Window:

evalin(symengine, 'anames()')

If you work in a MuPAD notebook, enter:

anames()

 Call Built-In MuPAD Functions from MATLAB

3-31

Call Built-In MuPAD Functions from MATLAB

To access built-in MuPAD functions at the MATLAB command line, use
evalin(symengine,...) or feval(symengine,...). These functions are designed to
work like the existing MATLAB evalin and feval functions.

evalin and feval do not open a MuPAD notebook, and therefore, you cannot use these
functions to access MuPAD graphics capabilities.

evalin

For evalin, the syntax is

y = evalin(symengine,'MuPAD_Expression');

Use evalin when you want to perform computations in the MuPAD language, while
working in the MATLAB workspace. For example, to make a three-element symbolic
vector of the sin(kx) function, k = 1 to 3, enter:

y = evalin(symengine,'[sin(k*x) $ k = 1..3]')

y =

[sin(x), sin(2*x), sin(3*x)]

feval

For evaluating a MuPAD function, you can also use the feval function. feval has a
different syntax than evalin, so it can be simpler to use. The syntax is:

y = feval(symengine,'MuPAD_Function',x1,...,xn);

MuPAD_Function represents the name of a MuPAD function. The arguments
x1,...,xn must be symbolic variables, numbers, or strings. For example, to find the
tenth element in the Fibonacci sequence, enter:

z = feval(symengine,'numlib::fibonacci',10)

z =

55

The next example compares the use of a symbolic solution of an equation to the solution
returned by the MuPAD numeric fsolve function near the point x = 3. The symbolic
solver returns these results:

3 MuPAD in Symbolic Math Toolbox

3-32

syms x

f = sin(x^2);

solve(f)

ans =

0

The numeric solver fsolve returns this result:

feval(symengine, 'numeric::fsolve',f,'x=3')

ans =

x == 3.0699801238394654654386548746678

As you might expect, the answer is the numerical value of 3p . The setting of MATLAB
format does not affect the display; it is the full returned value from the MuPAD
'numeric::fsolve' function.

evalin vs. feval

The evalin(symengine,...) function causes the MuPAD engine to evaluate a
string. Since the MuPAD engine workspace is generally empty, expressions returned by
evalin(symengine,...) are not simplified or evaluated according to their definitions
in the MATLAB workspace. For example:

syms x

y = x^2;

evalin(symengine, 'cos(y)')

ans =

cos(y)

Variable y is not expressed in terms of x because y is unknown to the MuPAD engine.

In contrast, feval(symengine,...) can pass symbolic variables that exist in the
MATLAB workspace, and these variables are evaluated before being processed in the
MuPAD engine. For example:

syms x

y = x^2;

feval(symengine,'cos',y)

ans =

 Call Built-In MuPAD Functions from MATLAB

3-33

cos(x^2)

Floating-Point Arguments of evalin and feval

By default, MuPAD performs all computations in an exact form. When you call the
evalin or feval function with floating-point numbers as arguments, the toolbox
converts these arguments to rational numbers before passing them to MuPAD. For
example, when you calculate the incomplete gamma function, the result is the following
symbolic expression:

y = feval(symengine,'igamma', 0.1, 2.5)

y =

igamma(1/10, 5/2)

To approximate the result numerically with double precision, use the double function:

format long

double(y)

ans =

 0.028005841168289

Alternatively, use quotes to prevent the conversion of floating-point arguments to
rational numbers. (The toolbox treats arguments enclosed in quotes as strings.) When
MuPAD performs arithmetic operations on numbers involving at least one floating-point
number, it automatically switches to numeric computations and returns a floating-point
result:

feval(symengine,'igamma', '0.1', 2.5)

ans =

0.028005841168289177028337498391181

For further computations, set the format for displaying outputs back to short:

format short

3 MuPAD in Symbolic Math Toolbox

3-34

Computations in MATLAB Command Window vs. MuPAD
Notebook App

When computing with Symbolic Math Toolbox, you can choose to work in the MATLAB
Command Window or in the MuPAD Notebook app. The MuPAD engine that performs all
symbolic computations is the same for both interfaces. The choice of the interface mostly
depends on your preferences.

Working in the MATLAB Command Window lets you perform all symbolic computations
using the familiar MATLAB language. The toolbox contains hundreds of MATLAB
symbolic functions for common tasks, such as differentiation, integration, simplification,
transforms, and equation solving. If your task requires a few specialized symbolic
functions not available directly from this interface, you can use evalin or feval to call
MuPAD functions. See “Call Built-In MuPAD Functions from MATLAB” on page 3-31.

Working in the MATLAB Command Window is recommended if you use other toolboxes
or MATLAB as a primary tool for your current task and only want to embed a few
symbolic computations in your code.

Working in the MuPAD Notebook app requires you to use the MuPAD language, which
is optimized for symbolic computations. In addition to solving common mathematical
problems, MuPAD functions cover specialized areas, such as number theory and
combinatorics. Also, for some computations the performance is better in the MuPAD
Notebook app than in the MATLAB Command Window. The reason is that the engine
returns the results in the MuPAD language. To display them in the MATLAB Command
Window, the toolbox translates the results to the MATLAB language.

Working in the MuPAD Notebook app is recommended when your task mainly consists
of symbolic computations. It is also recommended if you want to document your work
and results, for example, embed graphics, animations, and descriptive text with your
calculations. Symbolic results computed in the MuPAD Notebook app can be accessed
from the MATLAB Command Window, which helps you integrate symbolic results into
larger MATLAB applications.

Learning the MuPAD language and using the MuPAD Notebook app for your symbolic
computations provides the following benefits.

 Computations in MATLAB Command Window vs. MuPAD Notebook App

3-35

Results Displayed in Typeset Math

By default, the MuPAD Notebook app displays results in typeset math making them look
very similar to what you see in mathematical books. In addition, the MuPAD Notebook
app

• Uses standard mathematical notations in output expressions.
• Uses abbreviations to make a long output expression with common subexpressions

shorter and easier to read. You can disable abbreviations.
• Wraps long output expressions, including long numbers, fractions and matrices, to

make them fit the page. If you resize the notebook window, MuPAD automatically
adjusts outputs. You can disable wrapping of output expressions.

Alternatively, you can display pretty-printed outputs similar to those that you get in the
MATLAB Command Window when you use pretty. You can also display outputs as
plain text. For details, see “Use Different Output Modes”.

In a MuPAD notebook, you can copy or move output expressions, including expressions
in typeset math, to any input or text region within the notebook, or to another notebook.
If you copy or move an output expression to an input region, the expression appears as
valid MuPAD input.

Graphics and Animations

The MuPAD Notebook app provides very extensive graphic capabilities to help you
visualize your problem and display results. Here you can create a wide variety of plots,
including:

• 2-D and 3-D plots in Cartesian, polar, and spherical coordinates
• Plots of continuous and piecewise functions and functions with singularities
• Plots of discrete data sets
• Surfaces and volumes by using predefined functions
• Turtle graphics and Lindenmayer systems
• Animated 2-D and 3-D plots

Graphics in the MuPAD Notebook app is interactive. You can explore and edit plots, for
example:

3 MuPAD in Symbolic Math Toolbox

3-36

• Change colors, fonts, legends, axes appearance, grid lines, tick marks, line, and
marker styles.

• Zoom and rotate plots without reevaluating them.
• Display coordinates of any point on the plot.

After you create and customize a plot, you can export it to various vector and bitmap file
formats, including EPS, SVG, PDF, PNG, GIF, BMP, TIFF, and JPEG. The set of the file
formats available for exporting graphics from a MuPAD notebook can be limited by your
operating system.

You can export animations as AVI files (on Windows systems), as animated GIF files, or
as sequences of static images.

More Functionality in Specialized Mathematical Areas

While both MATLAB and MuPAD interfaces provide functions for performing common
mathematical tasks, MuPAD also provides functions that cover many specialized areas.
For example, MuPAD libraries support computations in the following areas:

• Combinatorics
• Graph theory
• Gröbner bases
• Linear optimization
• Polynomial algebra
• Number theory
• Statistics

MuPAD libraries also provide large collections of functions for working with ordinary
differential equations, integral and discrete transforms, linear algebra, and more.

More Options for Common Symbolic Functions

Most functions for performing common mathematical computations are available in both
MATLAB and MuPAD interfaces. For example, you can solve equations and systems of
equations using solve, simplify expressions using simplify, compute integrals using
int, and compute limits using limit. Note that although the function names are the
same, the syntax of the function calls depends on the interface that you use.

 Computations in MATLAB Command Window vs. MuPAD Notebook App

3-37

Results of symbolic computations can be very long and complicated, especially because
the toolbox assumes all values to be complex by default. For many symbolic functions you
can use additional parameters and options to help you limit the number and complexity
and also to control the form of returned results. For example, solve accepts the Real
option that lets you restrict all symbolic parameters of an equation to real numbers. It
also accepts the VectorFormat option that you can use to get solutions of a system as a
set of vectors.

Typically, the functions available in MuPAD accept more options than the analogous
functions in the MATLAB Command Window. For example, in MuPAD you can use the
VectorFormat option. This option is not directly available for the solve function called
in the MATLAB Command Window.

Possibility to Expand Existing Functionality

The MuPAD programming language supports multiple programming styles, including
imperative, functional, and object-oriented programming. The system includes a few
basic functions written in C++, but the majority of the MuPAD built-in functionality
is implemented as library functions written in the MuPAD language. You can extend
the built-in functionality by writing custom symbolic functions and libraries, defining
new function environments, data types, and operations on them in the MuPAD
language. MuPAD implements data types as domains (classes). Domains with similar
mathematical structure typically belong to a category. Domains and categories allow you
to use the concepts of inheritance, overloading methods and operators. The language also
uses axioms to state properties of domains and categories.

“Object-Oriented Programming” contains information to get you started with object-
oriented programming in MuPAD.

3 MuPAD in Symbolic Math Toolbox

3-38

Use Your Own MuPAD Procedures

Write MuPAD Procedures

A MuPAD procedure is a text file that you can write in any text editor. The recommended
practice is to “Edit MuPAD Code in MATLAB Editor” on page 3-18.

To define a procedure, use the proc function. Enclose the code in the begin and
end_proc functions:

myProc:= proc(n)

begin

 if n = 1 or n = 0 then

 1

 else

 n * myProc(n - 1)

 end_if;

end_proc:

By default, a MuPAD procedure returns the result of the last executed command.
You can force a procedure to return another result by using return. In both cases, a
procedure returns only one result. To get multiple results from a procedure, combine
them into a list or other data structure, or use the print function.

• If you just want to display the results, and do not need to use them in further
computations, use the print function. With print, your procedure still returns one
result, but prints intermediate results on screen. For example, this procedure prints
the value of its argument in each call:

myProcPrint:= proc(n)

begin

 print(n);

 if n = 0 or n = 1 then

 return(1);

 end_if;

 n * myProcPrint(n - 1);

end_proc:

• If you want to use multiple results of a procedure, use ordered data structures, such
as lists or matrices as return values. In this case, the result of the last executed
command is technically one object, but it can contain more than one value. For
example, this procedure returns the list of two entries:

 Use Your Own MuPAD Procedures

3-39

myProcSort:= proc(a, b)

begin

 if a < b then

 [a, b]

 else

 [b, a]

 end_if;

end_proc:

Avoid using unordered data structures, such as sequences and sets, to return multiple
results of a procedure. The order of the entries in these structures can change
unpredictably.

When you save the procedure, it is recommended to use the extension .mu. For details,
see “Notebook Files and Program Files” on page 3-20. The name of the file can differ from
the name of the procedure. Also, you can save multiple procedures in one file.

Steps to Take Before Calling a Procedure

To be able to call a procedure, you must first execute the code defining that procedure,
in a notebook. If you write a procedure in the same notebook, simply evaluate the input
region that contains the procedure. If you write a procedure in a separate file, you
must read the file into a notebook. Reading a file means finding it and executing the
commands inside it.

Read MuPAD Procedures

If you work in the MuPAD Notebook app and create a separate program file that contains
a procedure, use one of the following methods to execute the procedure in a notebook. The
first approach is to select Notebook > Read Commands from the main menu.

Alternatively, you can use the read function. The function call read(filename)
searches for the program file in this order:

1 Folders specified by the environment variable READPATH
2 filename regarded as an absolute path
3 Current folder (depends on the operating system)

If you want to call the procedure from the MATLAB Command Window, you still need to
execute that procedure before calling it. See “Call Your Own MuPAD Procedures” on page
3-40.

3 MuPAD in Symbolic Math Toolbox

3-40

Use Startup Commands and Scripts

Alternatively, you can add a MuPAD procedure to startup commands of a particular
notebook. This method lets you execute the procedure every time you start a notebook
engine. Startup commands are executed silently, without any visible outputs in the
notebook. You can copy the procedure to the dialog box that specifies startup commands
or attach the procedure as a startup script. For information, see “Hide Code Lines”.

Call Your Own MuPAD Procedures

You can extend the functionality available in the toolbox by writing your own procedures
in the MuPAD language. This section explains how to call such procedures at the
MATLAB Command Window.

Suppose you wrote the myProc procedure that computes the factorial of a nonnegative
integer.

Save the procedure as a file with the extension .mu. For example, save the procedure as
myProcedure.mu in the folder C:/MuPAD.

 Use Your Own MuPAD Procedures

3-41

Return to the MATLAB Command Window. Before calling the procedure at the MATLAB
command line, enter:

read(symengine, 'C:/MuPAD/myProcedure.mu')

The read command reads and executes the myProcedure.mu file in MuPAD. After that,
you can call the myProc procedure with any valid parameter. For example, compute the
factorial of 15:

feval(symengine, 'myProc', 15)

ans =

1307674368000

If your MuPAD procedure accepts string arguments, enclose these arguments in two
sets of quotes: double quotes inside single quotes. Single quotes suppress evaluation of
the argument before passing it to the MuPAD procedure, and double quotes let MuPAD
recognize that the argument is a string. For example, this MuPAD procedure converts a
string to lowercase and checks if reverting that string changes it.

3 MuPAD in Symbolic Math Toolbox

3-42

In the MATLAB Command Window, use the read command to read and execute
reverted.mu.

read(symengine, 'C:/MuPAD/reverted.mu')

Now, use feval to call the procedure reverted. To pass a string argument to the
procedure, use double quotes inside single quotes.

feval(symengine, 'reverted', '"Abccba"')

ans =

1

 Clear Assumptions and Reset the Symbolic Engine

3-43

Clear Assumptions and Reset the Symbolic Engine

The symbolic engine workspace associated with the MATLAB workspace is usually
empty. The MATLAB workspace tracks the values of symbolic variables, and passes
them to the symbolic engine for evaluation as necessary. However, the symbolic engine
workspace contains all assumptions you make about symbolic variables, such as whether
a variable is real, positive, integer, greater or less than some value, and so on. These
assumptions can affect solutions to equations, simplifications, and transformations, as
explained in “Effects of Assumptions on Computations” on page 3-45.

Note: These commands

syms x

x = sym('x');

clear x

clear any existing value of x in the MATLAB workspace, but do not clear assumptions
about x in the symbolic engine workspace.

If you make an assumption about the nature of a variable, for example, using the
commands

syms x

assume(x,'real')

or

syms x

assume(x > 0)

then clearing the variable x from the MATLAB workspace does not clear the assumption
from the symbolic engine workspace. To clear the assumption, enter the command

assume(x,'clear')

For details, see “Check Assumptions Set On Variables” on page 3-44 and “Effects of
Assumptions on Computations” on page 3-45.

If you reset the symbolic engine by entering the command

reset(symengine)

3 MuPAD in Symbolic Math Toolbox

3-44

MATLAB no longer recognizes any symbolic variables that exist in the MATLAB
workspace. Clear the variables with the clear command, or renew them with the syms
or sym command.

This example shows how the MATLAB workspace and the symbolic engine workspace
respond to a sequence of commands.

Step Command MATLAB Workspace MuPAD Engine Workspace

1 syms x positive

or
syms x;

assume(x > 0)

x x > 0

2 clear x empty x > 0

3 syms x x x > 0

4 assume(x,'clear') x empty

Check Assumptions Set On Variables

To check whether a variable, say x, has any assumptions in the symbolic engine
workspace associated with the MATLAB workspace, use the assumptions function in
the MATLAB Command Window:

assumptions(x)

If the function returns an empty symbolic object, there are no additional assumptions on
the variable. (The default assumption is that x can be any complex number.) Otherwise,
there are additional assumptions on the value of that variable.

For example, while declaring the symbolic variable x make an assumption that the value
of this variable is a real number:

syms x real

assumptions(x)

ans =

in(x, 'real')

Another way to set an assumption is to use the assume function:

syms z

 Clear Assumptions and Reset the Symbolic Engine

3-45

assume(z ~= 0);

assumptions(z)

ans =

z ~= 0

To see assumptions set on all variables in the MATLAB workspace, use assumptions
without input arguments:

assumptions

ans =

[in(x, 'real'), z ~= 0]

Clear assumptions set on x and z:

assume([x z],'clear')

assumptions

ans =

Empty sym: 1-by-0

Effects of Assumptions on Computations

Assumptions can affect many computations, including results returned by the solve
function. They also can affect the results of simplifications. For example, solve this
equation without any additional assumptions on its variable:

syms x

solve(x^4 == 1, x)

ans =

 -1

 1

 -1i

 1i

Now solve the same equation assuming that x is real:

syms x real

solve(x^4 == 1, x)

ans =

 -1

3 MuPAD in Symbolic Math Toolbox

3-46

 1

Use the assumeAlso function to add the assumption that x is also positive:

assumeAlso(x > 0)

solve(x^4 == 1, x)

ans =

 1

Clearing x does not change the underlying assumptions that x is real and positive:

clear x

syms x

assumptions(x)

solve(x^4 == 1, x)

ans =

[0 < x, in(x, 'real')]

ans =

1

Clearing x with assume(x,'clear') clears the assumption:

assume(x,'clear')

assumptions(x)

ans =

Empty sym: 1-by-0

 Create MATLAB Functions from MuPAD Expressions

3-47

Create MATLAB Functions from MuPAD Expressions

Symbolic Math Toolbox lets you create a MATLAB function from a symbolic expression.
A MATLAB function created from a symbolic expression accepts numeric arguments and
evaluates the expression applied to the arguments. You can generate a function handle
or a file that contains a MATLAB function. The generated file is available for use in any
MATLAB calculation, independent of a license for Symbolic Math Toolbox functions.

If you work in the MATLAB Command Window, see “Generate MATLAB Functions” on
page 2-234.

When you use the MuPAD Notebook app, all your symbolic expressions are written in
the MuPAD language. To be able to create a MATLAB function from such expressions,
you must convert it to the MATLAB language. There are two approaches for converting a
MuPAD expression to the MATLAB language:

• Assign the MuPAD expression to a variable, and copy that variable from a notebook to
the MATLAB workspace. This approach lets you create a function handle or a file that
contains a MATLAB function. It also requires using a handle to the notebook.

• Generate MATLAB code from the MuPAD expression in a notebook. This approach
limits your options to creating a file. You can skip creating a handle to the notebook.

The generated MATLAB function can depend on the approach that you chose. For
example, code can be optimized differently or not optimized at all.

Suppose you want to create a MATLAB function from a symbolic matrix that converts
spherical coordinates of any point to its Cartesian coordinates. First, open a MuPAD
notebook with the handle notebook_handle:

notebook_handle = mupad;

In this notebook, create the symbolic matrix S that converts spherical coordinates to
Cartesian coordinates:

x := r*sin(a)*cos(b):

y := r*sin(a)*sin(b):

z := r*cos(b):

S := matrix([x, y, z]):

Now convert matrix S to the MATLAB language. Choose the best approach for your task.

3 MuPAD in Symbolic Math Toolbox

3-48

Copy MuPAD Variables to the MATLAB Workspace

If your notebook has a handle, like notebook_handle in this example, you can copy
variables from that notebook to the MATLAB workspace with the getVar function, and
then create a MATLAB function. For example, to convert the symbolic matrix S to a
MATLAB function:

1 Copy variable S to the MATLAB workspace:

S = getVar(notebook_handle,'S')

Variable S and its value (the symbolic matrix) appear in the MATLAB workspace
and in the MATLAB Command Window:

S =

 r*cos(b)*sin(a)

 r*sin(a)*sin(b)

 r*cos(b)

2 Use matlabFunction to create a MATLAB function from the symbolic matrix. To
generate a MATLAB function handle, use matlabFunction without additional
parameters:

h = matlabFunction(S)

h =

 @(a,b,r)[r.*cos(b).*sin(a);r.*sin(a).*sin(b);r.*cos(b)]

To generate a file containing the MATLAB function, use the parameter file and
specify the path to the file and its name. For example, save the MATLAB function to
the file cartesian.m in the current folder:

S = matlabFunction(S,'file', 'cartesian.m');

You can open and edit cartesian.m in the MATLAB Editor.

 Create MATLAB Functions from MuPAD Expressions

3-49

Generate MATLAB Code in a MuPAD Notebook

To generate the MATLAB code from a MuPAD expression within the MuPAD notebook,
use the generate::MATLAB function. Then, you can create a new file that contains an
empty MATLAB function, copy the code, and paste it there. Alternatively, you can create
a file with a MATLAB formatted string representing a MuPAD expression, and then add
appropriate syntax to create a valid MATLAB function.

1 In the MuPAD Notebook app, use the generate::MATLAB function to generate
MATLAB code from the MuPAD expression. Instead of printing the result on screen,
use the fprint function to create a file and write the generated code to that file:

fprint(Unquoted, Text, "cartesian.m", generate::MATLAB(S)):

Note: If the file with this name already exists, fprint replaces the contents of this
file with the converted expression.

2 Open cartesian.m. It contains a MATLAB formatted string representing matrix S:

 S = zeros(3,1);

 S(1,1) = r*cos(b)*sin(a);

 S(2,1) = r*sin(a)*sin(b);

 S(3,1) = r*cos(b);

3 To convert this file to a valid MATLAB function, add the keywords function and
end, the function name (must match the file name), input and output arguments,
and comments:

3 MuPAD in Symbolic Math Toolbox

3-50

Create MATLAB Function Blocks from MuPAD Expressions

Symbolic Math Toolbox lets you create a MATLAB function block from a symbolic
expression. The generated block is available for use in Simulink models, whether or not
the computer that runs the simulations has a license for Symbolic Math Toolbox.

If you work in the MATLAB Command Window, see “Generate MATLAB Function
Blocks” on page 2-239.

The MuPAD Notebook app does not provide a function for generating a block. Therefore,
to be able to create a block from the MuPAD expression:

1 In a MuPAD notebook, assign that expression to a variable.
2 Use the getVar function to copy that variable from a notebook to the MATLAB

workspace.

For details about these steps, see “Copy MuPAD Variables to the MATLAB Workspace”
on page 3-48.

When the expression that you want to use for creating a MATLAB function block appears
in the MATLAB workspace, use the matlabFunctionBlock function to create a block
from that expression.

For example, open a MuPAD notebook with the handle notebook_handle:

notebook_handle = mupad;

In this notebook, create the following symbolic expression:

r := sqrt(x^2 + y^2)

Use getVar to copy variable r to the MATLAB workspace:

r = getVar(notebook_handle,'r')

Variable r and its value appear in the MATLAB workspace and in the MATLAB
Command Window:

r =

(x^2 + y^2)^(1/2)

Before generating a MATLAB Function block from the expression, create an empty model
or open an existing one. For example, create and open the new model my_system:

 Create MATLAB Function Blocks from MuPAD Expressions

3-51

new_system('my_system')

open_system('my_system')

Since the variable and its value are in the MATLAB workspace, you can use
matlabFunctionBlock to generate the block my_block:

matlabFunctionBlock('my_system/my_block', r)

You can open and edit the block in the MATLAB Editor. To open the block, double-click
it:

function r = my_block(x,y)

%#codegen

r = sqrt(x.^2+y.^2);

3 MuPAD in Symbolic Math Toolbox

3-52

Create Simscape Equations from MuPAD Expressions
Symbolic Math Toolbox lets you integrate symbolic computations into the Simscape
modeling workflow by using the results of these computations in the Simscape equation
section.

If you work in the MATLAB Command Window, see “Generate Simscape Equations” on
page 2-241.

If you work in the MuPAD Notebook app, you can:

• Assign the MuPAD expression to a variable, copy that variable from a notebook to the
MATLAB workspace, and use simscapeEquation to generate the Simscape equation
in the MATLAB Command Window.

• Generate the Simscape equation from the MuPAD expression in a notebook.

In both cases, to use the generated equation, you must manually copy the equation and
paste it to the equation section of the Simscape component file.

For example, follow these steps to generate a Simscape equation from the solution of the
ordinary differential equation computed in the MuPAD Notebook app:

1 Open a MuPAD notebook with the handle notebook_handle:

notebook_handle = mupad;

2 In this notebook, define the following equation:

s:= ode(y'(t) = y(t)^2, y(t)):

3 Decide whether you want to generate the Simscape equation in the MuPAD
Notebook app or in the MATLAB Command Window.

GenerateSimscape Equations in the MuPAD Notebook App

To generate the Simscape equation in the same notebook, use generate::Simscape.
To display generated Simscape code on screen, use the print function. To remove
quotes and expand special characters like line breaks and tabs, use the printing option
Unquoted:

print(Unquoted, generate::Simscape(s))

This command returns the Simscape equation that you can copy and paste to the
Simscape equation section:

 Create Simscape Equations from MuPAD Expressions

3-53

 -y^2+y.der == 0.0;

Generate Simscape Equations in the MATLAB Command Window

To generate the Simscape equation in the MATLAB Command Window, follow these
steps:

1 Use getVar to copy variable s to the MATLAB workspace:

s = getVar(notebook_handle, 's')

Variable s and its value appear in the MATLAB workspace and in the MATLAB
Command Window:

s =

ode(diff(y(t), t) - y(t)^2, y(t))

2 Use simscapeEquation to generate the Simscape equation from s:

simscapeEquation(s)

You can copy and paste the generated equation to the Simscape equation section. Do not
copy the automatically generated variable ans and the equal sign that follows it.

ans =

s == (-y^2+y.der == 0.0);

4

Functions — Alphabetical List

4 Functions — Alphabetical List

4-2

abs
Absolute value of real or complex value

Syntax

abs(z)

abs(A)

Description

abs(z) returns the absolute value of z. If z is complex, abs(z) returns the complex
modulus (magnitude) of z.

abs(A) returns the absolute value of each element of A. If A is complex, abs(A) returns
the complex modulus (magnitude) of each element of A.

Input Arguments

z

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Examples

Compute absolute values of these symbolic real numbers:

[abs(sym(1/2)), abs(sym(0)), abs(sym(pi) - 4)]

ans =

[1/2, 0, 4 - pi]

 abs

4-3

Compute the absolute values of each element of matrix A:

A = sym([(1/2 + i), -25; i*(i + 1), pi/6 - i*pi/2]);

abs(A)

ans =

[5^(1/2)/2, 25]

[2^(1/2), (pi*5^(1/2)*18^(1/2))/18]

Compute the absolute value of this expression assuming that the value x is negative:

syms x

assume(x < 0)

abs(5*x^3)

ans =

-5*x^3

For further computations, clear the assumption:

syms x clear

More About

Complex Modulus

The absolute value of a complex number z = x + y*i is the value z x y= +
2 2 . Here, x

and y are real numbers. The absolute value of a complex number is also called a complex
modulus.

Tips

• Calling abs for a number that is not a symbolic object invokes the MATLAB abs
function.

See Also
angle | imag | real | sign | signIm

Introduced before R2006a

4 Functions — Alphabetical List

4-4

acos

Symbolic inverse cosine function

Syntax

acos(X)

Description

acos(X) returns the inverse cosine function (arccosine function) of X.

Examples

Inverse Cosine Function for Numeric and Symbolic Arguments

Depending on its arguments, acos returns floating-point or exact symbolic results.

Compute the inverse cosine function for these numbers. Because these numbers are not
symbolic objects, acos returns floating-point results.

A = acos([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1])

A =

 3.1416 1.9106 2.0944 1.3181 1.0472 0.5236 0

Compute the inverse cosine function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, acos returns unresolved symbolic calls.

symA = acos(sym([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1]))

symA =

[pi, pi - acos(1/3), (2*pi)/3, acos(1/4), pi/3, pi/6, 0]

Use vpa to approximate symbolic results with floating-point numbers:

 acos

4-5

vpa(symA)

ans =

[3.1415926535897932384626433832795,...

1.9106332362490185563277142050315,...

2.0943951023931954923084289221863,...

1.318116071652817965745664254646,...

1.0471975511965977461542144610932,...

0.52359877559829887307710723054658,...

0]

Plot Inverse Cosine Function

Plot the inverse cosine function on the interval from -1 to 1.

syms x

ezplot(acos(x), [-1, 1])

grid on

4 Functions — Alphabetical List

4-6

Handle Expressions Containing Inverse Cosine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acos.

Find the first and second derivatives of the inverse cosine function:

syms x

diff(acos(x), x)

diff(acos(x), x, x)

ans =

-1/(1 - x^2)^(1/2)

 acos

4-7

ans =

-x/(1 - x^2)^(3/2)

Find the indefinite integral of the inverse cosine function:

int(acos(x), x)

ans =

x*acos(x) - (1 - x^2)^(1/2)

Find the Taylor series expansion of acos(x):

taylor(acos(x), x)

ans =

- (3*x^5)/40 - x^3/6 - x + pi/2

Rewrite the inverse cosine function in terms of the natural logarithm:

rewrite(acos(x), 'log')

ans =

-log(x + (1 - x^2)^(1/2)*1i)*1i

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acot | acsc | asec | asin | atan | cos | cot | csc | sec | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-8

acosh
Symbolic inverse hyperbolic cosine function

Syntax

acosh(X)

Description

acosh(X) returns the inverse hyperbolic cosine function of X.

Examples

Inverse Hyperbolic Cosine Function for Numeric and Symbolic Arguments

Depending on its arguments, acosh returns floating-point or exact symbolic results.

Compute the inverse hyperbolic cosine function for these numbers. Because these
numbers are not symbolic objects, acosh returns floating-point results.

A = acosh([-1, 0, 1/6, 1/2, 1, 2])

A =

 0.0000 + 3.1416i 0.0000 + 1.5708i 0.0000 + 1.4033i...

 0.0000 + 1.0472i 0.0000 + 0.0000i 1.3170 + 0.0000i

Compute the inverse hyperbolic cosine function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, acosh returns unresolved symbolic calls.

symA = acosh(sym([-1, 0, 1/6, 1/2, 1, 2]))

symA =

[pi*1i, (pi*1i)/2, acosh(1/6), (pi*1i)/3, 0, acosh(2)]

Use vpa to approximate symbolic results with floating-point numbers:

 acosh

4-9

vpa(symA)

ans =

[3.1415926535897932384626433832795i,...

 1.5707963267948966192313216916398i,...

 1.4033482475752072886780470855961i,...

 1.0471975511965977461542144610932i,...

 0,...

 1.316957896924816708625046347308]

Plot Inverse Hyperbolic Cosine Function

Plot the inverse hyperbolic cosine function on the interval from 1 to 10.

syms x

ezplot(acosh(x), [1, 10])

grid on

4 Functions — Alphabetical List

4-10

Handle Expressions Containing Inverse Hyperbolic Cosine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acosh.

Find the first and second derivatives of the inverse hyperbolic cosine function:

syms x

diff(acosh(x), x)

diff(acosh(x), x, x)

ans =

1/(x^2 - 1)^(1/2)

 acosh

4-11

ans =

-x/(x^2 - 1)^(3/2)

Find the indefinite integral of the inverse hyperbolic cosine function:

int(acosh(x), x)

ans =

x*acosh(x) - (x^2 - 1)^(1/2)

Find the Taylor series expansion of acosh(x) for x > 1:

assume(x > 1)

taylor(acosh(x), x)

ans =

(x^5*3i)/40 + (x^3*1i)/6 + x*1i - (pi*1i)/2

For further computations, clear the assumption:

syms x clear

Rewrite the inverse hyperbolic cosine function in terms of the natural logarithm:

rewrite(acosh(x), 'log')

ans =

log(x + (x^2 - 1)^(1/2))

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-12

acot

Symbolic inverse cotangent function

Syntax

acot(X)

Description

acot(X) returns the inverse cotangent function (arccotangent function) of X.

Examples

Inverse Cotangent Function for Numeric and Symbolic Arguments

Depending on its arguments, acot returns floating-point or exact symbolic results.

Compute the inverse cotangent function for these numbers. Because these numbers are
not symbolic objects, acot returns floating-point results.

A = acot([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)])

A =

 -0.7854 -1.2490 -1.0472 1.1071 0.7854 0.5236

Compute the inverse cotangent function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, acot returns unresolved symbolic calls.

symA = acot(sym([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)]))

symA =

[-pi/4, -acot(1/3), -pi/3, acot(1/2), pi/4, pi/6]

Use vpa to approximate symbolic results with floating-point numbers:

 acot

4-13

vpa(symA)

ans =

[-0.78539816339744830961566084581988,...

-1.2490457723982544258299170772811,...

-1.0471975511965977461542144610932,...

1.1071487177940905030170654601785,...

0.78539816339744830961566084581988,...

0.52359877559829887307710723054658]

Plot Inverse Cotangent Function

Plot the inverse cotangent function on the interval from -10 to 10.

syms x

ezplot(acot(x), [-10, 10])

grid on

4 Functions — Alphabetical List

4-14

Handle Expressions Containing Inverse Cotangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acot.

Find the first and second derivatives of the inverse cotangent function:

syms x

diff(acot(x), x)

diff(acot(x), x, x)

ans =

-1/(x^2 + 1)

 acot

4-15

ans =

(2*x)/(x^2 + 1)^2

Find the indefinite integral of the inverse cotangent function:

int(acot(x), x)

ans =

log(x^2 + 1)/2 + x*acot(x)

Find the Taylor series expansion of acot(x) for x > 0:

assume(x > 0)

taylor(acot(x), x)

ans =

- x^5/5 + x^3/3 - x + pi/2

For further computations, clear the assumption:

syms x clear

Rewrite the inverse cotangent function in terms of the natural logarithm:

rewrite(acot(x), 'log')

ans =

(log(1 - 1i/x)*1i)/2 - (log(1i/x + 1)*1i)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acos | acsc | asec | asin | atan | cos | cot | csc | sec | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-16

acoth

Symbolic inverse hyperbolic cotangent function

Syntax

acoth(X)

Description

acoth(X) returns the inverse hyperbolic cotangent function of X.

Examples

Inverse Hyperbolic Cotangent Function for Numeric and Symbolic
Arguments

Depending on its arguments, acoth returns floating-point or exact symbolic results.

Compute the inverse hyperbolic cotangent function for these numbers. Because these
numbers are not symbolic objects, acoth returns floating-point results.

A = acoth([-pi/2, -1, 0, 1/2, 1, pi/2])

A =

 -0.7525 + 0.0000i -Inf + 0.0000i 0.0000 + 1.5708i...

 0.5493 + 1.5708i Inf + 0.0000i 0.7525 + 0.0000i

Compute the inverse hyperbolic cotangent function for the numbers converted to
symbolic objects. For many symbolic (exact) numbers, acoth returns unresolved symbolic
calls.

symA = acoth(sym([-pi/2, -1, 0, 1/2, 1, pi/2]))

symA =

 acoth

4-17

[-acoth(pi/2), Inf, -(pi*1i)/2, acoth(1/2), Inf, acoth(pi/2)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =

[-0.75246926714192715916204347800251,...

Inf,...

-1.5707963267948966192313216916398i,...

0.54930614433405484569762261846126...

 - 1.5707963267948966192313216916398i,...

Inf,...

0.75246926714192715916204347800251]

Plot Inverse Hyperbolic Cotangent Function

Plot the inverse hyperbolic cotangent function on the interval from -10 to 10.

syms x

ezplot(acoth(x), [-10, 10])

grid on

4 Functions — Alphabetical List

4-18

Handle Expressions Containing Inverse Hyperbolic Cotangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acoth.

Find the first and second derivatives of the inverse hyperbolic cotangent function:

syms x

diff(acoth(x), x)

diff(acoth(x), x, x)

ans =

-1/(x^2 - 1)

 acoth

4-19

ans =

(2*x)/(x^2 - 1)^2

Find the indefinite integral of the inverse hyperbolic cotangent function:

int(acoth(x), x)

ans =

log(x^2 - 1)/2 + x*acoth(x)

Find the Taylor series expansion of acoth(x) for x > 0:

assume(x > 0)

taylor(acoth(x), x)

ans =

x^5/5 + x^3/3 + x - (pi*1i)/2

For further computations, clear the assumption:

syms x clear

Rewrite the inverse hyperbolic cotangent function in terms of the natural logarithm:

rewrite(acoth(x), 'log')

ans =

log(1/x + 1)/2 - log(1 - 1/x)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acsch | asech | asinh | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-20

acsc
Symbolic inverse cosecant function

Syntax

acsc(X)

Description

acsc(X) returns the inverse cosecant function (arccosecant function) of X.

Examples

Inverse Cosecant Function for Numeric and Symbolic Arguments

Depending on its arguments, acsc returns floating-point or exact symbolic results.

Compute the inverse cosecant function for these numbers. Because these numbers are
not symbolic objects, acsc returns floating-point results.

A = acsc([-2, 0, 2/sqrt(3), 1/2, 1, 5])

A =

 -0.5236 + 0.0000i 1.5708 - Infi 1.0472 + 0.0000i 1.5708...

 - 1.3170i 1.5708 + 0.0000i 0.2014 + 0.0000i

Compute the inverse cosecant function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, acsc returns unresolved symbolic calls.

symA = acsc(sym([-2, 0, 2/sqrt(3), 1/2, 1, 5]))

symA =

[-pi/6, Inf, pi/3, asin(2), pi/2, asin(1/5)]

Use vpa to approximate symbolic results with floating-point numbers:

 acsc

4-21

vpa(symA)

ans =

[-0.52359877559829887307710723054658,...

Inf,...

1.0471975511965977461542144610932,...

1.5707963267948966192313216916398...

 - 1.3169578969248165734029498707969i,...

1.5707963267948966192313216916398,...

0.20135792079033079660099758712022]

Plot Inverse Cosecant Function

Plot the inverse cosecant function on the interval from -10 to 10.

syms x

ezplot(acsc(x), [-10, 10])

grid on

4 Functions — Alphabetical List

4-22

Handle Expressions Containing Inverse Cosecant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acsc.

Find the first and second derivatives of the inverse cosecant function:

syms x

diff(acsc(x), x)

diff(acsc(x), x, x)

ans =

-1/(x^2*(1 - 1/x^2)^(1/2))

 acsc

4-23

ans =

2/(x^3*(1 - 1/x^2)^(1/2)) + 1/(x^5*(1 - 1/x^2)^(3/2))

Find the indefinite integral of the inverse cosecant function:

int(acsc(x), x)

ans =

x*asin(1/x) + acosh(x)*sign(x)

Find the Taylor series expansion of acsc(x) around x = Inf:

taylor(acsc(x), x, Inf)

ans =

1/x + 1/(6*x^3) + 3/(40*x^5)

Rewrite the inverse cosecant function in terms of the natural logarithm:

rewrite(acsc(x), 'log')

ans =

-log(1i/x + (1 - 1/x^2)^(1/2))*1i

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acos | acot | asec | asin | atan | cos | cot | csc | sec | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-24

acsch

Symbolic inverse hyperbolic cosecant function

Syntax

acsch(X)

Description

acsch(X) returns the inverse hyperbolic cosecant function of X.

Examples

Inverse Hyperbolic Cosecant Function for Numeric and Symbolic
Arguments

Depending on its arguments, acsch returns floating-point or exact symbolic results.

Compute the inverse hyperbolic cosecant function for these numbers. Because these
numbers are not symbolic objects, acsch returns floating-point results.

A = acsch([-2*i, 0, 2*i/sqrt(3), 1/2, i, 3])

A =

 0.0000 + 0.5236i Inf + 0.0000i 0.0000 - 1.0472i...

 1.4436 + 0.0000i 0.0000 - 1.5708i 0.3275 + 0.0000i

Compute the inverse hyperbolic cosecant function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, acsch returns unresolved symbolic calls.

symA = acsch(sym([-2*i, 0, 2*i/sqrt(3), 1/2, i, 3]))

symA =

[(pi*1i)/6, Inf, -(pi*1i)/3, asinh(2), -(pi*1i)/2, asinh(1/3)]

 acsch

4-25

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =

[0.52359877559829887307710723054658i,...

Inf,...

-1.0471975511965977461542144610932i,...

1.4436354751788103424932767402731,...

-1.5707963267948966192313216916398i,...

0.32745015023725844332253525998826]

Plot Inverse Hyperbolic Cosecant Function

Plot the inverse hyperbolic cosecant function on the interval from -10 to 10.

syms x

ezplot(acsch(x), [-10, 10])

grid on

4 Functions — Alphabetical List

4-26

Handle Expressions Containing Inverse Hyperbolic Cosecant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acsch.

Find the first and second derivatives of the inverse hyperbolic cosecant function:

syms x

diff(acsch(x), x)

diff(acsch(x), x, x)

ans =

-1/(x^2*(1/x^2 + 1)^(1/2))

 acsch

4-27

ans =

2/(x^3*(1/x^2 + 1)^(1/2)) - 1/(x^5*(1/x^2 + 1)^(3/2))

Find the indefinite integral of the inverse hyperbolic cosecant function:

int(acsch(x), x)

ans =

x*asinh(1/x) + asinh(x)*sign(x)

Find the Taylor series expansion of acsch(x) around x = Inf:

taylor(acsch(x), x, Inf)

ans =

1/x - 1/(6*x^3) + 3/(40*x^5)

Rewrite the inverse hyperbolic cosecant function in terms of the natural logarithm:

rewrite(acsch(x), 'log')

ans =

log((1/x^2 + 1)^(1/2) + 1/x)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | asech | asinh | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-28

adjoint
Adjoint of symbolic square matrix

Syntax

X = adjoint(A)

Description

X = adjoint(A) returns the adjoint matrix X of A. The adjoint of a matrix A is the
matrix X, such that A*X = det(A)*eye(n) = X*A, where n is the number of rows in A
and eye(n) is the n-by-n identity matrix.

Input Arguments

A

Symbolic square matrix.

Output Arguments

X

Symbolic square matrix of the same size as A.

Examples

Compute the adjoint of this symbolic matrix:

syms x y z

A = sym([x y z; 2 1 0; 1 0 2]);

X = adjoint(A)

X =

[2, -2*y, -z]

 adjoint

4-29

[-4, 2*x - z, 2*z]

[-1, y, x - 2*y]

Verify that A*X = det(A)*eye(3), where eye(3) is the 3-by-3 identity matrix:

isAlways(A*X == det(A)*eye(3))

ans =

 1 1 1

 1 1 1

 1 1 1

Also verify that det(A)*eye(3) = X*A:

isAlways(det(A)*eye(3) == X*A)

ans =

 1 1 1

 1 1 1

 1 1 1

Compute the inverse of this matrix by computing its adjoint and determinant:

syms a b c d

A = [a b; c d];

invA = adjoint(A)/det(A)

invA =

[d/(a*d - b*c), -b/(a*d - b*c)]

[-c/(a*d - b*c), a/(a*d - b*c)]

Verify that invA is the inverse of A:

isAlways(invA == inv(A))

ans =

 1 1

 1 1

More About

Adjoint of Square Matrix

The adjoint of a square matrix A is the square matrix X, such that the (i,j)-th entry of X
is the (j,i)-th cofactor of A.

4 Functions — Alphabetical List

4-30

Cofactor of Matrix

The (j,i)-th cofactor of A is defined as

a Aji
i j

ij¢ = -() ()+
1 det

Aij is the submatrix of A obtained from A by removing the i-th row and j-th column.

See Also
det | inv | rank

Introduced in R2013a

 airy

4-31

airy
Airy function

Syntax

airy(x)

airy(0,x)

airy(1,x)

airy(2,x)

airy(3,x)

airy(n,x)

Description

airy(x) returns the Airy function of the first kind, Ai(x).

airy(0,x) is equivalent to airy(x).

airy(1,x) returns the derivative of the Airy function of the first kind, Ai′(x).

airy(2,x) returns the Airy function of the second kind, Bi(x).

airy(3,x) returns the derivative of the Airy function of the second kind, Bi′(x).

airy(n,x) returns a vector or matrix of derivatives of the Airy function.

Input Arguments

x

Symbolic number, variable, expression, or function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If x is a vector or matrix, airy returns the
Airy functions for each element of x.

n

Vector or matrix of numbers 0, 1, 2, and 3.

4 Functions — Alphabetical List

4-32

Examples

Solve this second-order differential equation. The solutions are the Airy functions of the
first and the second kind.

syms y(x)

dsolve(diff(y, 2) - x*y == 0)

ans =

C2*airy(0, x) + C3*airy(2, x)

Verify that the Airy function of the first kind is a valid solution of the Airy differential
equation:

syms x

isAlways(diff(airy(0, x), x, 2) - x*airy(0, x) == 0)

ans =

 1

Verify that the Airy function of the second kind is a valid solution of the Airy differential
equation:

isAlways(diff(airy(2, x), x, 2) - x*airy(2, x) == 0)

ans =

 1

Compute the Airy functions for these numbers. Because these numbers are not symbolic
objects, you get floating-point results.

[airy(1), airy(1, 3/2 + 2*i), airy(2, 2), airy(3, 1/101)]

ans =

 0.1353 + 0.0000i 0.1641 + 0.1523i 3.2981 + 0.0000i 0.4483 + 0.0000i

Compute the Airy functions for the numbers converted to symbolic objects. For most
symbolic (exact) numbers, airy returns unresolved symbolic calls.

[airy(sym(1)), airy(1, sym(3/2 + 2*i)), airy(2, sym(2)), airy(3, sym(1/101))]

ans =

[airy(0, 1), airy(1, 3/2 + 2i), airy(2, 2), airy(3, 1/101)]

 airy

4-33

For symbolic variables and expressions, airy also returns unresolved symbolic calls:

syms x y

[airy(x), airy(1, x^2), airy(2, x - y), airy(3, x*y)]

ans =

[airy(0, x), airy(1, x^2), airy(2, x - y), airy(3, x*y)]

Compute the Airy functions for x = 0. The Airy functions have special values for this
parameter.

airy(sym(0))

ans =

3^(1/3)/(3*gamma(2/3))

airy(1, sym(0))

ans =

-(3^(1/6)*gamma(2/3))/(2*pi)

airy(2, sym(0))

ans =

3^(5/6)/(3*gamma(2/3))

airy(3, sym(0))

ans =

(3^(2/3)*gamma(2/3))/(2*pi)

If you do not use sym, you call the MATLAB airy function that returns numeric
approximations of these values:

[airy(0), airy(1, 0), airy(2, 0), airy(3, 0)]

ans =

 0.3550 -0.2588 0.6149 0.4483

Differentiate the expressions involving the Airy functions:

syms x y

diff(airy(x^2))

diff(diff(airy(3, x^2 + x*y -y^2), x), y)

4 Functions — Alphabetical List

4-34

ans =

2*x*airy(1, x^2)

ans =

airy(2, x^2 + x*y - y^2)*(x^2 + x*y - y^2) +...

airy(2, x^2 + x*y - y^2)*(x - 2*y)*(2*x + y) +...

airy(3, x^2 + x*y - y^2)*(x - 2*y)*(2*x + y)*(x^2 + x*y - y^2)

Compute the Airy function of the first kind for the elements of matrix A:

syms x

A = [-1, 0; 0, x];

airy(A)

ans =

[airy(0, -1), 3^(1/3)/(3*gamma(2/3))]

[3^(1/3)/(3*gamma(2/3)), airy(0, x)]

Plot the Airy function Ai(x) and its derivative Ai'(x):

syms x

ezplot(airy(x))

hold on

ezplot(airy(1,x))

title('Airy function Ai and its first derivative')

hold off

 airy

4-35

More About

Airy Functions

The Airy functions Ai(x) and Bi(x) are linearly independent solutions of this differential
equation:

∂

∂
- =

2

2
0

y

x

xy

4 Functions — Alphabetical List

4-36

Tips

• Calling airy for a number that is not a symbolic object invokes the MATLAB airy
function.

• When you call airy with two input arguments, at least one argument must be a
scalar or both arguments must be vectors or matrices of the same size. If one input
argument is a scalar and the other one is a vector or a matrix, airy(n,x) expands
the scalar into a vector or matrix of the same size as the other argument with all
elements equal to that scalar.

References

Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

See Also
besseli | besselj | besselk | bessely

Introduced in R2012a

 all

4-37

all

Test whether all equations and inequalities represented as elements of symbolic array
are valid

Syntax

all(A)

all(A,dim)

Description

all(A) tests whether all elements of A return logical 1 (true). If A is a matrix, all tests
all elements of each column. If A is a multidimensional array, all tests all elements
along one dimension.

all(A,dim) tests along the dimension of A specified by dim.

Input Arguments

A

Symbolic vector, matrix, or multidimensional symbolic array. For example, it can
be an array of symbolic equations, inequalities, or logical expressions with symbolic
subexpressions.

dim

Integer. For example, if A is a matrix, all(A,1) tests elements of each column and
returns a row vector of logical 1s and 0s. all(A,2) tests elements of each row and
returns a column vector of logical 1s and 0s.

Default: The first dimension that is not equal to 1 (non-singleton dimension). For
example, if A is a matrix, all(A) treats the columns of A as vectors.

4 Functions — Alphabetical List

4-38

Examples

Create vector V that contains the symbolic equation and inequalities as its elements:

syms x

V = [x ~= x + 1, abs(x) >= 0, x == x];

Use all to test whether all of them are valid for all values of x:

all(V)

ans =

 1

Create this matrix of symbolic equations and inequalities:

syms x

M = [x == x, x == abs(x); abs(x) >= 0, x ~= 2*x]

M =

[x == x, x == abs(x)]

[0 <= abs(x), x ~= 2*x]

Use all to test equations and inequalities of this matrix. By default, all tests whether
all elements of each column are valid for all possible values of variables. If all equations
and inequalities in the column are valid (return logical 1), then all returns logical 1 for
that column. Otherwise, it returns logical 0 for the column. Thus, it returns 1 for the first
column and 0 for the second column:

all(M)

ans =

 1 0

Create this matrix of symbolic equations and inequalities:

syms x

M = [x == x, x == abs(x); abs(x) >= 0, x ~= 2*x]

M =

[x == x, x == abs(x)]

[0 <= abs(x), x ~= 2*x]

For matrices and multidimensional arrays, all can test all elements along the specified
dimension. To specify the dimension, use the second argument of all. For example, to
test all elements of each column of a matrix, use the value 1 as the second argument:

 all

4-39

all(M, 1)

ans =

 1 0

To test all elements of each row, use the value 2 as the second argument:

all(M, 2)

ans =

 0

 1

Test whether all elements of this vector return logical 1s. Note that all also converts
all numeric values outside equations and inequalities to logical 1s and 0s. The numeric
value 0 becomes logical 0:

syms x

all([0, x == x])

ans =

 0

All nonzero numeric values, including negative and complex values, become logical 1s:

all([1, 2, -3, 4 + i, x == x])

ans =

 1

More About

Tips

• If A is an empty symbolic array, all(A) returns logical 1.
• If some elements of A are just numeric values (not equations or inequalities), all

converts these values as follows. All numeric values except 0 become logical 1. The
value 0 becomes logical 0.

• If A is a vector and all its elements return logical 1, all(A) returns logical 1. If one or
more elements are zero, all(A) returns logical 0.

• If A is a multidimensional array, all(A) treats the values along the first dimension
that is not equal to 1 (nonsingleton dimension) as vectors, returning logical 1 or 0 for
each vector.

4 Functions — Alphabetical List

4-40

See Also
and | any | isAlways | not | or | xor

Introduced in R2012a

 allMuPADNotebooks

4-41

allMuPADNotebooks
All open notebooks

Syntax

L = allMuPADNotebooks

Description

L = allMuPADNotebooks returns a vector with handles (pointers) to all currently open
MuPAD notebooks.

If there are no open notebooks, allMuPADNotebooks returns an empty object [empty
mupad].

Examples

Identify All Open Notebooks

Get a vector of handles to all currently open MuPAD notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nb1 = mupad('myFile1.mn')

nb2 = mupad('myFile2.mn')

nb3 = mupad

nb1 =

myFile1

nb2 =

myFile2

nb3 =

Notebook1

4 Functions — Alphabetical List

4-42

Suppose that there are no other open notebooks. Use allMuPADNotebooks to get a
vector of handles to these notebooks:

allNBs = allMuPADNotebooks

allNBs =

myFile1

myFile2

Notebook1

Create Handle to Existing Notebook

If you already created a MuPAD notebook without a handle or if you lost the handle to a
notebook, use allMuPADNotebooks to create a new handle. Alternatively, you can save
the notebook, close it, and then open it again using a handle.

Create a new notebook:

mupad

Suppose that you already performed some computations in that notebook, and now want
to transfer a few variables to the MATLAB workspace. To be able to do it, you need to
create a handle to this notebook:

nb = allMuPADNotebooks

nb =

Notebook1

Now, you can use nb when transferring data and results between the notebook
Notebook1 and the MATLAB workspace. This approach does not require you to save
Notebook1.

getVar(nb,'x')

ans =

x

• “Create MuPAD Notebooks” on page 3-3
• “Open MuPAD Notebooks” on page 3-6
• “Save MuPAD Notebooks” on page 3-12
• “Evaluate MuPAD Notebooks from MATLAB” on page 3-13
• “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25

 allMuPADNotebooks

4-43

• “Close MuPAD Notebooks from MATLAB” on page 3-16

Output Arguments

L — All open MuPAD notebooks
vector of handles to notebooks

All open MuPAD notebooks, returned as a vector of handles to these notebooks.

See Also
close | evaluateMuPADNotebook | getVar | mupad | mupadNotebookTitle |
openmn | setVar

Introduced in R2013b

4 Functions — Alphabetical List

4-44

and
Logical AND for symbolic expressions

Syntax

A & B

and(A,B)

Description

A & B represents the logical conjunction. A & B is true only when both A and B are true.

and(A,B) is equivalent to A & B.

Input Arguments

A

Symbolic equation, inequality, or logical expression that contains symbolic
subexpressions.

B

Symbolic equation, inequality, or logical expression that contains symbolic
subexpressions.

Examples

Combine these symbolic inequalities into the logical expression using &:

syms x y

xy = x >= 0 & y >= 0;

Set the corresponding assumptions on variables x and y using assume:

 and

4-45

assume(xy)

Verify that the assumptions are set:

assumptions

ans =

[0 <= x, 0 <= y]

Combine two symbolic inequalities into the logical expression using &:

syms x

range = 0 < x & x < 1;

Replace variable x with these numeric values. If you replace x with 1/2, then both
inequalities are valid. If you replace x with 10, both inequalities are invalid. Note that
subs does not evaluate these inequalities to logical 1 or 0.

x1 = subs(range, x, 1/2)

x2 = subs(range, x, 10)

x1 =

0 < 1/2 & 1/2 < 1

x2 =

0 < 10 & 10 < 1

To evaluate these inequalities to logical 1 or 0, use isAlways:

isAlways(x1)

isAlways(x2)

ans =

 1

ans =

 0

Note that simplify does not simplify these logical expressions to logical 1 or 0. Instead,
they return symbolic values TRUE or FALSE.

s1 = simplify(x1)

s2 = simplify(x2)

s1 =

4 Functions — Alphabetical List

4-46

TRUE

s2 =

FALSE

Convert symbolic TRUE or FALSE to logical values using isAlways:

isAlways(s1)

isAlways(s2)

ans =

 1

ans =

 0

The recommended approach to define a range of values is using &. Nevertheless, you can
define a range of values of a variable as follows:

syms x

range = 0 < x < 1;

Now if you want to replace variable x with numeric values, use symbolic numbers
instead of MATLAB double-precision numbers. To create a symbolic number, use sym

x1 = subs(range, x, sym(1/2))

x2 = subs(range, x, sym(10))

x1 =

(0 < 1/2) < 1

x2 =

(0 < 10) < 1

Evaluate these inequalities to logical 1 or 0 using isAlways.

isAlways(x1)

isAlways(x2)

ans =

 1

ans =

 0

 and

4-47

More About

Tips

• If you call simplify for a logical expression containing symbolic subexpressions, you
can get symbolic values TRUE or FALSE. These values are not the same as logical 1
(true) and logical 0 (false). To convert symbolic TRUE or FALSE to logical values, use
isAlways.

See Also
all | any | isAlways | not | or | xor

Introduced in R2012a

4 Functions — Alphabetical List

4-48

angle
Symbolic polar angle

Syntax

angle(Z)

Description

angle(Z) computes the polar angle of the complex value Z.

Input Arguments

Z

Symbolic number, variable, expression, function. The function also accepts a vector or
matrix of symbolic numbers, variables, expressions, functions.

Examples

Compute the polar angles of these complex numbers. Because these numbers are not
symbolic objects, you get floating-point results.

[angle(1 + i), angle(4 + pi*i), angle(Inf + Inf*i)]

ans =

 0.7854 0.6658 0.7854

Compute the polar angles of these complex numbers which are converted to symbolic
objects:

[angle(sym(1) + i), angle(sym(4) + sym(pi)*i), angle(Inf + sym(Inf)*i)]

ans =

[pi/4, atan(pi/4), pi/4]

 angle

4-49

Compute the limits of these symbolic expressions:

syms x

limit(angle(x + x^2*i/(1 + x)), x, -Inf)

limit(angle(x + x^2*i/(1 + x)), x, Inf)

ans =

-(3*pi)/4

ans =

pi/4

Compute the polar angles of the elements of matrix Z:

Z = sym([sqrt(3) + 3*i, 3 + sqrt(3)*i; 1 + i, i]);

angle(Z)

ans =

[pi/3, pi/6]

[pi/4, pi/2]

Alternatives

For real X and Y such that Z = X + Y*i, the call angle(Z) is equivalent to
atan2(Y,X).

More About

Tips

• Calling angle for numbers (or vectors or matrices of numbers) that are not symbolic
objects invokes the MATLAB angle function.

• If Z = 0, then angle(Z) returns 0.

See Also
atan2 | conj | imag | real | sign | signIm

Introduced in R2013a

4 Functions — Alphabetical List

4-50

any

Test whether at least one of equations and inequalities represented as elements of
symbolic array is valid

Syntax

any(A)

any(A,dim)

Description

any(A) tests whether at least one element of A returns logical 1 (true). If A is a matrix,
any tests elements of each column. If A is a multidimensional array, any tests elements
along one dimension.

any(A,dim) tests along the dimension of A specified by dim.

Input Arguments

A

Symbolic vector, matrix, or multidimensional symbolic array. For example, it can
be an array of symbolic equations, inequalities, or logical expressions with symbolic
subexpressions.

dim

Integer. For example, if A is a matrix, any(A,1) tests elements of each column and
returns a row vector of logical 1s and 0s. any(A,2) tests elements of each row and
returns a column vector of logical 1s and 0s.

Default: The first dimension that is not equal to 1 (non-singleton dimension). For
example, if A is a matrix, any(A) treats the columns of A as vectors.

 any

4-51

Examples

Create vector V that contains the symbolic equation and inequalities as its elements:

syms x real

V = [x ~= x + 1, abs(x) >= 0, x == x];

Use any to test whether at least one of them is valid for all values of x:

any(V)

ans =

 1

Create this matrix of symbolic equations and inequalities:

syms x real

M = [x == 2*x, x == abs(x); abs(x) >= 0, x == 2*x]

M =

[x == 2*x, x == abs(x)]

[0 <= abs(x), x == 2*x]

Use any to test equations and inequalities of this matrix. By default, any tests whether
any element of each column is valid for all possible values of variables. If at least one
equation or inequality in the column is valid (returns logical 1), then any returns logical
1 for that column. Otherwise, it returns logical 0 for the column. Thus, it returns 1 for
the first column and 0 for the second column:

any(M)

ans =

 1 0

Create this matrix of symbolic equations and inequalities:

syms x real

M = [x == 2*x, x == abs(x); abs(x) >= 0, x == 2*x]

M =

[x == 2*x, x == abs(x)]

[0 <= abs(x), x == 2*x]

For matrices and multidimensional arrays, any can test elements along the specified
dimension. To specify the dimension, use the second argument of any. For example, to
test elements of each column of a matrix, use the value 1 as the second argument:

4 Functions — Alphabetical List

4-52

any(M, 1)

ans =

 1 0

To test elements of each row, use the value 2 as the second argument:

any(M, 2)

ans =

 0

 1

Test whether any element of this vector returns logical 1. Note that any also converts
all numeric values outside equations and inequalities to logical 1s and 0s. The numeric
value 0 becomes logical 0:

syms x

any([0, x == x + 1])

ans =

 0

All nonzero numeric values, including negative and complex values, become logical 1s:

any([-4 + i, x == x + 1])

ans =

 1

More About

Tips

• If A is an empty symbolic array, any(A) returns logical 0.
• If some elements of A are just numeric values (not equations or inequalities), any

converts these values as follows. All nonzero numeric values become logical 1. The
value 0 becomes logical 0.

• If A is a vector and any of its elements returns logical 1, any(A) returns logical 1. If
all elements are zero, any(A) returns logical 0.

• If A is a multidimensional array, any(A) treats the values along the first dimension
that is not equal to 1 (non-singleton dimension) as vectors, returning logical 1 or 0 for
each vector.

 any

4-53

See Also
all | and | isAlways | not | or | xor

Introduced in R2012a

4 Functions — Alphabetical List

4-54

argnames
Input variables of symbolic function

Syntax

argnames(f)

Description

argnames(f) returns input variables of f.

Input Arguments

f

Symbolic function.

Examples

Create this symbolic function:

syms f(x, y)

f(x, y) = x + y;

Use argnames to find input variables of f:

argnames(f)

ans =

[x, y]

Create this symbolic function:

syms f(a, b, x, y)

f(x, b, y, a) = a*x + b*y;

 argnames

4-55

Use argnames to find input variables of f. When returning variables, argnames uses the
same order as you used when you defined the function:

argnames(f)

ans =

[x, b, y, a]

See Also
formula | sym | syms | symvar

Introduced in R2012a

4 Functions — Alphabetical List

4-56

asec
Symbolic inverse secant function

Syntax

asec(X)

Description

asec(X) returns the inverse secant function (arcsecant function) of X.

Examples

Inverse Secant Function for Numeric and Symbolic Arguments

Depending on its arguments, asec returns floating-point or exact symbolic results.

Compute the inverse secant function for these numbers. Because these numbers are not
symbolic objects, asec returns floating-point results.

A = asec([-2, 0, 2/sqrt(3), 1/2, 1, 5])

A =

 2.0944 + 0.0000i 0.0000 + Infi 0.5236 + 0.0000i...

 0.0000 + 1.3170i 0.0000 + 0.0000i 1.3694 + 0.0000i

Compute the inverse secant function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, asec returns unresolved symbolic calls.

symA = asec(sym([-2, 0, 2/sqrt(3), 1/2, 1, 5]))

symA =

[(2*pi)/3, Inf, pi/6, acos(2), 0, acos(1/5)]

Use vpa to approximate symbolic results with floating-point numbers:

 asec

4-57

vpa(symA)

ans =

[2.0943951023931954923084289221863,...

Inf,...

0.52359877559829887307710723054658,...

1.3169578969248165734029498707969i,...

0,...

1.3694384060045659001758622252964]

Plot Inverse Secant Function

Plot the inverse secant function on the interval from -10 to 10.

syms x

ezplot(asec(x), [-10, 10])

grid on

4 Functions — Alphabetical List

4-58

Handle Expressions Containing Inverse Secant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing asec.

Find the first and second derivatives of the inverse secant function:

syms x

diff(asec(x), x)

diff(asec(x), x, x)

ans =

1/(x^2*(1 - 1/x^2)^(1/2))

 asec

4-59

ans =

- 2/(x^3*(1 - 1/x^2)^(1/2)) - 1/(x^5*(1 - 1/x^2)^(3/2))

Find the indefinite integral of the inverse secant function:

int(asec(x), x)

ans =

x*acos(1/x) - acosh(x)*sign(x)

Find the Taylor series expansion of asec(x) around x = Inf:

taylor(asec(x), x, Inf)

ans =

pi/2 - 1/x - 1/(6*x^3) - 3/(40*x^5)

Rewrite the inverse secant function in terms of the natural logarithm:

rewrite(asec(x), 'log')

ans =

-log(1/x + (1 - 1/x^2)^(1/2)*1i)*1i

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acos | acot | acsc | asin | atan | cos | cot | csc | sec | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-60

asech
Symbolic inverse hyperbolic secant function

Syntax

asech(X)

Description

asech(X) returns the inverse hyperbolic secant function of X.

Examples

Inverse Hyperbolic Secant Function for Numeric and Symbolic Arguments

Depending on its arguments, asech returns floating-point or exact symbolic results.

Compute the inverse hyperbolic secant function for these numbers. Because these
numbers are not symbolic objects, asech returns floating-point results.

A = asech([-2, 0, 2/sqrt(3), 1/2, 1, 3])

A =

 0.0000 + 2.0944i Inf + 0.0000i 0.0000 + 0.5236i...

 1.3170 + 0.0000i 0.0000 + 0.0000i 0.0000 + 1.2310i

Compute the inverse hyperbolic secant function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, asech returns unresolved symbolic calls.

symA = asech(sym([-2, 0, 2/sqrt(3), 1/2, 1, 3]))

symA =

[(pi*2i)/3, Inf, (pi*1i)/6, acosh(2), 0, acosh(1/3)]

Use vpa to approximate symbolic results with floating-point numbers:

 asech

4-61

vpa(symA)

ans =

[2.0943951023931954923084289221863i,...

Inf,...

0.52359877559829887307710723054658i,...

1.316957896924816708625046347308,...

0,...

1.230959417340774682134929178248i]

Plot Inverse Hyperbolic Secant Function

Plot the inverse hyperbolic secant function on the interval from 0 to 1.

syms x

ezplot(asech(x), [0, 1])

grid on

4 Functions — Alphabetical List

4-62

Handle Expressions Containing Inverse Hyperbolic Secant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing asech.

Find the first and second derivatives of the inverse hyperbolic secant function:

syms x

diff(asech(x), x)

diff(asech(x), x, x)

ans =

-1/(x^2*(1/x^2 - 1)^(1/2))

 asech

4-63

ans =

2/(x^3*(1/x^2 - 1)^(1/2)) - 1/(x^5*(1/x^2 - 1)^(3/2))

Find the indefinite integral of the inverse hyperbolic secant function:

int(asech(x), x)

ans =

x*acosh(1/x) + asin(x)*sign(x)

Find the Taylor series expansion of asech(x) around x = Inf:

taylor(asech(x), x, Inf)

ans =

(pi*1i)/2 - 1i/x - 1i/(6*x^3) - 3i/(40*x^5)

Rewrite the inverse hyperbolic secant function in terms of the natural logarithm:

rewrite(asech(x), 'log')

ans =

log((1/x^2 - 1)^(1/2) + 1/x)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asinh | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-64

asin

Symbolic inverse sine function

Syntax

asin(X)

Description

asin(X) returns the inverse sine function (arcsine function) of X.

Examples

Inverse Sine Function for Numeric and Symbolic Arguments

Depending on its arguments, asin returns floating-point or exact symbolic results.

Compute the inverse sine function for these numbers. Because these numbers are not
symbolic objects, asin returns floating-point results.

A = asin([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1])

A =

 -1.5708 -0.3398 -0.5236 0.2527 0.5236 1.0472 1.5708

Compute the inverse sine function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, asin returns unresolved symbolic calls.

symA = asin(sym([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1]))

symA =

[-pi/2, -asin(1/3), -pi/6, asin(1/4), pi/6, pi/3, pi/2]

Use vpa to approximate symbolic results with floating-point numbers:

 asin

4-65

vpa(symA)

ans =

[-1.5707963267948966192313216916398,...

-0.33983690945412193709639251339176,...

-0.52359877559829887307710723054658,...

0.25268025514207865348565743699371,...

0.52359877559829887307710723054658,...

1.0471975511965977461542144610932,...

1.5707963267948966192313216916398]

Plot Inverse Sine Function

Plot the inverse sine function on the interval from -1 to 1.

syms x

ezplot(asin(x), [-1, 1])

grid on

4 Functions — Alphabetical List

4-66

Handle Expressions Containing Inverse Sine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing asin.

Find the first and second derivatives of the inverse sine function:

syms x

diff(asin(x), x)

diff(asin(x), x, x)

ans =

1/(1 - x^2)^(1/2)

 asin

4-67

ans =

x/(1 - x^2)^(3/2)

Find the indefinite integral of the inverse sine function:

int(asin(x), x)

ans =

x*asin(x) + (1 - x^2)^(1/2)

Find the Taylor series expansion of asin(x):

taylor(asin(x), x)

ans =

(3*x^5)/40 + x^3/6 + x

Rewrite the inverse sine function in terms of the natural logarithm:

rewrite(asin(x), 'log')

ans =

-log((1 - x^2)^(1/2) + x*1i)*1i

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acos | acot | acsc | asec | atan | cos | cot | csc | sec | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-68

asinh
Symbolic inverse hyperbolic sine function

Syntax

asinh(X)

Description

asinh(X) returns the inverse hyperbolic sine function of X.

Examples

Inverse Hyperbolic Sine Function for Numeric and Symbolic Arguments

Depending on its arguments, asinh returns floating-point or exact symbolic results.

Compute the inverse hyperbolic sine function for these numbers. Because these numbers
are not symbolic objects, asinh returns floating-point results.

A = asinh([-i, 0, 1/6, i/2, i, 2])

A =

 0.0000 - 1.5708i 0.0000 + 0.0000i 0.1659 + 0.0000i...

 0.0000 + 0.5236i 0.0000 + 1.5708i 1.4436 + 0.0000i

Compute the inverse hyperbolic sine function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, asinh returns unresolved symbolic calls.

symA = asinh(sym([-i, 0, 1/6, i/2, i, 2]))

symA =

[-(pi*1i)/2, 0, asinh(1/6), (pi*1i)/6, (pi*1i)/2, asinh(2)]

Use vpa to approximate symbolic results with floating-point numbers:

 asinh

4-69

vpa(symA)

ans =

[-1.5707963267948966192313216916398i,...

0,...

0.16590455026930117643502171631553,...

0.52359877559829887307710723054658i,...

1.5707963267948966192313216916398i,...

1.4436354751788103012444253181457]

Plot Inverse Hyperbolic Sine Function

Plot the inverse hyperbolic sine function on the interval from -10 to 10.

syms x

ezplot(asinh(x), [-10, 10])

grid on

4 Functions — Alphabetical List

4-70

Handle Expressions Containing Inverse Hyperbolic Sine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing asinh.

Find the first and second derivatives of the inverse hyperbolic sine function:

syms x

diff(asinh(x), x)

diff(asinh(x), x, x)

ans =

1/(x^2 + 1)^(1/2)

 asinh

4-71

ans =

-x/(x^2 + 1)^(3/2)

Find the indefinite integral of the inverse hyperbolic sine function:

int(asinh(x), x)

ans =

x*asinh(x) - (x^2 + 1)^(1/2)

Find the Taylor series expansion of asinh(x):

taylor(asinh(x), x)

ans =

(3*x^5)/40 - x^3/6 + x

Rewrite the inverse hyperbolic sine function in terms of the natural logarithm:

rewrite(asinh(x), 'log')

ans =

log(x + (x^2 + 1)^(1/2))

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-72

assume
Set assumption on symbolic object

Syntax

assume(condition)

assume(expr,set)

assume(expr,'clear')

Description

assume(condition) states that condition is valid for all symbolic variables in
condition. It also removes any assumptions previously made on these symbolic
variables.

assume(expr,set) states that expr belongs to set. This new assumption replaces
previously set assumptions on all variables in expr.

assume(expr,'clear') clears all assumptions on all variables in expr.

Examples

Common Assumptions

Set an assumption using the associated syntax.

Assume ‘x’ is Syntax

real assume(x,’real’)

rational assume(x,’rational’)

positive assume(x > 0)

an integer between 2 and 10 assume(in(x,'integer') & x>2 &

x<10)

 assume

4-73

Assume ‘x’ is Syntax

less than -1 or greater than 1 assume(x<-1 | x>1)

not equal to 0 assume(x ~= 0)

even assume(x/2,'integer')

odd assume((x - 1)/2,'integer')

between 0 and 2π assume(x>0 & x<2*pi)

a multiple of π assume(x/pi,’integer’)

Assume Variable Is Even or Odd

Assume the symbolic variable x is even, by setting the assumption that x/2 is an integer.

Assume x is even.

syms x

assume(x/2,'integer')

Find all even numbers between 0 and 10 using solve.

solve(x>0,x<10,x)

ans =

 2

 4

 6

 8

Assume x is odd by setting the assumption that (x-1)/2 is an integer. Find all odd
numbers between 0 and 10 using solve.

assume((x-1)/2,'integer')

solve(x>0,x<10,x)

ans =

 1

 3

 5

 7

 9

Clear assumptions on x for further computations.

4 Functions — Alphabetical List

4-74

assume(x,'clear')

Assumptions on Integrand

Compute an indefinite integral with and without the assumption on the symbolic
parameter a.

Use assume to set an assumption that a does not equal -1.

syms x a

assume(a ~= -1)

Compute this integral.

int(x^a,x)

ans =

x^(a + 1)/(a + 1)

Now, clear the assumption and compute the same integral. Without assumptions, int
returns this piecewise result.

assume(a,'clear')

int(x^a, x)

ans =

piecewise([a == -1, log(x)], [a ~= -1, x^(a + 1)/(a + 1)])

Assumptions on Parameters and Variables of Equation

Use assumptions on the symbolic parameter and variable in the kinematic equation for
free fall motion.

Calculate the time during which the object falls from a certain height by solving the
kinematic equation for free fall motion. Assume the gravitational acceleration g is
positive.

syms g h t

assume(g > 0)

solve(h == g*t^2/2, t)

ans =

 assume

4-75

 (2^(1/2)*h^(1/2))/g^(1/2)

 -(2^(1/2)*h^(1/2))/g^(1/2)

Additionally, you can set assumptions on variables for which you solve an equation.
When you set assumptions on such variables, the solver compares obtained solutions
with the specified assumptions. This additional task can slow down the solver.

Assume time t is positive and solve the same equation again.

assume(t > 0)

solve(h == g*t^2/2,t)

Warning: The solutions are valid under the following

conditions: 0 < h. To include parameters and conditions in

the solution, specify the 'ReturnConditions' option.

> In solve>warnIfParams at 514

 In solve at 356

ans =

(2^(1/2)*h^(1/2))/g^(1/2)

The solver returns a warning that h must be positive. This warning follows as the object
is above ground.

For further computations, clear the assumptions.

assume([g t],'clear')

Use Assumptions for Simplification

Setting appropriate assumptions can result in simpler expressions.

Try to simplify the expression sin(2*pi*n) using simplify. The simplify function
cannot simplify the input and returns the input as it is.

syms n

simplify(sin(2*n*pi))

ans =

sin(2*pi*n)

Assume n is an integer. simplify now simplifies the expression.

assume(n,'integer')

4 Functions — Alphabetical List

4-76

simplify(sin(2*n*pi))

ans =

0

For further computations, clear the assumption.

assume(n,'clear')

Assumptions on Expressions

Set assumption on the symbolic expression.

You can set assumptions not only on variables, but also on expressions. For example,
compute this integral.

syms x

int(1/abs(x^2 - 1),x)

ans =

-atanh(x)/sign(x^2 - 1)

Set the assumption x2 – 1 > 0 to produce a simpler result.

assume(x^2 - 1 > 0)

int(1/abs(x^2 - 1),x)

ans =

-atanh(x)

For further computations, clear the assumption.

assume(x,'clear')

Assumptions Reducing Number of Solutions

Use assumptions to restrict the returned solutions of an equation to a particular interval.

Solve this equation.

syms x

solve(x^5 - (565*x^4)/6 - (1159*x^3)/2 - (2311*x^2)/6 + (365*x)/2 + 250/3, x)

ans =

 assume

4-77

 -5

 -1

 -1/3

 1/2

 100

Use assume to restrict the solutions to the interval –1 <= x <= 1.

assume(-1 <= x <= 1)

solve(x^5 - (565*x^4)/6 - (1159*x^3)/2 - (2311*x^2)/6 + (365*x)/2 + 250/3, x)

ans =

 -1

 -1/3

 1/2

Set several assumptions simultaneously by using the logical operators and, or, xor,
not, or their shortcuts. For example, all negative solutions less than -1 and all positive
solutions greater than 1.

assume(x < -1 | x > 1)

solve(x^5 - (565*x^4)/6 - (1159*x^3)/2 - (2311*x^2)/6 + (365*x)/2 + 250/3, x)

ans =

 -5

 100

For further computations, clear the assumptions.

assume(x,'clear')

Assumptions on Matrix Elements

Set assumptions on all elements of a matrix using sym.

Create the 3-by-3 symbolic matrix A with auto-generated elements. Specify the set as
rational.

A = sym('A',[3 3],'rational')

A =

[A1_1, A1_2, A1_3]

[A2_1, A2_2, A2_3]

[A3_1, A3_2, A3_3]

4 Functions — Alphabetical List

4-78

Return the assumptions on the elements of A using assumptions.

assumptions(A)

ans =

[in(A3_1, 'rational'), in(A2_1, 'rational'), in(A1_1, 'rational'),...

 in(A3_2, 'rational'), in(A2_2, 'rational'), in(A1_2, 'rational'),...

 in(A3_3, 'rational'), in(A2_3, 'rational'), in(A1_3, 'rational')]

You can also use assume to set assumptions on all elements of a matrix. Assume all
elements of A are positive using assume.

assume(A,'positive')

For further computations, clear the assumptions.

assume(A,'clear')

Input Arguments

condition — Assumption statement
symbolic expression | symbolic equation | symbolic relation | vector or matrix of
symbolic expressions, equations, or relations

Assumption statement, specified as a symbolic expression, equation, relation, or vector
or matrix of symbolic expressions, equations, or relations. You also can combine several
assumptions by using the logical operators and, or, xor, not, or their shortcuts.

expr — Expression to set assumption on
symbolic variable | symbolic expression | vector or matrix of symbolic variables or
expressions

Expression to set assumption on, specified as a symbolic variable, expression, vector, or
matrix. If expr is a vector or matrix, then assume(expr,set) sets an assumption that
each element of expr belongs to set.

set — Set of integer, rational, real, or positive numbers
'integer' | 'rational' | 'real' | 'positive'

Set of integer, rational, real, or positive numbers, specified as one of these strings:
'integer', 'rational', 'real', or 'positive'.

 assume

4-79

More About

Tips

• assume removes any assumptions previously set on the symbolic variables. To retain
previous assumptions while adding a new assumption, use assumeAlso.

• When you delete a symbolic variable from the MATLAB workspace using clear, all
assumptions that you set on that variable remain in the symbolic engine. If you later
declare a new symbolic variable with the same name, it inherits these assumptions.

• To clear all assumptions set on a symbolic variable var, use this command.

assume(var,'clear')

• To delete all objects in the MATLAB workspace and close the MuPAD engine
associated with the MATLAB workspace clearing all assumptions, use this command:

clear all

• MATLAB projects complex numbers in inequalities to the real axis. If condition
is an inequality, then both sides of the inequality must represent real values.
Inequalities with complex numbers are invalid because the field of complex numbers
is not an ordered field. (It is impossible to tell whether 5 + i is greater or less than 2
+ 3*i.) For example, x > i becomes x > 0, and x <= 3 + 2*i becomes x <= 3.

• The toolbox does not support assumptions on symbolic functions. Make assumptions
on symbolic variables and expressions instead.

• When you create a new symbolic variable using sym and syms, you also can set an
assumption that the variable is real, positive, integer, or rational.

a = sym('a','real');

b = sym('b','integer');

c = sym('c','positive');

d = sym('d','positive');

e = sym('e','rational');

or more efficiently

syms a real

syms b integer

syms c d positive

syms e rational

• “Default Assumption” on page 1-27

4 Functions — Alphabetical List

4-80

See Also
and | assumeAlso | assumptions | clear all | in | isAlways | not | or | sym |
syms

Introduced in R2012a

 assumeAlso

4-81

assumeAlso
Add assumption on symbolic object

Syntax

assumeAlso(condition)

assumeAlso(expr,set)

Description

assumeAlso(condition) states that condition is valid for all symbolic variables in
condition. It retains all assumptions previously set on these symbolic variables.

assumeAlso(expr,set) states that expr belongs to set, in addition to all previously
made assumptions.

Examples

Assumptions Specified as Relations

Set assumptions using assume. Then add more assumptions using assumeAlso.

Solve this equation assuming that both x and y are nonnegative.

syms x y

assume(x >= 0 & y >= 0)

s = solve(x^2 + y^2 == 1, y)

Warning: The solutions are valid under the following

conditions: x <= 1; x == 1. To include parameters and

conditions in the solution, specify the 'ReturnConditions'

option.

> In solve>warnIfParams at 514

 In solve at 356

s =

4 Functions — Alphabetical List

4-82

 (1 - x)^(1/2)*(x + 1)^(1/2)

 -(1 - x)^(1/2)*(x + 1)^(1/2)

The solver warns that both solutions hold only under certain conditions.

Add the assumption that x < 1. To add a new assumption without removing the
previous one, use assumeAlso.

assumeAlso(x < 1)

Solve the same equation under the expanded set of assumptions.

s = solve(x^2 + y^2 == 1, y)

s =

(1 - x)^(1/2)*(x + 1)^(1/2)

For further computations, clear the assumptions.

assume([x y],'clear')

Assumptions Specified as Sets

Set assumptions using syms. Then add more assumptions using assumeAlso.

When declaring the symbolic variable n, set an assumption that n is positive.

syms n positive

Using assumeAlso, add more assumptions on the same variable n. For example, assume
also that n is and integer.

assumeAlso(n,'integer')

Return all assumptions affecting variable n using assumptions. In this case, n is a
positive integer.

assumptions(n)

ans =

[in(n, 'integer'), 0 < n]

For further computations, clear the assumptions.

 assumeAlso

4-83

assume(n,'clear')

Assumptions on Matrix Elements

Use the assumption on a matrix as a shortcut for setting the same assumption on each
matrix element.

Create the 3-by-3 symbolic matrix A with auto-generated elements. To assume every
element of A is rational, specify set as 'rational'.

A = sym('A',[3 3],'rational')

A =

[A1_1, A1_2, A1_3]

[A2_1, A2_2, A2_3]

[A3_1, A3_2, A3_3]

Now, add the assumption that each element of A is greater than 1.

assumeAlso(A > 1)

Return assumptions affecting elements of A using assumptions:

assumptions(A)

ans =

[in(A1_1, 'rational'), in(A1_2, 'rational'), in(A1_3, 'rational'),...

 in(A2_1, 'rational'), in(A2_2, 'rational'), in(A2_3, 'rational'),...

 in(A3_1, 'rational'), in(A3_2, 'rational'), in(A3_3, 'rational'),...

 1 < A1_1, 1 < A1_2, 1 < A1_3, 1 < A2_1, 1 < A2_2, 1 < A2_3, 1...

 < A3_1, 1 < A3_2, 1 < A3_3]

For further computations, clear the assumptions.

assume(A,'clear')

Contradicting Assumptions

When you add assumptions, ensure that the new assumptions do not contradict
the previous assumptions. Contradicting assumptions can lead to inconsistent and
unpredictable results. In some cases, assumeAlso detects conflicting assumptions and
issues an error.

4 Functions — Alphabetical List

4-84

Try to set contradicting assumptions. assumeAlso returns an error.

syms y

assume(y,'real')

assumeAlso(y == i)

Error using mupadmex

Error in MuPAD command: Inconsistent assumptions

detected. [property::_setgroup]

assumeAlso does not guarantee to detect contradicting assumptions. For example,
assume that y is nonzero, and both y and y*i are real values.

syms y

assume(y ~= 0)

assumeAlso(y,'real')

assumeAlso(y*i,'real')

Return all assumptions affecting variable y using assumptions:

assumptions(y)

ans =

[in(y, 'real'), y ~= 0, in(y*1i, 'real')]

For further computations, clear the assumptions.

assume(y,'clear')

Input Arguments

condition — Assumption statement
symbolic expression | symbolic equation | relation | vector or matrix of symbolic
expressions, equations, or relations

Assumption statement, specified as a symbolic expression, equation, relation, or vector
or matrix of symbolic expressions, equations, or relations. You also can combine several
assumptions by using the logical operators and, or, xor, not, or their shortcuts.

expr — Expression to set assumption on
symbolic variable | symbolic expression | vector or matrix of symbolic variables or
expressions

 assumeAlso

4-85

Expression to set assumption on, specified as a symbolic variable, expression, or a
vector or matrix of symbolic variables or expressions. If expr is a vector or matrix, then
assumeAlso(expr,set) sets an assumption that each element of expr belongs to set.

set — Set of integer, rational, real, or positive numbers
'integer' | 'rational' | 'real' | 'positive'

Set of integer, rational, real, or positive numbers, specified as one of these strings:
'integer', 'rational', 'real', or 'positive'.

More About

Tips

• assumeAlso keeps all assumptions previously set on the symbolic variables. To
replace previous assumptions with the new one, use assume.

• When adding assumptions, always check that a new assumption does not contradict
the existing assumptions. To see existing assumptions, use assumptions. Symbolic
Math Toolbox does not guarantee to detect conflicting assumptions. Conflicting
assumptions can lead to unpredictable and inconsistent results.

• When you delete a symbolic variable from the MATLAB workspace using clear, all
assumptions that you set on that variable remain in the symbolic engine. If later you
declare a new symbolic variable with the same name, it inherits these assumptions.

• To clear all assumptions set on a symbolic variable var use this command.

assume(var,'clear')

• To clear all objects in the MATLAB workspace and close the MuPAD engine
associated with the MATLAB workspace resetting all its assumptions, use this
command.

clear all

• MATLAB projects complex numbers in inequalities to the real axis. If condition
is an inequality, then both sides of the inequality must represent real values.
Inequalities with complex numbers are invalid because the field of complex numbers
is not an ordered field. (It is impossible to tell whether 5 + i is greater or less than 2
+ 3*i.) For example, x > i becomes x > 0, and x <= 3 + 2*i becomes x <= 3.

• The toolbox does not support assumptions on symbolic functions. Make assumptions
on symbolic variables and expressions instead.

4 Functions — Alphabetical List

4-86

• Instead of adding assumptions one by one, you can set several assumptions in one
function call. To set several assumptions, use assume and combine these assumptions
by using the logical operators and, or, xor, not, all, any, or their shortcuts.

• “Default Assumption” on page 1-27

See Also
and | assume | assumptions | clear all | in | isAlways | not | or | sym | syms

Introduced in R2012a

 assumptions

4-87

assumptions
Show assumptions affecting symbolic variable, expression, or function

Syntax
assumptions(var)

assumptions

Description
assumptions(var) returns all assumptions that affect variable var. If var is an
expression or function, assumptions returns all assumptions that affect all variables in
var.

assumptions returns all assumptions that affect all variables in MATLAB Workspace.

Examples

Assumptions on Variables

Assume that the variable n is an integer using assume. Return the assumption using
assumptions.

syms n

assume(n,'integer')

assumptions

ans =

in(n, 'integer')

The syntax in(n, 'integer') indicates n is an integer.

Assume that n is less than x and that x < 42 using assume. The assume function
replaces old assumptions on input with the new assumptions. Return all assumptions
that affect n.

syms x

assume(n<x & x<42)

4 Functions — Alphabetical List

4-88

assumptions(n)

ans =

[n < x, x < 42]

assumptions returns the assumption x < 42 because it affects n through the
assumption n < x. Thus, assumptions returns the transitive closure of assumptions,
which is all assumptions that mathematically affect the input.

Set the assumption on variable m that 1 < m < 3. Return all assumptions on m and x
using assumptions.

syms m

assume(1<m<3)

assumptions([m x])

ans =

[1 < m, m < 3, n < x, x < 42]

To see the assumptions that affect all variables, use assumptions without any
arguments.

assumptions

ans =

[n < x, x < 42, 1 < m, m < 3]

For further computations, clear the assumptions.

assume([m n x],'clear')

Multiple Assumptions on One Variable

You cannot set an additional assumption on a variable using assume because assume
clears all previous assumptions on that variable. To set an additional assumption on a
variable, using assumeAlso.

Set an assumption on x using assume. Set an additional assumption on x use
assumeAlso. Use assumptions to return the multiple assumptions on x.

syms x

assume(x,'real')

assumeAlso(x<0)

assumptions(x)

ans =

 assumptions

4-89

[x < 0, in(x, 'real')]

The syntax in(x, 'real') indicates x is real.

For further computations, clear the assumptions.

assume(x,'clear')

Assumptions Affecting Expressions and Functions

assumptions accepts symbolic expressions and functions as input and returns all
assumptions that affect all variables in the symbolic expressions or functions.

Set assumptions on variables in a symbolic expression. Find all assumptions that affect
all variables in the symbolic expression using assumptions.

syms a b c

expr = a*exp(b)*sin(c);

assume(a+b > 3 & in(a,'integer') & in(c,'real'))

assumptions(expr)

ans =

[3 < a + b, in(a, 'integer'), in(c, 'real')

Find all assumptions that affect all variables that are inputs to a symbolic function.

syms f(a,b,c)

assumptions(f)

ans =

[3 < a + b, in(a, 'integer'), in(c, 'real')]

Clear the assumptions for further computations.

assume([a b c],'clear')

Restore Old Assumptions

To restore old assumptions, first store the assumptions returned by assumptions. Then
you can restore these assumptions at any point by calling assume or assumeAlso.

Solve the equation for a spring using dsolve under the assumptions that the mass and
spring constant are positive.

syms m k positive

syms x(t)

4 Functions — Alphabetical List

4-90

dsolve(m*diff(x,t,t) == -k*x, x(0)==0)

ans =

C8*sin((k^(1/2)*t)/m^(1/2))

Suppose you want to explore solutions unconstrained by assumptions, but want to
restore the assumptions afterwards. First store the assumptions using assumptions,
then clear the assumptions and solve the equation. dsolve returns unconstrained
solutions.

tmp = assumptions;

assume([m k],'clear')

dsolve(m*diff(x,t,t) == -k*x, x(0)==0)

ans =

C10*exp((t*(-k*m)^(1/2))/m) + C10*exp(-(t*(-k*m)^(1/2))/m)

Restore the original assumptions using assume.

assume(tmp)

After computations are complete, clear assumptions using assume.

assume([m k],'clear')

Input Arguments

var — Symbolic input to check for assumptions
symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic
matrix | symbolic multidimensional array

Symbolic input for which to show assumptions, specified as a symbolic variable,
expression, or function, or a vector, matrix, or multidimensional array of symbolic
variables, expressions, or functions.

More About

Tips

• When you delete a symbolic object from the MATLAB workspace by using clear, all
assumptions that you set on that object remain in the symbolic engine. If you declare
a new symbolic variable with the same name, it inherits these assumptions.

 assumptions

4-91

• To clear all assumptions set on a symbolic variable var use this command.

assume(var,'clear')

• To close the MuPAD engine associated with the MATLAB workspace resetting all its
assumptions, use this command.

reset(symengine)

Immediately before or after executing reset(symengine) you should clear all
symbolic objects in the MATLAB workspace.

• To clear all objects in the MATLAB workspace and close the MuPAD engine
associated with the MATLAB workspace resetting all its assumptions, use this
command.

clear all

• “Default Assumption” on page 1-27

See Also
and | assume | assumeAlso | clear | clear all | in | isAlways | not | or | sym
| syms

Introduced in R2012a

4 Functions — Alphabetical List

4-92

atan

Symbolic inverse tangent function

Syntax

atan(X)

Description

atan(X) returns the inverse tangent function (arctangent function) of X.

Examples

Inverse Tangent Function for Numeric and Symbolic Arguments

Depending on its arguments, atan returns floating-point or exact symbolic results.

Compute the inverse tangent function for these numbers. Because these numbers are not
symbolic objects, atan returns floating-point results.

A = atan([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)])

A =

 -0.7854 -0.3218 -0.5236 0.4636 0.7854 1.0472

Compute the inverse tangent function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, atan returns unresolved symbolic calls.

symA = atan(sym([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)]))

symA =

[-pi/4, -atan(1/3), -pi/6, atan(1/2), pi/4, pi/3]

Use vpa to approximate symbolic results with floating-point numbers:

 atan

4-93

vpa(symA)

ans =

[-0.78539816339744830961566084581988,...

-0.32175055439664219340140461435866,...

-0.52359877559829887307710723054658,...

0.46364760900080611621425623146121,...

0.78539816339744830961566084581988,...

1.0471975511965977461542144610932]

Plot Inverse Tangent Function

Plot the inverse tangent function on the interval from -10 to 10.

syms x

ezplot(atan(x), [-10, 10])

grid on

4 Functions — Alphabetical List

4-94

Handle Expressions Containing Inverse Tangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing atan.

Find the first and second derivatives of the inverse tangent function:

syms x

diff(atan(x), x)

diff(atan(x), x, x)

ans =

1/(x^2 + 1)

 atan

4-95

ans =

-(2*x)/(x^2 + 1)^2

Find the indefinite integral of the inverse tangent function:

int(atan(x), x)

ans =

x*atan(x) - log(x^2 + 1)/2

Find the Taylor series expansion of atan(x):

taylor(atan(x), x)

ans =

x^5/5 - x^3/3 + x

Rewrite the inverse tangent function in terms of the natural logarithm:

rewrite(atan(x), 'log')

ans =

(log(1 - x*1i)*1i)/2 - (log(1 + x*1i)*1i)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acos | acot | acsc | asec | asin | atan2 | cos | cot | csc | sec | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-96

atan2
Symbolic four-quadrant inverse tangent

Syntax

atan2(Y,X)

Description

atan2(Y,X) computes the four-quadrant inverse tangent (arctangent) of Y and X. If Y
and X are vectors or matrices, atan2 computes arctangents element by element.

Input Arguments

Y

Symbolic number, variable, expression, function. The function also accepts a vector or
matrix of symbolic numbers, variables, expressions, functions. If Y is a number, it must
be real. If Y is a vector or matrix, it must either be a scalar or have the same dimensions
as X. All numerical elements of Y must be real.

X

Symbolic number, variable, expression, function. The function also accepts a vector or
matrix of symbolic numbers, variables, expressions, functions. If X is a number, it must
be real. If X is a vector or matrix, it must either be a scalar or have the same dimensions
as Y. All numerical elements of X must be real.

Examples

Compute the arctangents of these parameters. Because these numbers are not symbolic
objects, you get floating-point results.

[atan2(1, 1), atan2(pi, 4), atan2(Inf, Inf)]

 atan2

4-97

ans =

 0.7854 0.6658 0.7854

Compute the arctangents of these parameters which are converted to symbolic objects:

[atan2(sym(1), 1), atan2(sym(pi), sym(4)), atan2(Inf, sym(Inf))]

ans =

[pi/4, atan(pi/4), pi/4]

Compute the limits of this symbolic expression:

syms x

limit(atan2(x^2/(1 + x), x), x, -Inf)

limit(atan2(x^2/(1 + x), x), x, Inf)

ans =

-(3*pi)/4

ans =

pi/4

Compute the arctangents of the elements of matrices Y and X:

Y = sym([3 sqrt(3); 1 1]);

X = sym([sqrt(3) 3; 1 0]);

atan2(Y, X)

ans =

[pi/3, pi/6]

[pi/4, pi/2]

Alternatives

For complex Z = X + Y*i, the call atan2(Y,X) is equivalent to angle(Z).

More About

atan2 vs. atan

If X ≠ 0 and Y ≠ 0, then

4 Functions — Alphabetical List

4-98

atan2 atan sign signY X
Y

X
Y X, ()() = + () - ()()

p

2
1

Results returned by atan2 belong to the closed interval [-pi,pi]. Results returned by
atan belong to the closed interval [-pi/2,pi/2].

Tips

• Calling atan2 for numbers (or vectors or matrices of numbers) that are not symbolic
objects invokes the MATLAB atan2 function.

• If one of the arguments X and Y is a vector or a matrix, and another one is a scalar,
then atan2 expands the scalar into a vector or a matrix of the same length with all
elements equal to that scalar.

• Symbolic arguments X and Y are assumed to be real.
• If X = 0 and Y > 0, then atan2(Y,X) returns pi/2.

If X = 0 and Y < 0, then atan2(Y,X) returns -pi/2.

If X = Y = 0, then atan2(Y,X) returns 0.

See Also
angle | atan | conj | imag | real

Introduced in R2013a

 atanh

4-99

atanh

Symbolic inverse hyperbolic tangent function

Syntax

atanh(X)

Description

atanh(X) returns the inverse hyperbolic tangent function of X.

Examples

Inverse Hyperbolic Tangent Function for Numeric and Symbolic
Arguments

Depending on its arguments, atanh returns floating-point or exact symbolic results.

Compute the inverse hyperbolic tangent function for these numbers. Because these
numbers are not symbolic objects, atanh returns floating-point results.

A = atanh([-i, 0, 1/6, i/2, i, 2])

A =

 0.0000 - 0.7854i 0.0000 + 0.0000i 0.1682 + 0.0000i...

 0.0000 + 0.4636i 0.0000 + 0.7854i 0.5493 + 1.5708i

Compute the inverse hyperbolic tangent function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, atanh returns unresolved symbolic calls.

symA = atanh(sym([-i, 0, 1/6, i/2, i, 2]))

symA =

[-(pi*1i)/4, 0, atanh(1/6), atanh(1i/2), (pi*1i)/4, atanh(2)]

4 Functions — Alphabetical List

4-100

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =

[-0.78539816339744830961566084581988i,...

0,...

0.1682361183106064652522967051085,...

0.46364760900080611621425623146121i,...

0.78539816339744830961566084581988i,...

0.54930614433405484569762261846126 - 1.5707963267948966192313216916398i]

Plot Inverse Hyperbolic Tangent Function

Plot the inverse hyperbolic tangent function on the interval from -1 to 1.

syms x

ezplot(atanh(x), [-1, 1])

grid on

 atanh

4-101

Handle Expressions Containing Inverse Hyperbolic Tangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing atanh.

Find the first and second derivatives of the inverse hyperbolic tangent function:

syms x

diff(atanh(x), x)

diff(atanh(x), x, x)

ans =

-1/(x^2 - 1)

4 Functions — Alphabetical List

4-102

ans =

(2*x)/(x^2 - 1)^2

Find the indefinite integral of the inverse hyperbolic tangent function:

int(atanh(x), x)

ans =

log(x^2 - 1)/2 + x*atanh(x)

Find the Taylor series expansion of atanh(x):

taylor(atanh(x), x)

ans =

x^5/5 + x^3/3 + x

Rewrite the inverse hyperbolic tangent function in terms of the natural logarithm:

rewrite(atanh(x), 'log')

ans =

log(x + 1)/2 - log(1 - x)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

 bernoulli

4-103

bernoulli
Bernoulli numbers and polynomials

Syntax
bernoulli(n)

bernoulli(n,x)

Description
bernoulli(n) returns the nth Bernoulli number.

bernoulli(n,x) returns the nth Bernoulli polynomial.

Examples

Bernoulli Numbers with Odd and Even Indices

The 0th Bernoulli number is 1. The next Bernoulli number can be -1/2 or 1/2,
depending on the definition. The bernoulli function uses -1/2. The Bernoulli numbers
with even indices n > 1 alternate the signs. Any Bernoulli number with an odd index n
> 2 is 0.

Compute the even-indexed Bernoulli numbers with the indices from 0 to 10. Because
these indices are not symbolic objects, bernoulli returns floating-point results.

bernoulli(0:2:10)

ans =

 1.0000 0.1667 -0.0333 0.0238 -0.0333 0.0758

Compute the same Bernoulli numbers for the indices converted to symbolic objects:

bernoulli(sym(0:2:10))

ans =

[1, 1/6, -1/30, 1/42, -1/30, 5/66]

Compute the odd-indexed Bernoulli numbers with the indices from 1 to 11:

4 Functions — Alphabetical List

4-104

bernoulli(sym(1:2:11))

ans =

[-1/2, 0, 0, 0, 0, 0]

Bernoulli Polynomials

For the Bernoulli polynomials, use bernoulli with two input arguments.

Compute the first, second, and third Bernoulli polynomials in variables x, y, and z,
respectively:

syms x y z

bernoulli(1, x)

bernoulli(2, y)

bernoulli(3, z)

ans =

x - 1/2

ans =

y^2 - y + 1/6

ans =

z^3 - (3*z^2)/2 + z/2

If the second argument is a number, bernoulli evaluates the polynomial at that
number. Here, the result is a floating-point number because the input arguments are not
symbolic numbers:

bernoulli(2, 1/3)

ans =

 -0.0556

To get the exact symbolic result, convert at least one of the numbers to a symbolic object:

bernoulli(2, sym(1/3))

ans =

-1/18

Plot Bernoulli Polynomials

Plot the first six Bernoulli polynomials.

 bernoulli

4-105

syms x

for n = 0:5

 ezplot(bernoulli(n, x), [-0.8, 1.8])

 hold on

end

title('Bernoulli Polynomials')

grid on

hold off

Handle Expressions Containing Bernoulli Polynomials

Many functions, such as diff and expand, handles expressions containing bernoulli.

4 Functions — Alphabetical List

4-106

Find the first and second derivatives of the Bernoulli polynomial:

syms n x

diff(bernoulli(n,x^2), x)

ans =

2*n*x*bernoulli(n - 1, x^2)

diff(bernoulli(n,x^2), x, x)

ans =

2*n*bernoulli(n - 1, x^2) +...

4*n*x^2*bernoulli(n - 2, x^2)*(n - 1)

Expand these expressions containing the Bernoulli polynomials:

expand(bernoulli(n, x + 3))

ans =

bernoulli(n, x) + (n*(x + 1)^n)/(x + 1) +...

(n*(x + 2)^n)/(x + 2) + (n*x^n)/x

expand(bernoulli(n, 3*x))

ans =

(3^n*bernoulli(n, x))/3 + (3^n*bernoulli(n, x + 1/3))/3 +...

(3^n*bernoulli(n, x + 2/3))/3

Input Arguments

n — Index of the Bernoulli number or polynomial
nonnegative integer | symbolic nonnegative integer | symbolic variable | symbolic
expression | symbolic function | symbolic vector | symbolic matrix

Index of the Bernoulli number or polynomial, specified as a nonnegative integer,
symbolic nonnegative integer, variable, expression, function, vector, or matrix. If n
is a vector or matrix, bernoulli returns Bernoulli numbers or polynomials for each
element of n. If one input argument is a scalar and the other one is a vector or a matrix,
bernoulli(n,x) expands the scalar into a vector or matrix of the same size as the other
argument with all elements equal to that scalar.

x — Polynomial variable
symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic
matrix

 bernoulli

4-107

Polynomial variable, specified as a symbolic variable, expression, function, vector, or
matrix. If x is a vector or matrix, bernoulli returns Bernoulli numbers or polynomials
for each element of x. When you use the bernoulli function to find Bernoulli
polynomials, at least one argument must be a scalar or both arguments must be vectors
or matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, bernoulli(n,x) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

More About

Bernoulli Polynomials

The Bernoulli polynomials are defined as follows:

te

e

n x
t

n

xt

t

n

n-
= ()

=

•

Â
1 0

bernoulli ,
!

Bernoulli Numbers

The Bernoulli numbers are defined as follows:

bernoulli bernoulli ,n n() = ()0

See Also
euler

Introduced in R2014a

4 Functions — Alphabetical List

4-108

bernstein

Bernstein polynomials

Syntax

bernstein(f,n,t)

bernstein(g,n,t)

bernstein(g,var,n,t)

Description

bernstein(f,n,t) with a function handle f returns the nth-order Bernstein
polynomial symsum(nchoosek(n,k)*t^k*(1-t)^(n-k)*f(k/n),k,0,n), evaluated
at the point t. This polynomial approximates the function f over the interval [0,1].

bernstein(g,n,t) with a symbolic expression or function g returns the nth-order
Bernstein polynomial, evaluated at the point t. This syntax regards g as a univariate
function of the variable determined by symvar(g,1).

If any argument is symbolic, bernstein converts all arguments except a function handle
to symbolic, and converts a function handle’s results to symbolic.

bernstein(g,var,n,t) with a symbolic expression or function g returns the
approximating nth-order Bernstein polynomial, regarding g as a univariate function of
the variable var.

Examples

Approximation of Sine Function Specified as Function Handle

Approximate the sine function by the 10th- and 100th-degree Bernstein polynomials:

syms t

 bernstein

4-109

b10 = bernstein(@(t) sin(2*pi*t), 10, t);

b100 = bernstein(@(t) sin(2*pi*t), 100, t);

Plot sin(2*pi*t) and its approximations:

ezplot(sin(2*pi*t),[0,1])

hold on

ezplot(b10,[0,1])

ezplot(b100,[0,1])

legend('sine function','10th-degree polynomial',...

 '100th-degree polynomial')

title('Bernstein polynomials')

hold off

4 Functions — Alphabetical List

4-110

Approximation of Exponential Function Specified as Symbolic Expression

Approximate the exponential function by the second-order Bernstein polynomial in the
variable t:

syms x t

bernstein(exp(x), 2, t)

ans =

(t - 1)^2 + t^2*exp(1) - 2*t*exp(1/2)*(t - 1)

Approximate the multivariate exponential function. When you approximate a
multivariate function, bernstein regards it as a univariate function of the default
variable determined by symvar. The default variable for the expression y*exp(x*y) is
x:

syms x y t

symvar(y*exp(x*y), 1)

ans =

x

bernstein treats this expression as a univariate function of x:

bernstein(y*exp(x*y), 2, t)

ans =

y*(t - 1)^2 + t^2*y*exp(y) - 2*t*y*exp(y/2)*(t - 1)

To treat y*exp(x*y) as a function of the variable y, specify the variable explicitly:

bernstein(y*exp(x*y), y, 2, t)

ans =

t^2*exp(x) - t*exp(x/2)*(t - 1)

Approximation of Linear Ramp Specified as Symbolic Function

Approximate function f representing a linear ramp by the fifth-order Bernstein
polynomials in the variable t:

syms f(t)

 bernstein

4-111

f(t) = triangularPulse(1/4, 3/4, Inf, t);

p = bernstein(f, 5, t)

p =

7*t^3*(t - 1)^2 - 3*t^2*(t - 1)^3 - 5*t^4*(t - 1) + t^5

Simplify the result:

simplify(p)

ans =

-t^2*(2*t - 3)

Numerical Stability of Simplified Bernstein Polynomials

When you simplify a high-order symbolic Bernstein polynomial, the result often cannot
be evaluated in a numerically stable way.

Approximate this rectangular pulse function by the 100th-degree Bernstein polynomial,
and then simplify the result:

f = @(x)rectangularPulse(1/4,3/4,x);

b1 = bernstein(f, 100, sym('t'));

b2 = simplify(b1);

Convert the polynomial b1 and the simplified polynomial b2 to MATLAB functions:

f1 = matlabFunction(b1);

f2 = matlabFunction(b2);

Compare the plot of the original rectangular pulse function, its numerically stable
Bernstein representation f1, and its simplified version f2. The simplified version is not
numerically stable.

t = 0:0.001:1;

plot(t, f(t), t, f1(t), t, f2(t))

hold on

legend('original function','Bernstein polynomial',...

 'simplified Bernstein polynomial')

hold off

4 Functions — Alphabetical List

4-112

Input Arguments

f — Function to be approximated by a polynomial
function handle

Function to be approximated by a polynomial, specified as a function handle. f must
accept one scalar input argument and return a scalar value.

g — Function to be approximated by a polynomial
symbolic expression | symbolic function

 bernstein

4-113

Function to be approximated by a polynomial, specified as a symbolic expression or
function.

n — Bernstein polynomial order
nonnegative integer

Bernstein polynomial order, specified as a nonnegative number.

t — Evaluation point
number | symbolic number | symbolic variable | symbolic expression | symbolic
function

Evaluation point, specified as a number, symbolic number, variable, expression, or
function. If t is a symbolic function, the evaluation point is the mathematical expression
that defines t. To extract the mathematical expression defining t, bernstein uses
formula(t).

var — Free variable
symbolic variable

Free variable, specified as a symbolic variable.

More About

Bernstein Polynomials

A Bernstein polynomial is a linear combination of Bernstein basis polynomials.

A Bernstein polynomial of degree n is defined as follows:

B t b tk k n

k

n

() = ()

=
Â b , .

0

Here,

b t
n

k
t t k nk n
k n k

, , , ,() =
Ê

Ë
Á

ˆ

¯
˜ -() =-

1 0 …

4 Functions — Alphabetical List

4-114

are the Bernstein basis polynomials, and
n

k

Ê

Ë
Á

ˆ

¯
˜ is a binomial coefficient.

The coefficients bk are called Bernstein coefficients or Bezier coefficients.

If f is a continuous function on the interval [0, 1] and

B f t f
k

n
b tn k n

k

n

()() = Ê
ËÁ

ˆ
¯̃

()
=
Â ,

0

is the approximating Bernstein polynomial, then

lim
n

nB f t f t
Æ•

() () = ()

uniformly in t on the interval [0, 1].

Tips

• Symbolic polynomials returned for symbolic t are numerically stable when
substituting numerical values between 0 and 1 for t.

• If you simplify a symbolic Bernstein polynomial, the result can be unstable when
substituting numerical values for the curve parameter t.

See Also
bernsteinMatrix | formula | nchoosek | symsum | symvar

Introduced in R2013b

 bernsteinMatrix

4-115

bernsteinMatrix

Bernstein matrix

Syntax

B = bernsteinMatrix(n,t)

Description

B = bernsteinMatrix(n,t), where t is a vector, returns the length(t)-by-(n+1)
Bernstein matrix B, such that B(i,k+1)= nchoosek(n,k)*t(i)^k*(1-t(i))^(n-k).
Here, the index i runs from 1 to length(t), and the index k runs from 0 to n.

The Bernstein matrix is also called the Bezier matrix.

Use Bernstein matrices to construct Bezier curves:

bezierCurve = bernsteinMatrix(n, t)*P

Here, the n+1 rows of the matrix P specify the control points of the Bezier curve. For
example, to construct the second-order 3-D Bezier curve, specify the control points as:

P = [p0x, p0y, p0z; p1x, p1y, p1z; p2x, p2y, p2z]

Examples

2-D Bezier Curve

Plot the fourth-order Bezier curve specified by the control points p0 = [0 1], p1
= [4 3], p2 = [6 2], p3 = [3 0], p4 = [2 4]. Create a matrix with each row
representing a control point:

P = [0 1; 4 3; 6 2; 3 0; 2 4];

Compute the fourth-order Bernstein matrix B:

4 Functions — Alphabetical List

4-116

syms t

B = bernsteinMatrix(4, t)

B =

[(t - 1)^4, -4*t*(t - 1)^3, 6*t^2*(t - 1)^2, -4*t^3*(t - 1), t^4]

Construct the Bezier curve:

bezierCurve = simplify(B*P)

bezierCurve =

[-2*t*(- 5*t^3 + 6*t^2 + 6*t - 8), 5*t^4 + 8*t^3 - 18*t^2 + 8*t + 1]

Plot the curve adding the control points to the plot:

ezplot(bezierCurve(1), bezierCurve(2), [0, 1])

hold on

scatter(P(:,1), P(:,2),'filled')

title('Fourth-order Bezier curve')

hold off

 bernsteinMatrix

4-117

3-D Bezier Curve

Construct the third-order Bezier curve specified by the 4-by-3 matrix P of control points.
Each control point corresponds to a row of the matrix P.

P = [0 0 0; 2 2 2; 2 -1 1; 6 1 3];

Compute the third-order Bernstein matrix:

syms t

B = bernsteinMatrix(3,t)

B =

4 Functions — Alphabetical List

4-118

[-(t - 1)^3, 3*t*(t - 1)^2, -3*t^2*(t - 1), t^3]

Construct the Bezier curve:

bezierCurve = simplify(B*P)

bezierCurve =

[6*t*(t^2 - t + 1), t*(10*t^2 - 15*t + 6), 3*t*(2*t^2 - 3*t + 2)]

Plot the curve adding the control points to the plot:

ezplot3(bezierCurve(1), bezierCurve(2), bezierCurve(3), [0, 1])

hold on

scatter3(P(:,1), P(:,2), P(:,3),'filled')

hold off

 bernsteinMatrix

4-119

3-D Bezier Curve with Evaluation Point Specified as Vector

Construct the third-order Bezier curve with the evaluation point specified by the
following 1-by-101 vector t:

t = 0:1/100:1;

Compute the third-order 101-by-4 Bernstein matrix and specify the control points:

B = bernsteinMatrix(3,t);

P = [0 0 0; 2 2 2; 2 -1 1; 6 1 3];

Construct and plot the Bezier curve. Add grid lines and control points to the plot.

bezierCurve = B*P;

plot3(bezierCurve(:,1), bezierCurve(:,2), bezierCurve(:,3))

hold on

grid

scatter3(P(:,1), P(:,2), P(:,3),'filled')

hold off

4 Functions — Alphabetical List

4-120

Input Arguments

n — Approximation order
nonnegative integer

Approximation order, specified as a nonnegative integer.

t — Evaluation point
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic
vector

 bernsteinMatrix

4-121

Evaluation point, specified as a number, symbolic number, variable, expression, or
vector.

Output Arguments

B — Bernstein matrix
matrix

Bernstein matrix, returned as a length(t)-by-n+1 matrix.

See Also
bernstein | nchoosek | symsum | symvar

Introduced in R2013b

4 Functions — Alphabetical List

4-122

besseli
Modified Bessel function of the first kind

Syntax

besseli(nu,z)

Description

besseli(nu,z) returns the modified Bessel function of the first kind, Iν(z).

Input Arguments

nu

Symbolic number, variable, expression, function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If nu is a vector or matrix, besseli
returns the modified Bessel function of the first kind for each element of nu.

z

Symbolic number, variable, expression, or function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If z is a vector or matrix, besseli returns
the modified Bessel function of the first kind for each element of z.

Examples

Solve this second-order differential equation. The solutions are the modified Bessel
functions of the first and the second kind.

syms nu w(z)

dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)

ans =

C2*besseli(nu, z) + C3*besselk(nu, z)

 besseli

4-123

Verify that the modified Bessel function of the first kind is a valid solution of the
modified Bessel differential equation.

syms nu z

isAlways(z^2*diff(besseli(nu, z), z, 2) + z*diff(besseli(nu, z), z)...

 - (z^2 + nu^2)*besseli(nu, z) == 0)

ans =

 1

Compute the modified Bessel functions of the first kind for these numbers. Because these
numbers are not symbolic objects, you get floating-point results.

[besseli(0, 5), besseli(-1, 2), besseli(1/3, 7/4), besseli(1, 3/2 + 2*i)]

ans =

 27.2399 + 0.0000i 1.5906 + 0.0000i 1.7951 + 0.0000i -0.1523 + 1.0992i

Compute the modified Bessel functions of the first kind for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, besseli returns unresolved
symbolic calls.

[besseli(sym(0), 5), besseli(sym(-1), 2),...

 besseli(1/3, sym(7/4)), besseli(sym(1), 3/2 + 2*i)]

ans =

[besseli(0, 5), besseli(1, 2), besseli(1/3, 7/4), besseli(1, 3/2 + 2i)]

For symbolic variables and expressions, besseli also returns unresolved symbolic calls:

syms x y

[besseli(x, y), besseli(1, x^2), besseli(2, x - y), besseli(x^2, x*y)]

ans =

[besseli(x, y), besseli(1, x^2), besseli(2, x - y), besseli(x^2, x*y)]

If the first parameter is an odd integer multiplied by 1/2, besseli rewrites the Bessel
functions in terms of elementary functions:

syms x

besseli(1/2, x)

ans =

(2^(1/2)*sinh(x))/(x^(1/2)*pi^(1/2))

besseli(-1/2, x)

4 Functions — Alphabetical List

4-124

ans =

(2^(1/2)*cosh(x))/(x^(1/2)*pi^(1/2))

besseli(-3/2, x)

ans =

(2^(1/2)*(sinh(x) - cosh(x)/x))/(x^(1/2)*pi^(1/2))

besseli(5/2, x)

ans =

-(2^(1/2)*((3*cosh(x))/x - sinh(x)*(3/x^2 + 1)))/(x^(1/2)*pi^(1/2))

Differentiate the expressions involving the modified Bessel functions of the first kind:

syms x y

diff(besseli(1, x))

diff(diff(besseli(0, x^2 + x*y -y^2), x), y)

ans =

besseli(0, x) - besseli(1, x)/x

ans =

besseli(1, x^2 + x*y - y^2) +...

(2*x + y)*(besseli(0, x^2 + x*y - y^2)*(x - 2*y) -...

(besseli(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))

Call besseli for the matrix A and the value 1/2. The result is a matrix of the modified
Bessel functions besseli(1/2, A(i,j)).

syms x

A = [-1, pi; x, 0];

besseli(1/2, A)

ans =

[(2^(1/2)*sinh(1)*1i)/pi^(1/2), (2^(1/2)*sinh(pi))/pi]

[(2^(1/2)*sinh(x))/(x^(1/2)*pi^(1/2)), 0]

Plot the modified Bessel functions of the first kind for ν = 0, 1, 2, 3:

syms x y

for nu = [0, 1, 2, 3]

 ezplot(besseli(nu, x))

 hold on

end

 besseli

4-125

axis([0, 4, -0.1, 4])

grid on

ylabel('I_v(x)')

legend('I_0','I_1','I_2','I_3', 'Location','Best')

title('Modified Bessel functions of the first kind')

hold off

More About

Modified Bessel Functions of the First Kind

The modified Bessel differential equation

4 Functions — Alphabetical List

4-126

z
d w

dz

z
dw

dz
z w

2
2

2

2 2
0+ - +() =n

has two linearly independent solutions. These solutions are represented by the modified
Bessel functions of the first kind, Iν(z), and the modified Bessel functions of the second
kind, Kν(z):

w z C I z C K z() = () + ()
1 2n n

This formula is the integral representation of the modified Bessel functions of the first
kind:

I z
z

e t dt
z t

n

n
n

p

p n
() =

()
+()

()()
Ú

2

1 2

2

0
G

cos
sin

Tips

• Calling besseli for a number that is not a symbolic object invokes the MATLAB
besseli function.

• At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, besseli(nu,z) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References

[1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz
and I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz
and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
airy | | besselj | besselk | bessely

 besseli

4-127

Introduced in R2014a

4 Functions — Alphabetical List

4-128

besselj
Bessel function of the first kind

Syntax

besselj(nu,z)

Description

besselj(nu,z) returns the Bessel function of the first kind, Jν(z).

Input Arguments

nu

Symbolic number, variable, expression, function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If nu is a vector or matrix, besseli
returns the Bessel function of the first kind for each element of nu.

z

Symbolic number, variable, expression, or function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If z is a vector or matrix, besseli returns
the Bessel function of the first kind for each element of z.

Examples

Solve this second-order differential equation. The solutions are the Bessel functions of
the first and the second kind.

syms nu w(z)

dsolve(z^2*diff(w, 2) + z*diff(w) +(z^2 - nu^2)*w == 0)

ans =

C2*besselj(nu, z) + C3*bessely(nu, z)

 besselj

4-129

Verify that the Bessel function of the first kind is a valid solution of the Bessel
differential equation:

syms nu z

isAlways(z^2*diff(besselj(nu, z), z, 2) + z*diff(besselj(nu, z), z)...

 + (z^2 - nu^2)*besselj(nu, z) == 0)

ans =

 1

Compute the Bessel functions of the first kind for these numbers. Because these numbers
are not symbolic objects, you get floating-point results.

[besselj(0, 5), besselj(-1, 2), besselj(1/3, 7/4),...

 besselj(1, 3/2 + 2*i)]

ans =

 -0.1776 + 0.0000i -0.5767 + 0.0000i 0.5496 + 0.0000i 1.6113 + 0.3982i

Compute the Bessel functions of the first kind for the numbers converted to symbolic
objects. For most symbolic (exact) numbers, besselj returns unresolved symbolic calls.

[besselj(sym(0), 5), besselj(sym(-1), 2),...

 besselj(1/3, sym(7/4)), besselj(sym(1), 3/2 + 2*i)]

ans =

[besselj(0, 5), -besselj(1, 2), besselj(1/3, 7/4), besselj(1, 3/2 + 2i)]

For symbolic variables and expressions, besselj also returns unresolved symbolic calls:

syms x y

[besselj(x, y), besselj(1, x^2), besselj(2, x - y), besselj(x^2, x*y)]

ans =

[besselj(x, y), besselj(1, x^2), besselj(2, x - y), besselj(x^2, x*y)]

If the first parameter is an odd integer multiplied by 1/2, besselj rewrites the Bessel
functions in terms of elementary functions:

syms x

besselj(1/2, x)

ans =

(2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2))

besselj(-1/2, x)

4 Functions — Alphabetical List

4-130

ans =

(2^(1/2)*cos(x))/(x^(1/2)*pi^(1/2))

besselj(-3/2, x)

ans =

-(2^(1/2)*(sin(x) + cos(x)/x))/(x^(1/2)*pi^(1/2))

besselj(5/2, x)

ans =

-(2^(1/2)*((3*cos(x))/x - sin(x)*(3/x^2 - 1)))/(x^(1/2)*pi^(1/2))

Differentiate the expressions involving the Bessel functions of the first kind:

syms x y

diff(besselj(1, x))

diff(diff(besselj(0, x^2 + x*y -y^2), x), y)

ans =

besselj(0, x) - besselj(1, x)/x

ans =

- besselj(1, x^2 + x*y - y^2) -...

(2*x + y)*(besselj(0, x^2 + x*y - y^2)*(x - 2*y) -...

(besselj(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))

Call besselj for the matrix A and the value 1/2. The result is a matrix of the Bessel
functions besselj(1/2, A(i,j)).

syms x

A = [-1, pi; x, 0];

besselj(1/2, A)

ans =

[(2^(1/2)*sin(1)*1i)/pi^(1/2), 0]

[(2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2)), 0]

Plot the Bessel functions of the first kind for ν = 0, 1, 2, 3:

syms x y

for nu = [0, 1, 2, 3]

 ezplot(besselj(nu, x), [0, 10])

 hold on

end

 besselj

4-131

axis([0, 10, -0.5, 1.1])

grid on

ylabel('J_v(x)')

legend('J_0','J_1','J_2','J_3', 'Location','Best')

title('Bessel functions of the first kind')

hold off

More About

Bessel Functions of the First Kind

The Bessel differential equation

4 Functions — Alphabetical List

4-132

z
d w

dz

z
dw

dz
z w

2
2

2

2 2
0+ + -() =n

has two linearly independent solutions. These solutions are represented by the Bessel
functions of the first kind, Jν(z), and the Bessel functions of the second kind, Yν(z):

w z C J z C Y z() = () + ()
1 2n n

This formula is the integral representation of the Bessel functions of the first kind:

J z
z

z t t dtn

n
n

p

p n
() =

()
+()

()() ()Ú
2

1 2

2

0
G

cos cos sin

Tips

• Calling besselj for a number that is not a symbolic object invokes the MATLAB
besselj function.

• At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, besselj(nu,z) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References

[1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz
and I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz
and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
airy | besseli | besselk | bessely

Introduced in R2014a

 besselk

4-133

besselk
Modified Bessel function of the second kind

Syntax

besselk(nu,z)

Description

besselk(nu,z) returns the modified Bessel function of the second kind, Kν(z).

Input Arguments

nu

Symbolic number, variable, expression, function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If nu is a vector or matrix, besseli
returns the modified Bessel function of the second kind for each element of nu.

z

Symbolic number, variable, expression, or function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If z is a vector or matrix, besseli returns
the modified Bessel function of the second kind for each element of z.

Examples

Solve this second-order differential equation. The solutions are the modified Bessel
functions of the first and the second kind.

syms nu w(z)

dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)

ans =

C2*besseli(nu, z) + C3*besselk(nu, z)

4 Functions — Alphabetical List

4-134

Verify that the modified Bessel function of the second kind is a valid solution of the
modified Bessel differential equation:

syms nu z

isAlways(z^2*diff(besselk(nu, z), z, 2) + z*diff(besselk(nu, z), z)...

 - (z^2 + nu^2)*besselk(nu, z) == 0)

ans =

 1

Compute the modified Bessel functions of the second kind for these numbers. Because
these numbers are not symbolic objects, you get floating-point results.

[besselk(0, 5), besselk(-1, 2), besselk(1/3, 7/4),...

 besselk(1, 3/2 + 2*i)]

ans =

 0.0037 + 0.0000i 0.1399 + 0.0000i 0.1594 + 0.0000i -0.1620 - 0.1066i

Compute the modified Bessel functions of the second kind for the numbers converted
to symbolic objects. For most symbolic (exact) numbers, besselk returns unresolved
symbolic calls.

[besselk(sym(0), 5), besselk(sym(-1), 2),...

 besselk(1/3, sym(7/4)), besselk(sym(1), 3/2 + 2*i)]

ans =

[besselk(0, 5), besselk(1, 2), besselk(1/3, 7/4), besselk(1, 3/2 + 2i)]

For symbolic variables and expressions, besselk also returns unresolved symbolic calls:

syms x y

[besselk(x, y), besselk(1, x^2), besselk(2, x - y), besselk(x^2, x*y)]

ans =

[besselk(x, y), besselk(1, x^2), besselk(2, x - y), besselk(x^2, x*y)]

If the first parameter is an odd integer multiplied by 1/2, besselk rewrites the Bessel
functions in terms of elementary functions:

syms x

besselk(1/2, x)

ans =

(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2))

besselk(-1/2, x)

 besselk

4-135

ans =

(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2))

besselk(-3/2, x)

ans =

(2^(1/2)*pi^(1/2)*exp(-x)*(1/x + 1))/(2*x^(1/2))

besselk(5/2, x)

ans =

(2^(1/2)*pi^(1/2)*exp(-x)*(3/x + 3/x^2 + 1))/(2*x^(1/2))

Differentiate the expressions involving the modified Bessel functions of the second kind:

syms x y

diff(besselk(1, x))

diff(diff(besselk(0, x^2 + x*y -y^2), x), y)

ans =

- besselk(1, x)/x - besselk(0, x)

ans =

(2*x + y)*(besselk(0, x^2 + x*y - y^2)*(x - 2*y) +...

(besselk(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2)) -...

besselk(1, x^2 + x*y - y^2)

Call besselk for the matrix A and the value 1/2. The result is a matrix of the modified
Bessel functions besselk(1/2, A(i,j)).

syms x

A = [-1, pi; x, 0];

besselk(1/2, A)

ans =

[-(2^(1/2)*pi^(1/2)*exp(1)*1i)/2, (2^(1/2)*exp(-pi))/2]

[(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2)), Inf]

Plot the modified Bessel functions of the second kind for ν = 0, 1, 2, 3:

syms x y

for nu = [0, 1, 2, 3]

 ezplot(besselk(nu, x))

 hold on

end

4 Functions — Alphabetical List

4-136

axis([0, 4, 0, 4])

grid on

ylabel('K_v(x)')

legend('K_0','K_1','K_2','K_3', 'Location','Best')

title('Modified Bessel functions of the second kind')

hold off

More About

Modified Bessel Functions of the Second Kind

The modified Bessel differential equation

 besselk

4-137

z
d w

dz

z
dw

dz
z w

2
2

2

2 2
0+ - +() =n

has two linearly independent solutions. These solutions are represented by the modified
Bessel functions of the first kind, Iν(z), and the modified Bessel functions of the second
kind, Kν(z):

w z C I z C K z() = () + ()
1 2n n

The modified Bessel functions of the second kind are defined via the modified Bessel
functions of the first kind:

K z I z I zn n n

p

np
() =

()
() - ()()-

2

sin

Here Iν(z) are the modified Bessel functions of the first kind:

I z
z

e t dt
z t

n

n
n

p

p n
() =

()
+()

()()
Ú

2

1 2

2

0
G

cos
sin

Tips

• Calling besselk for a number that is not a symbolic object invokes the MATLAB
besselk function.

• At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, besselk(nu,z) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References

[1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz
and I. A. Stegun, eds.). New York: Dover, 1972.

4 Functions — Alphabetical List

4-138

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz
and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
airy | besseli | besselj | bessely

Introduced in R2014a

 bessely

4-139

bessely
Bessel function of the second kind

Syntax

bessely(nu,z)

Description

bessely(nu,z) returns the Bessel function of the second kind, Yν(z).

Input Arguments

nu

Symbolic number, variable, expression, function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If nu is a vector or matrix, bessely
returns the Bessel function of the second kind for each element of nu.

z

Symbolic number, variable, expression, or function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If z is a vector or matrix, bessely returns
the Bessel function of the second kind for each element of z.

Examples

Solve this second-order differential equation. The solutions are the Bessel functions of
the first and the second kind.

syms nu w(z)

dsolve(z^2*diff(w, 2) + z*diff(w) +(z^2 - nu^2)*w == 0)

ans =

4 Functions — Alphabetical List

4-140

C2*besselj(nu, z) + C3*bessely(nu, z)

Verify that the Bessel function of the second kind is a valid solution of the Bessel
differential equation:

syms nu z

isAlways(z^2*diff(bessely(nu, z), z, 2) + z*diff(bessely(nu, z), z)...

 + (z^2 - nu^2)*bessely(nu, z) == 0)

ans =

 1

Compute the Bessel functions of the second kind for these numbers. Because these
numbers are not symbolic objects, you get floating-point results.

[bessely(0, 5), bessely(-1, 2), bessely(1/3, 7/4), bessely(1, 3/2 + 2*i)]

ans =

 -0.3085 + 0.0000i 0.1070 + 0.0000i 0.2358 + 0.0000i -0.4706 + 1.5873i

Compute the Bessel functions of the second kind for the numbers converted to symbolic
objects. For most symbolic (exact) numbers, bessely returns unresolved symbolic calls.

[bessely(sym(0), 5), bessely(sym(-1), 2),...

 bessely(1/3, sym(7/4)), bessely(sym(1), 3/2 + 2*i)]

ans =

[bessely(0, 5), -bessely(1, 2), bessely(1/3, 7/4), bessely(1, 3/2 + 2i)]

For symbolic variables and expressions, bessely also returns unresolved symbolic calls:

syms x y

[bessely(x, y), bessely(1, x^2), bessely(2, x - y), bessely(x^2, x*y)]

ans =

[bessely(x, y), bessely(1, x^2), bessely(2, x - y), bessely(x^2, x*y)]

If the first parameter is an odd integer multiplied by 1/2, besseli rewrites the Bessel
functions in terms of elementary functions:

syms x

bessely(1/2, x)

ans =

-(2^(1/2)*cos(x))/(x^(1/2)*pi^(1/2))

bessely(-1/2, x)

 bessely

4-141

ans =

(2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2))

bessely(-3/2, x)

ans =

(2^(1/2)*(cos(x) - sin(x)/x))/(x^(1/2)*pi^(1/2))

bessely(5/2, x)

ans =

-(2^(1/2)*((3*sin(x))/x + cos(x)*(3/x^2 - 1)))/(x^(1/2)*pi^(1/2))

Differentiate the expressions involving the Bessel functions of the second kind:

syms x y

diff(bessely(1, x))

diff(diff(bessely(0, x^2 + x*y -y^2), x), y)

ans =

bessely(0, x) - bessely(1, x)/x

ans =

- bessely(1, x^2 + x*y - y^2) -...

(2*x + y)*(bessely(0, x^2 + x*y - y^2)*(x - 2*y) -...

(bessely(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))

Call bessely for the matrix A and the value 1/2. The result is a matrix of the Bessel
functions bessely(1/2, A(i,j)).

syms x

A = [-1, pi; x, 0];

bessely(1/2, A)

ans =

[(2^(1/2)*cos(1)*1i)/pi^(1/2), 2^(1/2)/pi]

[-(2^(1/2)*cos(x))/(x^(1/2)*pi^(1/2)), Inf]

Plot the Bessel functions of the second kind for ν = 0, 1, 2, 3:

syms x y

for nu = [0, 1, 2, 3]

 ezplot(bessely(nu, x), [0, 10])

 hold on

end

4 Functions — Alphabetical List

4-142

axis([0, 10, -1, 0.6])

grid on

ylabel('Y_v(x)')

legend('Y_0','Y_1','Y_2','Y_3', 'Location','Best')

title('Bessel functions of the second kind')

hold off

More About

Bessel Function of the Second Kind

The Bessel differential equation

 bessely

4-143

z
d w

dz

z
dw

dz
z w

2
2

2

2 2
0+ + -() =n

has two linearly independent solutions. These solutions are represented by the Bessel
functions of the first kind, Jν(z), and the Bessel functions of the second kind, Yν(z):

w z C J z C Y z() = () + ()
1 2n n

The Bessel functions of the second kind are defined via the Bessel functions of the first
kind:

Y z
J z J z

n
n nnp

np
() =

() () - ()

()
-cos

sin

Here Jν(z) are the Bessel function of the first kind:

J z
z

z t t dtn

n
n

p

p n
() =

()
+()

()() ()Ú
2

1 2

2

0
G

cos cos sin

Tips

• Calling bessely for a number that is not a symbolic object invokes the MATLAB
bessely function.

At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, bessely(nu,z) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References

[1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz
and I. A. Stegun, eds.). New York: Dover, 1972.

4 Functions — Alphabetical List

4-144

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz
and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
airy | besseli | besselj | besselk

Introduced in R2014a

 beta

4-145

beta
Beta function

Syntax

beta(x,y)

Description

beta(x,y) returns the beta function of x and y.

Input Arguments

x

Symbolic number, variable, expression, function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If x is a vector or matrix, beta returns the
beta function for each element of x.

y

Symbolic number, variable, expression, function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If y is a vector or matrix, beta returns the
beta function for each element of y.

Examples

Compute the beta function for these numbers. Because these numbers are not symbolic
objects, you get floating-point results:

[beta(1, 5), beta(3, sqrt(2)), beta(pi, exp(1)), beta(0, 1)]

ans =

 0.2000 0.1716 0.0379 Inf

4 Functions — Alphabetical List

4-146

Compute the beta function for the numbers converted to symbolic objects:

[beta(sym(1), 5), beta(3, sym(2)), beta(sym(4), sym(4))]

ans =

[1/5, 1/12, 1/140]

If one or both parameters are complex numbers, convert these numbers to symbolic
objects:

[beta(sym(i), 3/2), beta(sym(i), i), beta(sym(i + 2), 1 - i)]

ans =

[(pi^(1/2)*gamma(1i))/(2*gamma(3/2 + 1i)), gamma(1i)^2/gamma(2i),...

 (pi*(1/2 + 1i/2))/sinh(pi)]

Compute the beta function for negative parameters. If one or both arguments are
negative numbers, convert these numbers to symbolic objects:

[beta(sym(-3), 2), beta(sym(-1/3), 2), beta(sym(-3), 4), beta(sym(-3), -2)]

ans =

[1/6, -9/2, Inf, Inf]

Call beta for the matrix A and the value 1. The result is a matrix of the beta functions
beta(A(i,j),1):

A = sym([1 2; 3 4]);

beta(A,1)

ans =

[1, 1/2]

[1/3, 1/4]

Differentiate the beta function, then substitute the variable t with the value 2/3 and
approximate the result using vpa:

syms t

u = diff(beta(t^2 + 1, t))

vpa(subs(u, t, 2/3), 10)

u =

beta(t, t^2 + 1)*(psi(t) + 2*t*psi(t^2 + 1) -...

psi(t^2 + t + 1)*(2*t + 1))

ans =

 beta

4-147

-2.836889094

Expand these beta functions:

syms x y

expand(beta(x, y))

expand(beta(x + 1, y - 1))

ans =

(gamma(x)*gamma(y))/gamma(x + y)

ans =

-(x*gamma(x)*gamma(y))/(gamma(x + y) - y*gamma(x + y))

More About

Beta Function

This integral defines the beta function:

B
G G

G
x y t t dt

x y

x y

x y
,() = -() =

() ()
+()

- -
Ú 1 1

0

1

1

Tips

• The beta function is uniquely defined for positive numbers and complex numbers with
positive real parts. It is approximated for other numbers.

• Calling beta for numbers that are not symbolic objects invokes the MATLAB beta
function. This function accepts real arguments only. If you want to compute the beta
function for complex numbers, use sym to convert the numbers to symbolic objects,
and then call beta for those symbolic objects.

• If one or both parameters are negative numbers, convert these numbers to symbolic
objects using sym, and then call beta for those symbolic objects.

• If the beta function has a singularity, beta returns the positive infinity Inf.
• beta(0, 0) returns NaN.
• beta(x,y) = beta(y,x) and beta(x,A) = beta(A,x).
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a

4 Functions — Alphabetical List

4-148

vector or a matrix, beta(x,y) expands the scalar into a vector or matrix of the same
size as the other argument with all elements equal to that scalar.

References

Zelen, M. and N. C. Severo. “Probability Functions.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

See Also
gamma | factorial | nchoosek | psi

Introduced in R2014a

 cat

4-149

cat
Concatenate symbolic arrays along specified dimension

Syntax

cat(dim,A1,...,AN)

Description

cat(dim,A1,...,AN) concatenates the arrays A1,...,AN along dimension dim. The
remaining dimensions must be the same size.

Examples

Concatenate Two Vectors into Matrix

Create vectors A and B.

A = sym('a%d',[1 4])

B = sym('b%d',[1 4])

A =

[a1, a2, a3, a4]

B =

[b1, b2, b3, b4]

To concatenate A and B into a matrix, specify dimension dim as 1.

cat(1,A,B)

ans =

[a1, a2, a3, a4]

[b1, b2, b3, b4]

Alternatively, use the syntax [A;B].

[A;B]

4 Functions — Alphabetical List

4-150

ans =

[a1, a2, a3, a4]

[b1, b2, b3, b4]

Concatenate Two Vectors into One Vector

To concatenate two vectors into one vector, specify dimension dim as 2.

A = sym('a%d',[1 4]);

B = sym('b%d',[1 4]);

cat(2,A,B)

ans =

[a1, a2, a3, a4, b1, b2, b3, b4]

Alternatively, use the syntax [A B].

[A B]

ans =

[a1, a2, a3, a4, b1, b2, b3, b4]

Concatenate Multidimensional Arrays Along Their Third Dimension

Create arrays A and B.

A = sym('a%d%d',[2 2]);

A(:,:,2) = -A

B = sym('b%d%d', [2 2]);

B(:,:,2) = -B

A(:,:,1) =

[a11, a12]

[a21, a22]

A(:,:,2) =

[-a11, -a12]

[-a21, -a22]

B(:,:,1) =

[b11, b12]

[b21, b22]

B(:,:,2) =

[-b11, -b12]

[-b21, -b22]

 cat

4-151

Concatenate A and B by specifying dimension dim as 3.

cat(3,A,B)

ans(:,:,1) =

[a11, a12]

[a21, a22]

ans(:,:,2) =

[-a11, -a12]

[-a21, -a22]

ans(:,:,3) =

[b11, b12]

[b21, b22]

ans(:,:,4) =

[-b11, -b12]

[-b21, -b22]

Input Arguments

dim — Dimension to concatenate arrays along
positive integer

Dimension to concatenate arrays along, specified as a positive integer.

A1,...,AN — Input arrays
symbolic variables | symbolic vectors | symbolic matrices | symbolic multidimensional
arrays

Input arrays, specified as symbolic variables, vectors, matrices, or multidimensional
arrays.

See Also
horzcat | reshape | vertcat

Introduced in R2010b

4 Functions — Alphabetical List

4-152

catalan
Catalan constant

Syntax

catalan

Description

catalan represents the Catalan constant. To get a floating-point approximation with the
current precision set by digits, use vpa(catalan).

Examples

Approximate Catalan Constant

Find a floating-point approximation of the Catalan constant with the default number of
digits and with the 10-digit precision.

Use vpa to approximate the Catalan constant with the default 32-digit precision:

vpa(catalan)

ans =

0.91596559417721901505460351493238

Set the number of digits to 10 and approximate the Catalan constant:

old = digits(10);

vpa(catalan)

ans =

0.9159655942

Restore the default number of digits:

digits(old)

 catalan

4-153

More About

Catalan Constant

The Catalan constant is defined as follows:

catalan =
-()

+()
= - + - +

=

•

Â
1

2 1

1

1

1

3

1

5

1

7
2

0
2 2 2 2

i

i i

…

See Also
dilog | eulergamma

Introduced in R2014a

4 Functions — Alphabetical List

4-154

ccode
C code representation of symbolic expression

Syntax

ccode(s)

ccode(s,'file',fileName)

Description

ccode(s) returns a fragment of C that evaluates the symbolic expression s.

ccode(s,'file',fileName) writes an “optimized” C code fragment that evaluates
the symbolic expression s to the file named fileName. “Optimized” means intermediate
variables are automatically generated in order to simplify the code. MATLAB generates
intermediate variables as a lowercase letter t followed by an automatically generated
number, for example t32.

Examples

The statements

syms x

f = taylor(log(1+x));

ccode(f)

return

t0 = x-(x*x)*(1.0/2.0)+(x*x*x)*(1.0/3.0)-(x*x*x*x)*(1.0/4.0)+...

(x*x*x*x*x)*(1.0/5.0);

The statements

H = sym(hilb(3));

ccode(H)

return

 ccode

4-155

 H[0][0] = 1.0;

 H[0][1] = 1.0/2.0;

 H[0][2] = 1.0/3.0;

 H[1][0] = 1.0/2.0;

 H[1][1] = 1.0/3.0;

 H[1][2] = 1.0/4.0;

 H[2][0] = 1.0/3.0;

 H[2][1] = 1.0/4.0;

 H[2][2] = 1.0/5.0;

The statements

syms x

z = exp(-exp(-x));

ccode(diff(z,3),'file','ccodetest')

return a file named ccodetest containing the following:

 t2 = exp(-x);

 t3 = exp(-t2);

 t0 = t3*exp(x*(-2.0))*(-3.0)+t3*exp(x*(-3.0))+t2*t3;

See Also
fortran | latex | matlabFunction | pretty

Introduced before R2006a

4 Functions — Alphabetical List

4-156

ceil
Round symbolic matrix toward positive infinity

Syntax

Y = ceil(x)

Description

Y = ceil(x) is the matrix of the smallest integers greater than or equal to x.

Examples
x = sym(-5/2);

[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =

[-2, -3, -3, -2, -1/2]

See Also
round | floor | fix | frac

Introduced before R2006a

 char

4-157

char
Convert symbolic objects to strings

Syntax

char(A)

Description

char(A) converts a symbolic scalar or a symbolic array to a string.

Input Arguments

A

Symbolic scalar or symbolic array.

Examples

Convert symbolic expressions to strings, and then concatenate the strings:

syms x

y = char(x^3 + x^2 + 2*x - 1);

name = [y, ' represents a polynomial expression']

name =

2*x + x^2 + x^3 - 1 represents a polynomial expression

Note that char changes the order of the terms in the resulting string.

Convert a symbolic matrix to a string:

A = sym(hilb(3))

char(A)

A =

4 Functions — Alphabetical List

4-158

[1, 1/2, 1/3]

[1/2, 1/3, 1/4]

[1/3, 1/4, 1/5]

ans =

matrix([[1,1/2,1/3],[1/2,1/3,1/4],[1/3,1/4,1/5]])

More About

Tips

• char can change term ordering in an expression.

See Also
sym | double | pretty

Introduced before R2006a

 charpoly

4-159

charpoly
Characteristic polynomial of matrix

Syntax

charpoly(A)

charpoly(A,var)

Description

charpoly(A) returns a vector of the coefficients of the characteristic polynomial of A.
If A is a symbolic matrix, charpoly returns a symbolic vector. Otherwise, it returns a
vector of double-precision values.

charpoly(A,var) returns the characteristic polynomial of A in terms of var.

Input Arguments

A

Matrix.

var

Free symbolic variable.

Default: If you do not specify var, charpoly returns a vector of coefficients of the
characteristic polynomial instead of returning the polynomial itself.

Examples

Compute the characteristic polynomial of the matrix A in terms of the variable x:

syms x

A = sym([1 1 0; 0 1 0; 0 0 1]);

4 Functions — Alphabetical List

4-160

charpoly(A, x)

ans =

x^3 - 3*x^2 + 3*x - 1

To find the coefficients of the characteristic polynomial of A, call charpoly with one
argument:

A = sym([1 1 0; 0 1 0; 0 0 1]);

charpoly(A)

ans =

[1, -3, 3, -1]

Find the coefficients of the characteristic polynomial of the symbolic matrix A. For this
matrix, charpoly returns the symbolic vector of coefficients:

A = sym([1 2; 3 4]);

P = charpoly(A)

P =

[1, -5, -2]

Now find the coefficients of the characteristic polynomial of the matrix B, all elements of
which are double-precision values. Note that in this case charpoly returns coefficients
as double-precision values:

B = ([1 2; 3 4]);

P = charpoly(B)

P =

 1 -5 -2

More About

Characteristic Polynomial of Matrix

The characteristic polynomial of an n-by-n matrix A is the polynomial pA(x), such that

p x xI AA n() = -()det

Here In is the n-by-n identity matrix.

 charpoly

4-161

References

[1] Cohen, H. “A Course in Computational Algebraic Number Theory.” Graduate Texts
in Mathematics (Axler, Sheldon and Ribet, Kenneth A., eds.). Vol. 138, Springer,
1993.

[2] Abdeljaoued, J. “The Berkowitz Algorithm, Maple and Computing the Characteristic
Polynomial in an Arbitrary Commutative Ring.” MapleTech, Vol. 4, Number 3, pp
21–32, Birkhauser, 1997.

See Also
det | eig | jordan | minpoly | poly2sym | sym2poly

Introduced in R2012b

4 Functions — Alphabetical List

4-162

chebyshevT
Chebyshev polynomials of the first kind

Syntax

chebyshevT(n,x)

Description

chebyshevT(n,x) represents the nth degree Chebyshev polynomial of the first kind at
the point x.

Examples

First Five Chebyshev Polynomials of the First Kind

Find the first five Chebyshev polynomials of the first kind for the variable x.

syms x

chebyshevT([0, 1, 2, 3, 4], x)

ans =

[1, x, 2*x^2 - 1, 4*x^3 - 3*x, 8*x^4 - 8*x^2 + 1]

Chebyshev Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, chebyshevT returns floating-point or exact symbolic
results.

Find the value of the fifth-degree Chebyshev polynomial of the first kind at these points.
Because these numbers are not symbolic objects, chebyshevT returns floating-point
results.

chebyshevT(5, [1/6, 1/4, 1/3, 1/2, 2/3, 3/4])

 chebyshevT

4-163

ans =

 0.7428 0.9531 0.9918 0.5000 -0.4856 -0.8906

Find the value of the fifth-degree Chebyshev polynomial of the first kind for the same
numbers converted to symbolic objects. For symbolic numbers, chebyshevT returns
exact symbolic results.

chebyshevT(5, sym([1/6, 1/4, 1/3, 1/2, 2/3, 3/4]))

ans =

[361/486, 61/64, 241/243, 1/2, -118/243, -57/64]

Evaluate Chebyshev Polynomials with Floating-Point Numbers

Floating-point evaluation of Chebyshev polynomials by direct calls of chebyshevT is
numerically stable. However, first computing the polynomial using a symbolic variable,
and then substituting variable-precision values into this expression can be numerically
unstable.

Find the value of the 500th-degree Chebyshev polynomial of the first kind at 1/3 and
vpa(1/3). Floating-point evaluation is numerically stable.

chebyshevT(500, 1/3)

chebyshevT(500, vpa(1/3))

ans =

 0.9631

ans =

0.963114126817085233778571286718

Now, find the symbolic polynomial T500 = chebyshevT(500, x), and substitute x =
vpa(1/3) into the result. This approach is numerically unstable.

syms x

T500 = chebyshevT(500, x);

subs(T500, x, vpa(1/3))

ans =

-3293905791337500897482813472768.0

Approximate the polynomial coefficients by using vpa, and then substitute x =
sym(1/3) into the result. This approach is also numerically unstable.

4 Functions — Alphabetical List

4-164

subs(vpa(T500), x, sym(1/3))

ans =

1202292431349342132757038366720.0

Plot Chebyshev Polynomials of the First Kind

Plot these five Chebyshev polynomials of the first kind.

syms x y

for n = [0, 1, 2, 3, 4]

 ezplot(chebyshevT(n, x))

 hold on

end

hold off

axis([-1.5, 1.5, -2, 2])

grid on

ylabel('T_n(x)')

legend('T_0(x)', 'T_1(x)', 'T_2(x)', 'T_3(x)', 'T_4(x)', 'Location', 'Best')

title('Chebyshev polynomials of the first kind')

 chebyshevT

4-165

Input Arguments

n — Degree of polynomial
nonnegative integer | symbolic variable | symbolic expression | symbolic function |
vector | matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable,
expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

4 Functions — Alphabetical List

4-166

x — Evaluation point
number | symbolic number | symbolic variable | symbolic expression | symbolic
function | vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or
function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions,
or functions.

More About

Chebyshev Polynomials of the First Kind

Chebyshev polynomials of the first kind are defined as Tn(x) = cos(n*arccos(x)).

These polynomials satisfy the recursion formula

T x T x x T n x xT n x T n x0 1 1 2 1 2, , , , , , ,() = () = () = -() - -()

Chebyshev polynomials of the first kind are orthogonal on the interval -1 ≤ x ≤ 1 with
respect to the weight function

w x

x

() =

-

1

1
2

Chebyshev polynomials of the first kind are a special case of the Jacobi polynomials

T n x
n

n
P n x

n

,
!

!
, , ,() =

()
()

- -Ê
Ë
Á

ˆ
¯
˜

2

2

1

2

1

2

2 2

and Gegenbauer polynomials

T n x
n

G n x, , ,() = ()
2

0

Tips

• chebyshevT returns floating-point results for numeric arguments that are not
symbolic objects.

 chebyshevT

4-167

• chebyshevT acts element-wise on nonscalar inputs.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then chebyshevT expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References

[1] Hochstrasser,U.W. “Orthogonal Polynomials.” Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

See Also
chebyshevU | gegenbauerC | hermiteH | jacobiP | laguerreL | legendreP

Introduced in R2014b

4 Functions — Alphabetical List

4-168

chebyshevU
Chebyshev polynomials of the second kind

Syntax

chebyshevU(n,x)

Description

chebyshevU(n,x) represents the nth degree Chebyshev polynomial of the second kind
at the point x.

Examples

First Five Chebyshev Polynomials of the Second Kind

Find the first five Chebyshev polynomials of the second kind for the variable x.

syms x

chebyshevU([0, 1, 2, 3, 4], x)

ans =

[1, 2*x, 4*x^2 - 1, 8*x^3 - 4*x, 16*x^4 - 12*x^2 + 1]

Chebyshev Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, chebyshevU returns floating-point or exact symbolic
results.

Find the value of the fifth-degree Chebyshev polynomial of the second kind at these
points. Because these numbers are not symbolic objects, chebyshevU returns floating-
point results.

chebyshevU(5, [1/6, 1/3, 1/2, 2/3, 4/5])

 chebyshevU

4-169

ans =

 0.8560 0.9465 0.0000 -1.2675 -1.0982

Find the value of the fifth-degree Chebyshev polynomial of the second kind for the same
numbers converted to symbolic objects. For symbolic numbers, chebyshevU returns
exact symbolic results.

chebyshevU(5, sym([1/6, 1/4, 1/3, 1/2, 2/3, 4/5]))

ans =

[208/243, 33/32, 230/243, 0, -308/243, -3432/3125]

Evaluate Chebyshev Polynomials with Floating-Point Numbers

Floating-point evaluation of Chebyshev polynomials by direct calls of chebyshevU is
numerically stable. However, first computing the polynomial using a symbolic variable,
and then substituting variable-precision values into this expression can be numerically
unstable.

Find the value of the 500th-degree Chebyshev polynomial of the second kind at 1/3 and
vpa(1/3). Floating-point evaluation is numerically stable.

chebyshevU(500, 1/3)

chebyshevU(500, vpa(1/3))

ans =

 0.8680

ans =

0.86797529488884242798157148968078

Now, find the symbolic polynomial U500 = chebyshevU(500, x), and substitute x =
vpa(1/3) into the result. This approach is numerically unstable.

syms x

U500 = chebyshevU(500, x);

subs(U500, x, vpa(1/3))

ans =

63080680195950160912110845952.0

Approximate the polynomial coefficients by using vpa, and then substitute x =
sym(1/3) into the result. This approach is also numerically unstable.

4 Functions — Alphabetical List

4-170

subs(vpa(U500), x, sym(1/3))

ans =

-1878009301399851172833781612544.0

Plot Chebyshev Polynomials of the Second Kind

Plot the first five Chebyshev polynomials of the second kind.

syms x y

for n = [0, 1, 2, 3, 4]

 ezplot(chebyshevU(n, x))

 hold on

end

hold off

axis([-1.5, 1.5, -2, 2])

grid on

ylabel('U_n(x)')

legend('U_0(x)', 'U_1(x)', 'U_2(x)', 'U_3(x)', 'U_4(x)', 'Location', 'Best')

title('Chebyshev polynomials of the second kind')

 chebyshevU

4-171

Input Arguments

n — Degree of polynomial
nonnegative integer | symbolic variable | symbolic expression | symbolic function |
vector | matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable,
expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

4 Functions — Alphabetical List

4-172

x — Evaluation point
number | symbolic number | symbolic variable | symbolic expression | symbolic
function | vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or
function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions,
or functions.

More About

Chebyshev Polynomials of the Second Kind

Chebyshev polynomials of the second kind are defined as follows:

U n x
n a x

a x
,

sin cos

sin cos
() =

+() ()()
()()

1

These polynomials satisfy the recursion formula

U x U x x U n x xU n x U n x0 1 1 2 2 1 2, , , , , , ,() = () = () = -() - -()

Chebyshev polynomials of the second kind are orthogonal on the interval -1 ≤ x ≤ 1 with
respect to the weight function

w x x() = -1
2

Chebyshev polynomials of the second kind are a special case of the Jacobi polynomials

U n x
n n

n
P n x

n

,
! !

!
, , ,() =

+()
+()

Ê
Ë
Á

ˆ
¯
˜

2 1

2 1

1

2

1

2

2

and Gegenbauer polynomials

U n x G n x, , ,() = ()1

 chebyshevU

4-173

Tips

• chebyshevU returns floating-point results for numeric arguments that are not
symbolic objects.

• chebyshevU acts element-wise on nonscalar inputs.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then chebyshevU expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References

[1] Hochstrasser,U.W. “Orthogonal Polynomials.” Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

See Also
chebyshevT | gegenbauerC | hermiteH | jacobiP | laguerreL | legendreP

Introduced in R2014b

4 Functions — Alphabetical List

4-174

children
Subexpressions or terms of symbolic expression

Syntax

children(expr)

children(A)

Description

children(expr) returns a vector containing the child subexpressions of the symbolic
expression expr. For example, the child subexpressions of a sum are its terms.

children(A) returns a cell array containing the child subexpressions of each expression
in A.

Input Arguments

expr

Symbolic expression, equation, or inequality.

A

Vector or matrix of symbolic expressions, equations, or inequalities.

Examples

Find the child subexpressions of this expression. Child subexpressions of a sum are its
terms.

syms x y

children(x^2 + x*y + y^2)

 children

4-175

ans =

[x*y, x^2, y^2]

Find the child subexpressions of this expression. This expression is also a sum, only some
terms of that sum are negative.

children(x^2 - x*y - y^2)

ans =

[-x*y, x^2, -y^2]

The child subexpression of a variable is the variable itself:

children(x)

ans =

x

Create the symbolic expression using sym. With this approach, you do not create
symbolic variables corresponding to the terms of the expression. Nevertheless, children
finds the terms of the expression:

children(sym('a + b + c'))

ans =

[a, b, c]

Find the child subexpressions of this equation. The child subexpressions of an equation
are the left and right sides of that equation.

syms x y

children(x^2 + x*y == y^2 + 1)

ans =

[x^2 + y*x, y^2 + 1]

Find the child subexpressions of this inequality. The child subexpressions of an
inequality are the left and right sides of that inequality.

children(sin(x) < cos(x))

ans =

[sin(x), cos(x)]

Call the children function for this matrix. The result is the cell array containing the
child subexpressions of each element of the matrix.

4 Functions — Alphabetical List

4-176

syms x y

s = children([x + y, sin(x)*cos(y); x^3 - y^3, exp(x*y^2)])

s =

 [1x2 sym] [1x2 sym]

 [1x2 sym] [1x1 sym]

To access the contents of cells in the cell array, use braces:

s{1:4}

ans =

[x, y]

ans =

[x^3, -y^3]

ans =

[cos(y), sin(x)]

ans =

x*y^2

See Also
coeffs | numden | subs

Introduced in R2012a

 chol

4-177

chol
Cholesky factorization

Syntax
T = chol(A)

[T,p] = chol(A)

[T,p,S] = chol(A)

[T,p,s] = chol(A,'vector')

___ = chol(A,'lower')

___ = chol(A,'nocheck')

___ = chol(A,'real')

___ = chol(A,'lower','nocheck','real')

[T,p,s] = chol(A,'lower','vector','nocheck','real')

Description
T = chol(A) returns an upper triangular matrix T, such that T'*T = A. A must be a
Hermitian positive definite matrix. Otherwise, this syntax throws an error.

[T,p] = chol(A) computes the Cholesky factorization of A. This syntax does not error
if A is not a Hermitian positive definite matrix. If A is a Hermitian positive definite
matrix, then p is 0. Otherwise, T is sym([]), and p is a positive integer (typically,
p = 1).

[T,p,S] = chol(A) returns a permutation matrix S, such that T'*T = S'*A*S,
and the value p = 0 if matrix A is Hermitian positive definite. Otherwise, it returns a
positive integer p and an empty object S = sym([]).

[T,p,s] = chol(A,'vector') returns the permutation information as a vector s,
such that A(s,s) = T'*T. If A is not recognized as a Hermitian positive definite matrix,
then p is a positive integer and s = sym([]).

___ = chol(A,'lower') returns a lower triangular matrix T, such that T*T' = A.

___ = chol(A,'nocheck') skips checking whether matrix A is Hermitian positive
definite. 'nocheck' lets you compute Cholesky factorization of a matrix that contains
symbolic parameters without setting additional assumptions on those parameters.

4 Functions — Alphabetical List

4-178

___ = chol(A,'real') computes the Cholesky factorization of A using real
arithmetic. In this case, chol computes a symmetric factorization A = T.'*T instead of
a Hermitian factorization A = T'*T. This approach is based on the fact that if A is real
and symmetric, then T'*T = T.'*T. Use 'real' to avoid complex conjugates in the
result.

___ = chol(A,'lower','nocheck','real') computes the Cholesky factorization
of A with one or more of these optional arguments: 'lower', 'nocheck', and 'real'.
These optional arguments can appear in any order.

[T,p,s] = chol(A,'lower','vector','nocheck','real') computes the
Cholesky factorization of A and returns the permutation information as a vector s. You
can use one or more of these optional arguments: 'lower', 'nocheck', and 'real'.
These optional arguments can appear in any order.

Input Arguments

A

Symbolic matrix.

'lower'

Flag that prompts chol to return a lower triangular matrix instead of an upper
triangular matrix.

'vector'

Flag that prompts chol to return the permutation information in the form of a vector. To
use this flag, you must specify three output arguments.

'nocheck'

Flag that prompts chol to avoid checking whether matrix A is Hermitian positive
definite. Use this flag if A contains symbolic parameters, and you want to avoid
additional assumptions on these parameters.

'real'

Flag that prompts chol to use real arithmetic. Use this flag if A contains symbolic
parameters, and you want to avoid complex conjugates.

 chol

4-179

Output Arguments

T

Upper triangular matrix, such that T'*T = A, or lower triangular matrix, such that
T*T' = A.

p

Value 0 if A is Hermitian positive definite or if you use 'nocheck'.

If chol does not identify A as a Hermitian positive definite matrix, then p is a positive
integer. R is an upper triangular matrix of order q = p - 1, such that R'*R =
A(1:q,1:q).

S

Permutation matrix.

s

Permutation vector.

Examples

Compute the Cholesky factorization of the 3-by-3 Hilbert matrix. Because these numbers
are not symbolic objects, you get floating-point results.

chol(hilb(3))

ans =

 1.0000 0.5000 0.3333

 0 0.2887 0.2887

 0 0 0.0745

Now convert this matrix to a symbolic object, and compute the Cholesky factorization:

chol(sym(hilb(3)))

ans =

[1, 1/2, 1/3]

4 Functions — Alphabetical List

4-180

[0, 3^(1/2)/6, 3^(1/2)/6]

[0, 0, 5^(1/2)/30]

Compute the Cholesky factorization of the 3-by-3 Pascal matrix returning a lower
triangular matrix as a result:

chol(sym(pascal(3)), 'lower')

ans =

[1, 0, 0]

[1, 1, 0]

[1, 2, 1]

Try to compute the Cholesky factorization of this matrix. Because this matrix is not
Hermitian positive definite, chol used without output arguments or with one output
argument throws an error:

A = sym([1 1 1; 1 2 3; 1 3 5]);

T = chol(A)

Error using sym/chol (line 132)

Cannot prove that input matrix is Hermitian positive definite.

Define a Hermitian positive definite matrix by setting

appropriate assumptions on matrix components, or use 'nocheck'

to skip checking whether the matrix is Hermitian positive definite.

To suppress the error, use two output arguments, T and p. If the matrix is not recognized
as Hermitian positive definite, then this syntax assigns an empty symbolic object to T
and the value 1 to p:

[T,p] = chol(A)

T =

[empty sym]

p =

 1

For a Hermitian positive definite matrix, p is 0:

[T,p] = chol(sym(pascal(3)))

T =

[1, 1, 1]

[0, 1, 2]

 chol

4-181

[0, 0, 1]

p =

 0

Compute the Cholesky factorization of the 3-by-3 inverse Hilbert matrix returning the
permutation matrix:

A = sym(invhilb(3));

[T, p, S] = chol(A)

T =

[3, -12, 10]

[0, 4*3^(1/2), -5*3^(1/2)]

[0, 0, 5^(1/2)]

p =

 0

S =

 1 0 0

 0 1 0

 0 0 1

Compute the Cholesky factorization of the 3-by-3 inverse Hilbert matrix returning the
permutation information as a vector:

A = sym(invhilb(3));

[T, p, S] = chol(A, 'vector')

T =

[3, -12, 10]

[0, 4*3^(1/2), -5*3^(1/2)]

[0, 0, 5^(1/2)]

p =

 0

S =

 1 2 3

Compute the Cholesky factorization of matrix A containing symbolic parameters. Without
additional assumptions on the parameter a, this matrix is not Hermitian. To make
isAlways return logical 0 (false) for undecidable conditions, set Unknown to false.

syms a

A = [a 0; 0 a];

isAlways(A == A','Unknown','false')

4 Functions — Alphabetical List

4-182

ans =

 0 1

 1 0

By setting assumptions on a and b, you can define A to be Hermitian positive definite.
Therefore, you can compute the Cholesky factorization of A:

assume(a > 0)

chol(A)

ans =

[a^(1/2), 0]

[0, a^(1/2)]

For further computations, remove the assumptions:

syms a clear

'nocheck' lets you skip checking whether A is a Hermitian positive definite matrix.
Thus, this flag lets you compute the Cholesky factorization of a symbolic matrix without
setting additional assumptions on its components:

A = [a 0; 0 a];

chol(A,'nocheck')

ans =

[a^(1/2), 0]

[0, a^(1/2)]

If you use 'nocheck' for computing the Cholesky factorization of a matrix that is not
Hermitian positive definite, chol can return a matrix T for which the identity T'*T = A
does not hold. To make isAlways return logical 0 (false) for undecidable conditions, set
Unknown to false.

T = chol(sym([1 1; 2 1]), 'nocheck')

T =

[1, 2]

[0, 3^(1/2)*1i]

isAlways(A == T'*T,'Unknown','false')

ans =

 0 0

 0 0

 chol

4-183

Compute the Cholesky factorization of this matrix. To skip checking whether it is
Hermitian positive definite, use 'nocheck'. By default, chol computes a Hermitian
factorization A = T'*T. Thus, the result contains complex conjugates.

syms a b

A = [a b; b a];

T = chol(A, 'nocheck')

T =

[a^(1/2), conj(b)/conj(a^(1/2))]

[0, (a*abs(a) - abs(b)^2)^(1/2)/abs(a)^(1/2)]

To avoid complex conjugates in the result, use 'real':

T = chol(A, 'nocheck', 'real')

T =

[a^(1/2), b/a^(1/2)]

[0, ((a^2 - b^2)/a)^(1/2)]

When you use this flag, chol computes a symmetric factorization A = T.'*T instead
of a Hermitian factorization A = T'*T. To make isAlways return logical 0 (false) for
undecidable conditions, set Unknown to false.

isAlways(A == T.'*T)

ans =

 1 1

 1 1

isAlways(A == T'*T,'Unknown','false')

ans =

 0 0

 0 0

More About

Hermitian Positive Definite Matrix

A square complex matrix A is Hermitian positive definite if v'*A*v is real and positive
for all nonzero complex vectors v, where v' is the conjugate transpose (Hermitian
transpose) of v.

4 Functions — Alphabetical List

4-184

Cholesky Factorization of a Matrix

The Cholesky factorization of a Hermitian positive definite n-by-n matrix A is defined
by an upper or lower triangular matrix with positive entries on the main diagonal. The
Cholesky factorization of matrix A can be defined as T'*T = A, where T is an upper
triangular matrix. Here T' is the conjugate transpose of T. The Cholesky factorization
also can be defined as T*T' = A, where T is a lower triangular matrix. T is called the
Cholesky factor of A.

Tips

• Calling chol for numeric arguments that are not symbolic objects invokes the
MATLAB chol function.

• If you use 'nocheck', then the identities T'*T = A (for an upper triangular matrix
T) and T*T’ = A (for a lower triangular matrix T) are not guaranteed to hold.

• If you use 'real', then the identities T'*T = A (for an upper triangular matrix T)
and T*T' = A (for a lower triangular matrix T) are only guaranteed to hold for a real
symmetric positive definite A.

• To use 'vector', you must specify three output arguments. Other flags do not
require a particular number of output arguments.

• If you use 'matrix' instead of 'vector', then chol returns permutation matrices,
as it does by default.

• If you use 'upper' instead of 'lower', then chol returns an upper triangular
matrix, as it does by default.

• If A is not a Hermitian positive definite matrix, then the syntaxes containing the
argument p typically return p = 1 and an empty symbolic object T.

• To check whether a matrix is Hermitian, use the operator ' (or its functional form
ctranspose). Matrix A is Hermitian if and only if A'= A, where A' is the conjugate
transpose of A.

See Also
chol | ctranspose | eig | isAlways | lu | qr | svd | transpose | vpa

Introduced in R2013a

 clear all

4-185

clear all
Remove items from MATLAB workspace and reset MuPAD engine

Syntax

clear all

Description

clear all clears all objects in the MATLAB workspace and closes the MuPAD engine
associated with the MATLAB workspace resetting all its assumptions.

See Also
reset

Introduced in R2008b

4 Functions — Alphabetical List

4-186

close
Close MuPAD notebook

Syntax

close(nb)

close(nb,'force')

Description

close(nb) closes the MuPAD notebook with the handle nb. If you modified the
notebook, close(nb) brings up a dialog box asking if you want to save the changes.

close(nb,'force') closes notebook nb without prompting you to save the changes. If
you modified the notebook, close(nb,'force') discards the changes.

This syntax can be helpful when you evaluate MuPAD notebooks by using
evaluateMuPADNotebook. When you evaluate a notebook, MuPAD inserts results in
the output regions or at least inserts the new input region at the bottom of the notebook,
thus modifying the notebook. If you want to close the notebook quickly without saving
such changes, use close(nb,'force').

Examples

Close One Notebook

Open and close an existing notebook.

Suppose that your current folder contains a MuPAD notebook named myFile1.mn. Open
this notebook keeping its handle in the variable nb1:

nb1 = mupad('myFile1.mn');

Suppose that you finished using this notebook and now want to close it. Enter this
command in the MATLAB Command Window. If you have unsaved changes in that
notebook, then this command will bring up a dialog box asking if you want to save the
changes.

 close

4-187

close(nb1)

Close Several Notebooks

Use a vector of notebook handles to close several notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nb1 = mupad('myFile1.mn')

nb2 = mupad('myFile2.mn')

nb3 = mupad

nb1 =

myFile1

nb2 =

myFile2

nb3 =

Notebook1

Close myFile1.mn and myFile2.mn. If you have unsaved changes in any of these two
notebooks, then this command will bring up a dialog box asking if you want to save the
changes.

close([nb1, nb2])

Close All Open Notebooks

Identify and close all currently open MuPAD notebooks.

Get a list of all currently open notebooks:

allNBs = allMuPADNotebooks;

Close all notebooks. If you have unsaved changes in any notebook, then this command
will bring up a dialog box asking if you want to save the changes.

close(allNBs)

Close All Open Notebooks and Discard Modifications

Identify and close all currently open MuPAD notebooks without saving changes.

4 Functions — Alphabetical List

4-188

Get a list of all currently open notebooks:

allNBs = allMuPADNotebooks;

Close all notebooks using the force flag to suppress the dialog box that offers you to
save changes:

close(allNBs,'force')

• “Create MuPAD Notebooks” on page 3-3
• “Open MuPAD Notebooks” on page 3-6
• “Save MuPAD Notebooks” on page 3-12
• “Evaluate MuPAD Notebooks from MATLAB” on page 3-13
• “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25
• “Close MuPAD Notebooks from MATLAB” on page 3-16

Input Arguments

nb — Pointer to MuPAD notebook
handle to notebook | vector of handles to notebooks

Pointer to notebook, specified as a MuPAD notebook handle or a vector of handles. You
create the notebook handle when opening a notebook with the mupad or openmn function.

You can get the list of all open notebooks using the allMuPADNotebooks function.
close accepts a vector of handles returned by allMuPADNotebooks.

See Also
allMuPADNotebooks | evaluateMuPADNotebook | getVar | mupad |
mupadNotebookTitle | openmn | setVar

Introduced in R2013b

 coeffs

4-189

coeffs

Coefficients of polynomial

Syntax

C = coeffs(p)

C = coeffs(p,var)

C = coeffs(p,vars)

[C,T] = coeffs(___)

Description

C = coeffs(p) returns coefficients of the polynomial p with respect to all variables
determined in p by symvar.

C = coeffs(p,var) returns coefficients of the polynomial p with respect to the
variable var.

C = coeffs(p,vars) returns coefficients of the multivariate polynomial p with respect
to the variables vars.

[C,T] = coeffs(___) returns the coefficient C and the corresponding terms T of the
polynomial p.

Examples

Coefficients of Univariate Polynomial

Find the coefficients of this univariate polynomial:

syms x

c = coeffs(16*x^2 + 19*x + 11)

c =

4 Functions — Alphabetical List

4-190

[11, 19, 16]

Coefficients of Multivariate Polynomial with Respect to Particular Variable

Find the coefficients of this polynomial with respect to variable x and variable y:

syms x y

cx = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, x)

cy = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, y)

cx =

[4*y^3, 3*y^2, 2*y, 1]

cy =

[x^3, 2*x^2, 3*x, 4]

Coefficients of Multivariate Polynomial with Respect to Two Variables

Find the coefficients of this polynomial with respect to both variables x and y:

syms x y

cxy = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, [x,y])

cyx = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, [y,x])

cxy =

[4, 3, 2, 1]

cyx =

[1, 2, 3, 4]

Coefficients and Corresponding Terms of Univariate Polynomial

Find the coefficients and the corresponding terms of this univariate polynomial:

syms x

[c,t] = coeffs(16*x^2 + 19*x + 11)

c =

[16, 19, 11]

t =

[x^2, x, 1]

 coeffs

4-191

Coefficients and Corresponding Terms of Multivariate Polynomial

Find the coefficients and the corresponding terms of this polynomial with respect to
variable x and variable y:

syms x y

[cx,tx] = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, x)

[cy,ty] = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, y)

cx =

[1, 2*y, 3*y^2, 4*y^3]

tx =

[x^3, x^2, x, 1]

cy =

[4, 3*x, 2*x^2, x^3]

ty =

[y^3, y^2, y, 1]

Find the coefficients of this polynomial with respect to both variables x and y:

syms x y

[cxy, txy] = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, [x,y])

[cyx, tyx] = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, [y,x])

cxy =

[1, 2, 3, 4]

txy =

[x^3, x^2*y, x*y^2, y^3]

cyx =

[4, 3, 2, 1]

tyx =

[y^3, x*y^2, x^2*y, x^3]

Input Arguments

p — Polynomial
symbolic expression | symbolic function

4 Functions — Alphabetical List

4-192

Polynomial, specified as a symbolic expression or function.

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

vars — Polynomial variables
vector of symbolic variables

Polynomial variables, specified as a vector of symbolic variables.

Output Arguments

C — Coefficients of polynomial
symbolic vector | symbolic number | symbolic expression

Coefficients of polynomial, returned as a vector of symbolic numbers and expressions. If
there is only one coefficient and one corresponding term, then C is returned as a scalar.

T — Terms of polynomial
symbolic vector | symbolic expression | symbolic number

Terms of polynomial, returned as a vector of symbolic expressions and numbers. If there
is only one coefficient and one corresponding term, then T is returned as a scalar.

See Also
poly2sym | sym2poly

Introduced before R2006a

 collect

4-193

collect

Collect coefficients

Syntax

collect(P)

collect(P,var)

Description

collect(P) rewrites P in terms of the powers of the default variable determined by
symvar.

collect(P,var) rewrites P in terms of the powers of the variable var. If P is a vector or
matrix, this syntax regards each element of P as a polynomial in var.

Examples

Collect Coefficients in Terms of Powers of Default Variable

Collect the coefficients of this symbolic expression:

syms x

collect((exp(x) + x)*(x + 2))

ans =

x^2 + (exp(x) + 2)*x + 2*exp(x)

Because you did not specify the variable of a polynomial, collect uses the default
variable defined by symvar. For this expression, the default variable is x:

symvar((exp(x) + x)*(x + 2), 1)

ans =

4 Functions — Alphabetical List

4-194

x

Collect Coefficients in Terms of Powers of Particular Variable

Rewrite this symbolic expression specifying the variables in terms of which you want to
collect the coefficients:

syms x y

collect(x^2*y + y*x - x^2 - 2*x, x)

collect(x^2*y + y*x - x^2 - 2*x, y)

ans =

(y - 1)*x^2 + (y - 2)*x

ans =

(x^2 + x)*y - x^2 - 2*x

Collect Coefficients in Terms of Powers of i and pi

Rewrite these expressions in terms of the powers of i and pi, respectively:

syms x y

collect(2*x*i - 3*i*y, i)

collect(x*pi*(pi - y) + x*(pi + i) + 3*pi*y, pi)

ans =

(2*x - 3*y)*1i

ans =

x*pi^2 + (x + 3*y - x*y)*pi + x*1i

Collect Coefficients for Each Element of Matrix

If the argument is a vector or a matrix, then collect rewrites each element:

syms x y

collect([(x + 1)*(y + 1), x^2 + x*(x -y); 2*x*y - x, x*y + x/y], x)

ans =

[(y + 1)*x + y + 1, 2*x^2 - y*x]

[(2*y - 1)*x, (y + 1/y)*x]

 collect

4-195

Input Arguments

P — Input expression
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input expression, specified as a symbolic expression, function, vector, or matrix.

var — Variable in terms of which you collect coefficients
symbolic variable | symbolic expression

Variable in terms of which you collect the coefficients, specified as a symbolic variable or
symbolic expression, such as i or pi.

See Also
combine | expand | factor | horner | numden | rewrite | simplify |
simplifyFraction | symvar

Introduced before R2006a

4 Functions — Alphabetical List

4-196

colon, :
Create symbolic vectors, array subscripting, and for-loop iterators

Syntax

m:n

m:d:n

x:x+r

x:d:x+r

Description

m:n returns a symbolic vector of values [m,m+1,...,n], where m and n are symbolic
constants. If n is not an increment of m, then the last value of the vector stops before n.
This behavior holds for all syntaxes.

m:d:n returns a symbolic vector of values [m,m+d,...,n], where d is a rational
number.

x:x+r returns a symbolic vector of values [x,x+1,...,x+r], where x is a symbolic
variable and r is a rational number.

x:d:x+r returns a symbolic vector of values [x,x+d,...,x+r], where d and r are
rational numbers.

Examples

Create Numeric and Symbolic Arrays

Use the colon operator to create numeric and symbolic arrays. Because these inputs are
not symbolic objects, you receive floating-point results.

1/2:7/2

ans =

 0.5000 1.5000 2.5000 3.5000

 colon, :

4-197

To obtain symbolic results, convert the inputs to symbolic objects.

sym(1/2):sym(7/2)

ans =

[1/2, 3/2, 5/2, 7/2]

Specify the increment used.

sym(1/2):2/3:sym(7/2)

ans =

[1/2, 7/6, 11/6, 5/2, 19/6]

Obtain Increments of Symbolic Variable

syms x

x:x+2

ans =

[x, x + 1, x + 2]

Specify the increment used.

syms x

x:3/7:x+2

ans =

[x, x + 3/7, x + 6/7, x + 9/7, x + 12/7]

Obtain increments between x and 2*x in intervals of x/3.

syms x

x:x/3:2*x

ans =

[x, (4*x)/3, (5*x)/3, 2*x]

Find Product of Harmonic Series

Find the product of the first four terms of the harmonic series.

syms x

p = sym(1);

for i = x:x+3

4 Functions — Alphabetical List

4-198

 p = p*1/i;

end

p

p =

1/(x*(x + 1)*(x + 2)*(x + 3))

Use expand to obtain the full polynomial.

expand(p)

ans =

1/(x^4 + 6*x^3 + 11*x^2 + 6*x)

Use subs to replace x with 1 and find the product in fractions.

p = subs(p,x,1)

p =

1/24

Use vpa to return the result as a floating-point value.

vpa(p)

ans =

0.041666666666666666666666666666667

You can also perform the described operations in a single line of code.

vpa(subs(expand(prod(1./(x:x+3))) ,x,1))

ans =

0.041666666666666666666666666666667

Input Arguments

m — Input
symbolic constant

Input, specified as a symbolic constant.

n — Input
symbolic constant

 colon, :

4-199

Input, specified as a symbolic constant.

x — Input
symbolic variable

Input, specified as a symbolic variable.

r — Upper bound on vector values
symbolic rational

Upper bound on vector values, specified as a symbolic rational. For example, x:x+2
returns [x, x + 1, x + 2].

d — Increment in vector values
symbolic rational

Increment in vector values, specified as a symbolic rational. For example, x:1/2:x+2
returns [x, x + 1/2, x + 1, x + 3/2, x + 2].

See Also
reshape

Introduced before R2006a

4 Functions — Alphabetical List

4-200

colspace
Column space of matrix

Syntax

B = colspace(A)

Description

B = colspace(A) returns a matrix whose columns form a basis for the column space of
A. The matrix A can be symbolic or numeric.

Examples

Find the basis for the column space of this matrix:

A = sym([2,0;3,4;0,5])

B = colspace(A)

A =

[2, 0]

[3, 4]

[0, 5]

B =

[1, 0]

[0, 1]

[-15/8, 5/4]

See Also
null | size

Introduced before R2006a

 combine

4-201

combine

Combine terms of identical algebraic structure

Syntax

Y = combine(S)

Y = combine(S,T)

Y = combine(___ ,Name,Value)

Description

Y = combine(S) rewrites products of powers in the expression S as a single power.

Y = combine(S,T) combines multiple calls to the target function T in the expression
S. Use combine to implement the inverse functionality of expand with respect to the
majority of the applied rules.

Y = combine(___ ,Name,Value) calls combine using additional options specified by
one or more Name,Value pair arguments.

Examples

Powers of the Same Base

Combine powers of the same base.

syms x y z

combine(x^y*x^z)

ans =

x^(y + z)

Combine powers of numeric arguments. To prevent MATLAB from evaluating the
expression, use sym to convert at least one numeric argument into a symbolic value.

4 Functions — Alphabetical List

4-202

syms x y

combine(x^(3)*x^y*x^exp(sym(1)))

ans =

x^(y + exp(1) + 3)

Here, sym converts 1 into a symbolic value, preventing MATLAB from evaluating the
expression e1.

Powers of the Same Exponent

Combine powers with the same exponents in certain cases.

combine(sqrt(sym(2))*sqrt(3))

ans =

6^(1/2)

combine does not usually combine the powers because the internal simplifier applies the
same rules in the opposite direction to expand the result.

syms x y

combine(y^5*x^5)

ans =

x^5*y^5

Terms with Logarithms

Combine terms with logarithms by specifying the target argument as log. For real
positive numbers, the logarithm of a product equals the sum of the logarithms of its
factors.

S = log(sym(2)) + log(sym(3));

combine(S,'log')

ans =

log(6)

Try combining log(a) + log(b). Because a and b are assumed to be complex numbers
by default, the rule does not hold and combine does not combine the terms.

 combine

4-203

syms a b

S = log(a) + log(b);

combine(S,'log')

ans =

log(a) + log(b)

Apply the rule by setting assumptions such that a and b satisfy the conditions for the
rule.

assume(a > 0)

assume(b > 0)

S = log(a) + log(b);

combine(S,'log')

ans =

log(a*b)

For future computations, clear the assumptions set on variables a and b.

syms a clear

syms b clear

Alternatively, apply the rule by ignoring analytic constraints using
IgnoreAnalyticConstraints.

syms a b

S = log(a) + log(b);

combine(S,'log','IgnoreAnalyticConstraints',true)

ans =

 log(a*b)

Terms with Sine and Cosine Function Calls

Rewrite products of sine and cosine functions as a sum of the functions by setting the
target argument to sincos.

syms a b

combine(sin(a)*cos(b) + sin(b)^2,'sincos')

ans =

sin(a + b)/2 - cos(2*b)/2 + sin(a - b)/2 + 1/2

4 Functions — Alphabetical List

4-204

Rewrite sums of sine and cosine functions by setting the target argument to sincos.

combine(cos(a) + sin(a),'sincos')

ans =

2^(1/2)*cos(a - pi/4)

combine does not rewrite powers of sine or cosine functions with negative integer
exponents.

syms a b

combine(sin(b)^(-2)*cos(b)^(-2),'sincos')

ans =

1/(cos(b)^2*sin(b)^2)

Exponential Terms

Combine terms with exponents by specifying the target argument as exp.

combine(exp(sym(3))*exp(sym(2)),'exp')

ans =

exp(5)

syms a

combine(exp(a)^3, 'exp')

ans =

exp(3*a)

Terms with Integrals

Combine terms with integrals by specifying the target argument as int.

syms a f(x) g(x)

combine(int(f(x),x)+int(g(x),x),'int')

combine(a*int(f(x),x),'int')

ans =

int(f(x) + g(x), x)

ans =

int(a*f(x), x)

 combine

4-205

Combine integrals with the same limits.

syms a b h(z)

combine(int(f(x),x,a,b)+int(h(z),z,a,b),'int')

ans =

int(f(x) + h(x), x, a, b)

Terms with Inverse Tangent Function Calls

Combine two calls to the inverse tangent function by specifying the target argument as
atan.

syms a b

assume(abs(a*b) < 1)

combine(atan(a) + atan(b),'atan')

ans =

-atan((a + b)/(a*b - 1))

Combine two calls to the inverse tangent function. combine simplifies the expression to
a symbolic value if possible.

assume(a > 0)

combine(atan(a) + atan(1/a),'atan')

ans =

pi/2

For further computations, clear the assumptions:

syms a clear

syms b clear

Terms with Calls to Gamma Function

Combine multiple gamma functions by specifying the target as gamma.

syms x

combine(gamma(x)*gamma(1-x),'gamma')

ans =

 -pi/sin(pi*(x - 1))

4 Functions — Alphabetical List

4-206

combine simplifies quotients of gamma functions to rational expressions.

Multiple Input Expressions in One Call

Evaluate multiple expressions in one function call by using a symbolic matrix as the
input parameter.

S = [sqrt(sym(2))*sqrt(5), sqrt(2)*sqrt(sym(11))];

combine(S)

ans =

[10^(1/2), 22^(1/2)]

Input Arguments

S — Input expression
symbolic expression | symbolic vector | symbolic matrix | symbolic function

Input expression, specified as a symbolic expression, function, or as a vector or matrix of
symbolic expressions or functions.

combine works recursively on subexpressions of S.

If S is a symbolic matrix, combine is applied to all elements of the matrix.

T — Target function
'atan' | 'exp' | 'gamma' | 'int' | 'log' | 'sincos' | 'sinhcosh'

Target function, specified as 'atan', 'exp', 'gamma', 'int', 'log', 'sincos', or
'sinhcosh'. The rewriting rules apply only to calls to the target function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: combine(log (a) + log
(b),'log','IgnoreAnalyticConstraints',true)

 combine

4-207

'IgnoreAnalyticConstraints' — Simplification rules applied to expressions and
equations
false (default) | true

Simplification rules applied to expressions and equations, specified as the comma-
separated pair consisting of IgnoreAnalyticConstraints and one of these values.

false Use strict simplification rules.
true Apply purely algebraic simplifications

that generally are not correct, but can
give simpler results. For example,
log(a) + log(b) = log(a*b). This
option is most useful in simplifying
expressions where direct use of the solver
returns complicated results. Setting
IgnoreAnalyticConstraints to true
can lead to wrong or incomplete results.

Output Arguments

Y — Expression with combined functions
symbolic variable | symbolic number | symbolic expression | symbolic vector | symbolic
matrix

Expression with the combined functions, returned as a symbolic variable, number,
expression, or as a vector or matrix of symbolic variables, numbers, or expressions.

More About

Algorithms

combine applies the following rewriting rules to the input expression S, depending on
the value of the target argument T.

• When T = 'exp', combine applies these rewriting rules where valid,

e e e
a b a b

=
+

4 Functions — Alphabetical List

4-208

() .e e
a b ab

=

• When T = 'log',

log() log() log().a b ab+ =

If b < 1000,

b a a
blog() log .= ()

When b >= 1000, combine does not apply this second rule.

The rules applied to rewrite logarithms do not hold for arbitrary complex values of a
and b. Specify appropriate properties for a or b to enable these rewriting rules.

• When T = 'int',

a f x dx af x dx() = ()ÚÚ

f x dx g x dx f x g x dx() + () = () + ()Ú Ú Ú

f x dx g x dx f x g x dx
a

b

a

b

a

b
() + () = () + ()Ú Ú Ú

f x dx g y dy f y g y dy
a

b

a

b

a

b
() + () = () + ()Ú Ú Ú

yf x dx xg y dy yf c xf c dc
a

b

a

b

a

b
() + () = () + ()Ú Ú Ú .

• When T = 'sincos',

sin sin
cos cos

.x y
x y x y

() () =
-()

-
+()

2 2

combine applies similar rules for sin(x)cos(y) and cos(x)cos(y).

 combine

4-209

A x B x A
B

A

x
B

A
cos sin cos tan .() + () = + +

-Ê
ËÁ

ˆ
¯̃

Ê

Ë
Á

ˆ

¯
˜

-
1

2

2

1

• When T = 'atan' where x and y are such that |xy| < 1,

atan atan atan .x y
x y

xy
() + () =

+
-

Ê

Ë
Á

ˆ

¯
˜

1

• When T = 'sinhcosh',

sinh sinh
cosh cosh()

.x y
x y x y

() () =
+()

-
-

2 2

combine applies similar rules for sinh(x)cosh(y) and cosh(x)cosh(y).

combine applies the previous rules recursively to powers of sinh and cosh with
positive integral exponents.

• When T = 'gamma',

a a aG G() = +()1 .

and,

G

G

a

a

a

+()

()
=

1
.

For positive integers n,

G G-() () = -
()

a a

a

p

psin
.

See Also
collect | expand | factor | horner | numden | rewrite | simplify |
simplifyFraction

4 Functions — Alphabetical List

4-210

Introduced in R2014a

 compose

4-211

compose
Functional composition

Syntax

compose(f,g)

compose(f,g,z)

compose(f,g,x,z)

compose(f,g,x,y,z)

Description

compose(f,g) returns f(g(y)) where f = f(x) and g = g(y). Here x is the
symbolic variable of f as defined by symvar and y is the symbolic variable of g as defined
by symvar.

compose(f,g,z) returns f(g(z)) where f = f(x), g = g(y), and x and y are the
symbolic variables of f and g as defined by symvar.

compose(f,g,x,z) returns f(g(z)) and makes x the independent variable for f.
That is, if f = cos(x/t), then compose(f,g,x,z) returns cos(g(z)/t) whereas
compose(f,g,t,z) returns cos(x/g(z)).

compose(f,g,x,y,z) returns f(g(z)) and makes x the independent variable for
f and y the independent variable for g. For f = cos(x/t) and g = sin(y/u),
compose(f,g,x,y,z) returns cos(sin(z/u)/t) whereas compose(f,g,x,u,z)
returns cos(sin(y/z)/t).

Examples

Suppose

syms x y z t u

f = 1/(1 + x^2);

g = sin(y);

h = x^t;

4 Functions — Alphabetical List

4-212

p = exp(-y/u);

Then

a = compose(f,g)

b = compose(f,g,t)

c = compose(h,g,x,z)

d = compose(h,g,t,z)

e = compose(h,p,x,y,z)

f = compose(h,p,t,u,z)

returns:

a =

1/(sin(y)^2 + 1)

b =

1/(sin(t)^2 + 1)

c =

sin(z)^t

d =

x^sin(z)

e =

exp(-z/u)^t

f =

x^exp(-y/z)

See Also
finverse | subs | syms

Introduced before R2006a

 cond

4-213

cond
Condition number of matrix

Syntax
cond(A)

cond(A,P)

Description
cond(A) returns the 2-norm condition number of matrix A.

cond(A,P) returns the P-norm condition number of matrix A.

Input Arguments
A

Symbolic matrix.

P

One of these values 1, 2, inf, or 'fro'.

• cond(A,1) returns the 1-norm condition number.
• cond(A,2) or cond(A) returns the 2-norm condition number.
• cond(A,inf) returns the infinity norm condition number.
• cond(A,'fro') returns the Frobenius norm condition number.

Default: 2

Examples
Compute the 2-norm condition number of the inverse of the 3-by-3 magic square A:

A = inv(sym(magic(3)));

4 Functions — Alphabetical List

4-214

condN2 = cond(A)

condN2 =

(5*3^(1/2))/2

Use vpa to approximate the result with 20-digit accuracy:

vpa(condN2, 20)

ans =

4.3301270189221932338

Compute the 1-norm condition number, the Frobenius condition number, and the infinity
condition number of the inverse of the 3-by-3 magic square A:

A = inv(sym(magic(3)));

condN1 = cond(A, 1)

condNf = cond(A, 'fro')

condNi = cond(A, inf)

condN1 =

16/3

condNf =

(285^(1/2)*391^(1/2))/60

condNi =

16/3

Use vpa to approximate these condition numbers with 20-digit accuracy:

vpa(condN1, 20)

vpa(condNf, 20)

vpa(condNi, 20)

ans =

5.3333333333333333333

ans =

5.5636468855119361059

ans =

5.3333333333333333333

Compute the condition numbers of the 3-by-3 Hilbert matrix H approximating the results
with 30-digit accuracy:

 cond

4-215

H = sym(hilb(3));

condN2 = vpa(cond(H), 30)

condN1 = vpa(cond(H, 1), 30)

condNf = vpa(cond(H, 'fro'), 30)

condNi = vpa(cond(H, inf), 30)

condN2 =

524.056777586060817870782845928 +...

1.42681147881398269481283800423e-38i

condN1 =

748.0

condNf =

526.158821079719236517033364845

condNi =

748.0

Hilbert matrices are classic examples of ill-conditioned matrices.

More About

Condition Number of a Matrix

Condition number of a matrix is the ratio of the largest singular value of that matrix to
the smallest singular value. The P-norm condition number of the matrix A is defined as
norm(A,P)*norm(inv(A),P), where norm is the norm of the matrix A.

Tips

• Calling cond for a numeric matrix that is not a symbolic object invokes the MATLAB
cond function.

See Also
equationsToMatrix | inv | linsolve | norm | rank

Introduced in R2012b

4 Functions — Alphabetical List

4-216

conj
Symbolic complex conjugate

Syntax

conj(X)

Description

conj(X) is the complex conjugate of X.

For a complex X, conj(X) = real(X) - i*imag(X).

See Also
real | imag

Introduced before R2006a

 cos

4-217

cos

Symbolic cosine function

Syntax

cos(X)

Description

cos(X) returns the cosine function of X.

Examples

Cosine Function for Numeric and Symbolic Arguments

Depending on its arguments, cos returns floating-point or exact symbolic results.

Compute the cosine function for these numbers. Because these numbers are not symbolic
objects, cos returns floating-point results.

A = cos([-2, -pi, pi/6, 5*pi/7, 11])

A =

 -0.4161 -1.0000 0.8660 -0.6235 0.0044

Compute the cosine function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, cos returns unresolved symbolic calls.

symA = cos(sym([-2, -pi, pi/6, 5*pi/7, 11]))

symA =

[cos(2), -1, 3^(1/2)/2, -cos((2*pi)/7), cos(11)]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-218

vpa(symA)

ans =

[-0.41614683654714238699756822950076,...

-1.0,...

0.86602540378443864676372317075294,...

-0.62348980185873353052500488400424,...

0.0044256979880507857483550247239416]

Plot Cosine Function

Plot the cosine function on the interval from to .

syms x

ezplot(cos(x), [-4*pi, 4*pi])

grid on

 cos

4-219

Handle Expressions Containing Cosine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing cos.

Find the first and second derivatives of the cosine function:

syms x

diff(cos(x), x)

diff(cos(x), x, x)

ans =

-sin(x)

4 Functions — Alphabetical List

4-220

ans =

-cos(x)

Find the indefinite integral of the cosine function:

int(cos(x), x)

ans =

sin(x)

Find the Taylor series expansion of cos(x):

taylor(cos(x), x)

ans =

x^4/24 - x^2/2 + 1

Rewrite the cosine function in terms of the exponential function:

rewrite(cos(x), 'exp')

ans =

exp(-x*1i)/2 + exp(x*1i)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Cosine Function

The cosine of an angle, α, defined with reference to a right angled triangle is

cos
adjacent side

hypotenuse
() .a = =

b

h

 cos

4-221

The cosine of a complex angle, α, is

cos() .a

a a

=
+

-
e e
i i

2

See Also
acos | acot | acsc | asec | asin | atan | cot | csc | sec | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-222

cosh

Symbolic hyperbolic cosine function

Syntax

cosh(X)

Description

cosh(X) returns the hyperbolic cosine function of X.

Examples

Hyperbolic Cosine Function for Numeric and Symbolic Arguments

Depending on its arguments, cosh returns floating-point or exact symbolic results.

Compute the hyperbolic cosine function for these numbers. Because these numbers are
not symbolic objects, cosh returns floating-point results.

A = cosh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])

A =

 3.7622 -1.0000 0.8660 -0.6235 -0.0000

Compute the hyperbolic cosine function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, cosh returns unresolved symbolic calls.

symA = cosh(sym([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2]))

symA =

[cosh(2), -1, 3^(1/2)/2, -cosh((pi*2i)/7), 0]

Use vpa to approximate symbolic results with floating-point numbers:

 cosh

4-223

vpa(symA)

ans =

[3.7621956910836314595622134777737,...

-1.0,...

0.86602540378443864676372317075294,...

-0.62348980185873353052500488400424,...

0]

Plot Hyperbolic Cosine Function

Plot the hyperbolic cosine function on the interval from to .

syms x

ezplot(cosh(x), [-pi, pi])

grid on

4 Functions — Alphabetical List

4-224

Handle Expressions Containing Hyperbolic Cosine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing cosh.

Find the first and second derivatives of the hyperbolic cosine function:

syms x

diff(cosh(x), x)

diff(cosh(x), x, x)

ans =

sinh(x)

 cosh

4-225

ans =

cosh(x)

Find the indefinite integral of the hyperbolic cosine function:

int(cosh(x), x)

ans =

sinh(x)

Find the Taylor series expansion of cosh(x):

taylor(cosh(x), x)

ans =

x^4/24 + x^2/2 + 1

Rewrite the hyperbolic cosine function in terms of the exponential function:

rewrite(cosh(x), 'exp')

ans =

exp(-x)/2 + exp(x)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | coth | csch | sech | sinh |
tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-226

coshint
Hyperbolic cosine integral function

Syntax

coshint(X)

Description

coshint(X) returns the hyperbolic cosine integral function of X.

Examples

Hyperbolic Cosine Integral Function for Numeric and Symbolic Arguments

Depending on its arguments, coshint returns floating-point or exact symbolic results.

Compute the hyperbolic cosine integral function for these numbers. Because these
numbers are not symbolic objects, coshint returns floating-point results.

A = coshint([-1, 0, 1/2, 1, pi/2, pi])

A =

 0.8379 + 3.1416i -Inf + 0.0000i -0.0528 + 0.0000i 0.8379...

 + 0.0000i 1.7127 + 0.0000i 5.4587 + 0.0000i

Compute the hyperbolic cosine integral function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, coshint returns unresolved symbolic calls.

symA = coshint(sym([-1, 0, 1/2, 1, pi/2, pi]))

symA =

[coshint(1) + pi*1i, -Inf, coshint(1/2), coshint(1), coshint(pi/2), coshint(pi)]

Use vpa to approximate symbolic results with floating-point numbers:

 coshint

4-227

vpa(symA)

ans =

[0.83786694098020824089467857943576...

 + 3.1415926535897932384626433832795i,...

-Inf,...

-0.052776844956493615913136063326141,...

0.83786694098020824089467857943576,...

1.7126607364844281079951569897796,...

5.4587340442160681980014878977798]

Plot Hyperbolic Cosine Integral Function

Plot the hyperbolic cosine integral function on the interval from 0 to 2*pi .

syms x

ezplot(coshint(x), [0, 2*pi])

grid on

4 Functions — Alphabetical List

4-228

Handle Expressions Containing Hyperbolic Cosine Integral Function

Many functions, such as diff and int, can handle expressions containing coshint.

Find the first and second derivatives of the hyperbolic cosine integral function:

syms x

diff(coshint(x), x)

diff(coshint(x), x, x)

ans =

cosh(x)/x

ans =

 coshint

4-229

sinh(x)/x - cosh(x)/x^2

Find the indefinite integral of the hyperbolic cosine integral function:

int(coshint(x), x)

ans =

x*coshint(x) - sinh(x)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Hyperbolic Cosine Integral Function

The hyperbolic cosine integral function is defined as follows:

Chi x x
t

t
dt

x

() = + () +
() -

Úg log
cosh 1

0

Here, γ is the Euler-Mascheroni constant:

g =
Ê

Ë
ÁÁ

ˆ

¯
˜̃ - ()

Ê

Ë
Á
Á

ˆ

¯
˜
˜Æ• =

Âlim ln
n

k

n

k
n

1

1

References

[1] Cautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.”
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

4 Functions — Alphabetical List

4-230

See Also
cos | cosint | eulergamma | int | sinhint | sinint | ssinint

Introduced in R2014a

 cosint

4-231

cosint
Cosine integral function

Syntax

cosint(X)

Description

cosint(X) returns the cosine integral function of X.

Examples

Cosine Integral Function for Numeric and Symbolic Arguments

Depending on its arguments, cosint returns floating-point or exact symbolic results.

Compute the cosine integral function for these numbers. Because these numbers are not
symbolic objects, cosint returns floating-point results.

A = cosint([- 1, 0, pi/2, pi, 1])

A =

 0.3374 + 3.1416i -Inf + 0.0000i 0.4720 + 0.0000i...

 0.0737 + 0.0000i 0.3374 + 0.0000i

Compute the cosine integral function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, cosint returns unresolved symbolic calls.

symA = cosint(sym([- 1, 0, pi/2, pi, 1]))

symA =

[cosint(1) + pi*1i, -Inf, cosint(pi/2), cosint(pi), cosint(1)]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-232

vpa(symA)

ans =

[0.33740392290096813466264620388915...

 + 3.1415926535897932384626433832795i,...

-Inf,...

0.47200065143956865077760610761413,...

0.07366791204642548599010096523015,...

0.33740392290096813466264620388915]

Plot Cosine Integral Function

Plot the cosine integral function on the interval from 0 to 4*pi.

syms x

ezplot(cosint(x), [0, 4*pi])

grid on

 cosint

4-233

Handle Expressions Containing Cosine Integral Function

Many functions, such as diff and int, can handle expressions containing cosint.

Find the first and second derivatives of the cosine integral function:

syms x

diff(cosint(x), x)

diff(cosint(x), x, x)

ans =

cos(x)/x

ans =

4 Functions — Alphabetical List

4-234

- cos(x)/x^2 - sin(x)/x

Find the indefinite integral of the cosine integral function:

int(cosint(x), x)

ans =

x*cosint(x) - sin(x)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Cosine Integral Function

The cosine integral function is defined as follows:

Ci x x
t

t
dt

x

() = + +
() -

Úg log()
cos 1

0

Here, γ is the Euler-Mascheroni constant:

g =
Ê

Ë
ÁÁ

ˆ

¯
˜̃ - ()

Ê

Ë
Á
Á

ˆ

¯
˜
˜Æ• =

Âlim ln
n

k

n

k
n

1

1

References

[1] Cautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.”
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

 cosint

4-235

See Also
cos | coshint | eulergamma | int | sinhint | sinint | ssinint

Introduced before R2006a

4 Functions — Alphabetical List

4-236

cot

Symbolic cotangent function

Syntax

cot(X)

Description

cot(X) returns the cotangent function of X.

Examples

Cotangent Function for Numeric and Symbolic Arguments

Depending on its arguments, cot returns floating-point or exact symbolic results.

Compute the cotangent function for these numbers. Because these numbers are not
symbolic objects, cot returns floating-point results.

A = cot([-2, -pi/2, pi/6, 5*pi/7, 11])

A =

 0.4577 -0.0000 1.7321 -0.7975 -0.0044

Compute the cotangent function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, cot returns unresolved symbolic calls.

symA = cot(sym([-2, -pi/2, pi/6, 5*pi/7, 11]))

symA =

[-cot(2), 0, 3^(1/2), -cot((2*pi)/7), cot(11)]

Use vpa to approximate symbolic results with floating-point numbers:

 cot

4-237

vpa(symA)

ans =

[0.45765755436028576375027741043205,...

0,...

1.7320508075688772935274463415059,...

-0.79747338888240396141568825421443,...

-0.0044257413313241136855482762848043]

Plot Cotangent Function

Plot the cotangent function on the interval from to .

syms x

ezplot(cot(x), [-pi, pi])

grid on

4 Functions — Alphabetical List

4-238

Handle Expressions Containing Cotangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing cot.

Find the first and second derivatives of the cotangent function:

syms x

diff(cot(x), x)

diff(cot(x), x, x)

ans =

- cot(x)^2 - 1

 cot

4-239

ans =

2*cot(x)*(cot(x)^2 + 1)

Find the indefinite integral of the cotangent function:

int(cot(x), x)

ans =

log(sin(x))

Find the Taylor series expansion of cot(x) around x = pi/2:

taylor(cot(x), x, pi/2)

ans =

pi/2 - x - (x - pi/2)^3/3 - (2*(x - pi/2)^5)/15

Rewrite the cotangent function in terms of the sine and cosine functions:

rewrite(cot(x), 'sincos')

ans =

 cos(x)/sin(x)

Rewrite the cotangent function in terms of the exponential function:

rewrite(cot(x), 'exp')

ans =

(exp(x*2i)*1i + 1i)/(exp(x*2i) - 1)

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About
Cotangent Function

The cotangent of an angle, α, defined with reference to a right angled triangle is

4 Functions — Alphabetical List

4-240

cot
adjacent side

opposite side
a

a
() =

()
= =

1

tan
.

b

a

.

The cotangent of a complex angle α is

cot a
a a

a a
() =

+()

-()

-

-

i e e

e e

i i

i i
.

.

 cot

4-241

See Also
acos | acot | acsc | asec | asin | atan | cos | csc | sec | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-242

coth
Symbolic hyperbolic cotangent function

Syntax

coth(X)

Description

coth(X) returns the hyperbolic cotangent function of X

Examples

Hyperbolic Cotangent Function for Numeric and Symbolic Arguments

Depending on its arguments, coth returns floating-point or exact symbolic results.

Compute the hyperbolic cotangent function for these numbers. Because these numbers
are not symbolic objects, coth returns floating-point results.

A = coth([-2, -pi*i/3, pi*i/6, 5*pi*i/7, 3*pi*i/2])

A =

 -1.0373 + 0.0000i 0.0000 + 0.5774i 0.0000 - 1.7321i...

 0.0000 + 0.7975i 0.0000 - 0.0000i

Compute the hyperbolic cotangent function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, coth returns unresolved symbolic calls.

symA = coth(sym([-2, -pi*i/3, pi*i/6, 5*pi*i/7, 3*pi*i/2]))

symA =

[-coth(2), (3^(1/2)*1i)/3, -3^(1/2)*1i, -coth((pi*2i)/7), 0]

Use vpa to approximate symbolic results with floating-point numbers:

 coth

4-243

vpa(symA)

ans =

[-1.0373147207275480958778097647678,...

0.57735026918962576450914878050196i,...

-1.7320508075688772935274463415059i,...

0.79747338888240396141568825421443i,...

0]

Plot Hyperbolic Cotangent Function

Plot the hyperbolic cotangent function on the interval from -10 to 10.

syms x

ezplot(coth(x), [-10, 10])

grid on

4 Functions — Alphabetical List

4-244

Handle Expressions Containing Hyperbolic Cotangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing coth.

Find the first and second derivatives of the hyperbolic cotangent function:

syms x

diff(coth(x), x)

diff(coth(x), x, x)

ans =

1 - coth(x)^2

 coth

4-245

ans =

2*coth(x)*(coth(x)^2 - 1)

Find the indefinite integral of the hyperbolic cotangent function:

int(coth(x), x)

ans =

log(sinh(x))

Find the Taylor series expansion of coth(x) around x = pi*i/2:

taylor(coth(x), x, pi*i/2)

ans =

x - (pi*1i)/2 - (x - (pi*1i)/2)^3/3 + (2*(x - (pi*1i)/2)^5)/15

Rewrite the hyperbolic cotangent function in terms of the exponential function:

rewrite(coth(x), 'exp')

ans =

(exp(2*x) + 1)/(exp(2*x) - 1)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | cosh | csch | sech | sinh |
tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-246

csc

Symbolic cosecant function

Syntax

csc(X)

Description

csc(X) returns the cosecant function of X.

Examples

Cosecant Function for Numeric and Symbolic Arguments

Depending on its arguments, csc returns floating-point or exact symbolic results.

Compute the cosecant function for these numbers. Because these numbers are not
symbolic objects, csc returns floating-point results.

A = csc([-2, -pi/2, pi/6, 5*pi/7, 11])

A =

 -1.0998 -1.0000 2.0000 1.2790 -1.0000

Compute the cosecant function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, csc returns unresolved symbolic calls.

symA = csc(sym([-2, -pi/2, pi/6, 5*pi/7, 11]))

symA =

[-1/sin(2), -1, 2, 1/sin((2*pi)/7), 1/sin(11)]

Use vpa to approximate symbolic results with floating-point numbers:

 csc

4-247

vpa(symA)

ans =

[-1.0997501702946164667566973970263,...

-1.0,...

2.0,...

1.2790480076899326057478506072714,...

-1.0000097935452091313874644503551]

Plot Cosecant Function

Plot the cosecant function on the interval from to .

syms x

ezplot(csc(x), [-4*pi, 4*pi])

grid on

4 Functions — Alphabetical List

4-248

Handle Expressions Containing Cosecant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing csc.

Find the first and second derivatives of the cosecant function:

syms x

diff(csc(x), x)

diff(csc(x), x, x)

ans =

-cos(x)/sin(x)^2

 csc

4-249

ans =

1/sin(x) + (2*cos(x)^2)/sin(x)^3

Find the indefinite integral of the cosecant function:

int(csc(x), x)

ans =

log(tan(x/2))

Find the Taylor series expansion of csc(x) around x = pi/2:

taylor(csc(x), x, pi/2)

ans =

(x - pi/2)^2/2 + (5*(x - pi/2)^4)/24 + 1

Rewrite the cosecant function in terms of the exponential function:

rewrite(csc(x), 'exp')

ans =

1/((exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Cosecant Function

The cosecant of an angle, α, defined with reference to a right angled triangle is

csc
hypotenuse

opposite side
()

sin
.a

a
=

()
= =

1 h

a

4 Functions — Alphabetical List

4-250

The cosecant of a complex angle, α, is

csc a
a a

() =
-

-

2i

e e
i i

.

See Also
acos | acot | acsc | asec | asin | atan | cos | cot | csc | sin | tan

Introduced before R2006a

 csch

4-251

csch
Symbolic hyperbolic cosecant function

Syntax

csch(X)

Description

csch(X) returns the hyperbolic cosecant function of X.

Examples

Hyperbolic Cosecant Function for Numeric and Symbolic Arguments

Depending on its arguments, csch returns floating-point or exact symbolic results.

Compute the hyperbolic cosecant function for these numbers. Because these numbers are
not symbolic objects, csch returns floating-point results.

A = csch([-2, -pi*i/2, 0, pi*i/3, 5*pi*i/7, pi*i/2])

A =

 -0.2757 + 0.0000i 0.0000 + 1.0000i Inf + 0.0000i...

 0.0000 - 1.1547i 0.0000 - 1.2790i 0.0000 - 1.0000i

Compute the hyperbolic cosecant function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, csch returns unresolved symbolic calls.

symA = csch(sym([-2, -pi*i/2, 0, pi*i/3, 5*pi*i/7, pi*i/2]))

symA =

[-1/sinh(2), 1i, Inf, -(3^(1/2)*2i)/3, 1/sinh((pi*2i)/7), -1i]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-252

vpa(symA)

ans =

[-0.27572056477178320775835148216303,...

1.0i,...

Inf,...

-1.1547005383792515290182975610039i,...

-1.2790480076899326057478506072714i,...

-1.0i]

Plot Hyperbolic Cosecant Function

Plot the hyperbolic cosecant function on the interval from -10 to 10.

syms x

ezplot(csch(x), [-10, 10])

grid on

 csch

4-253

Handle Expressions Containing Hyperbolic Cosecant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing csch.

Find the first and second derivatives of the hyperbolic cosecant function:

syms x

diff(csch(x), x)

diff(csch(x), x, x)

ans =

-cosh(x)/sinh(x)^2

4 Functions — Alphabetical List

4-254

ans =

(2*cosh(x)^2)/sinh(x)^3 - 1/sinh(x)

Find the indefinite integral of the hyperbolic cosecant function:

int(csch(x), x)

ans =

log(tanh(x/2))

Find the Taylor series expansion of csch(x) around x = pi*i/2:

taylor(csch(x), x, pi*i/2)

ans =

((x - (pi*1i)/2)^2*1i)/2 - ((x - (pi*1i)/2)^4*5i)/24 - 1i

Rewrite the hyperbolic cosecant function in terms of the exponential function:

rewrite(csch(x), 'exp')

ans =

-1/(exp(-x)/2 - exp(x)/2)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | sech | sinh |
tanh

Introduced before R2006a

 ctranspose, '

4-255

ctranspose, '
Symbolic matrix complex conjugate transpose

Syntax

A'

ctranspose(A)

Description

A' computes the complex conjugate transpose of A.

ctranspose(A) is equivalent to A'.

Examples

Conjugate Transpose of Real Matrix

Create a 2-by-3 matrix, the elements of which represent real numbers.

syms x y real

A = [x x x; y y y]

A =

[x, x, x]

[y, y, y]

Find the complex conjugate transpose of this matrix.

A'

ans =

[x, y]

[x, y]

[x, y]

If all elements of a matrix represent real numbers, then its complex conjugate transform
equals to its nonconjugate transform.

4 Functions — Alphabetical List

4-256

isAlways(A' == A.')

ans =

 1 1

 1 1

 1 1

Conjugate Transpose of Complex Matrix

Create a 2-by-2 matrix, the elements of which represent complex numbers.

syms x y real

A = [x + y*i x - y*i; y + x*i y - x*i]

A =

[x + y*1i, x - y*1i]

[y + x*1i, y - x*1i]

Find the conjugate transpose of this matrix. The complex conjugate transpose operator,
A', performs a transpose and negates the sign of the imaginary portion of the complex
elements in A.

A'

ans =

[x - y*1i, y - x*1i]

[x + y*1i, y + x*1i]

For a matrix of complex numbers with nonzero imaginary parts, the complex conjugate
transform is not equal to the nonconjugate transform.

isAlways(A' == A.','Unknown','false')

ans =

 0 0

 0 0

Input Arguments

A — Input
number | symbolic number | symbolic variable | symbolic expression | symbolic vector |
symbolic matrix | symbolic multidimensional array

 ctranspose, '

4-257

Input, specified as a number or a symbolic number, variable, expression, vector, matrix,
multidimensional array.

More About

Complex Conjugate Transpose

The complex conjugate transpose of a matrix interchanges the row and column index
for each element, reflecting the elements across the main diagonal. The operation also
negates the imaginary part of any complex numbers.

For example, if B = A' and A(1,2) is 1+1i, then the element B(2,1) is 1-1i.

See Also
ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus | power |
rdivide | times | transpose

Introduced before R2006a

4 Functions — Alphabetical List

4-258

cumprod
Symbolic cumulative product

Syntax

B = cumprod(A)

B = cumprod(A,dim)

B = cumprod(___ ,direction)

Description

B = cumprod(A) returns an array the same size as A containing the cumulative
product.

• If A is a vector, then cumprod(A) returns a vector containing the cumulative product
of the elements of A.

• If A is a matrix, then cumprod(A) returns a matrix containing the cumulative
products of each column of A.

B = cumprod(A,dim) returns the cumulative product along dimension dim. For
example, if A is a matrix, then cumprod(A,2) returns the cumulative product of each
row.

B = cumprod(___ ,direction) specifies the direction using any of the previous
syntaxes. For instance, cumprod(A,2,'reverse') returns the cumulative product
within the rows of A by working from end to beginning of the second dimension.

Examples

Cumulative Product of Vector

Create a vector and find the cumulative product of its elements.

V = 1./factorial(sym([1:5]))

prod_V = cumprod(V)

 cumprod

4-259

V =

[1, 1/2, 1/6, 1/24, 1/120]

prod_V =

[1, 1/2, 1/12, 1/288, 1/34560]

Cumulative Product of Each Column in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix X all elements of which equal x.

syms x

X = x*ones(4,4)

X =

[x, x, x, x]

[x, x, x, x]

[x, x, x, x]

[x, x, x, x]

Compute the cumulative product of the elements of X. By default, cumprod returns the
cumulative product of each column.

productX = cumprod(X)

productX =

[x, x, x, x]

[x^2, x^2, x^2, x^2]

[x^3, x^3, x^3, x^3]

[x^4, x^4, x^4, x^4]

Cumulative Product of Each Row in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix, all elements of which equal x.

syms x

X = x*ones(4,4)

X =

[x, x, x, x]

[x, x, x, x]

[x, x, x, x]

[x, x, x, x]

Compute the cumulative product of each row of the matrix X.

4 Functions — Alphabetical List

4-260

productX = cumprod(X,2)

productX =

[x, x^2, x^3, x^4]

[x, x^2, x^3, x^4]

[x, x^2, x^3, x^4]

[x, x^2, x^3, x^4]

Reverse Cumulative Product

Create matrix a 4-by-4 symbolic matrix X all elements of which equal x.

syms x

X = x*ones(4,4)

X =

[x, x, x, x]

[x, x, x, x]

[x, x, x, x]

[x, x, x, x]

Calculate the cumulative product along the columns in both directions. Specify the
'reverse' option to work from right to left in each row.

columnsDirect = cumprod(X)

columnsReverse = cumprod(X,'reverse')

columnsDirect =

[x, x, x, x]

[x^2, x^2, x^2, x^2]

[x^3, x^3, x^3, x^3]

[x^4, x^4, x^4, x^4]

columnsReverse =

[x^4, x^4, x^4, x^4]

[x^3, x^3, x^3, x^3]

[x^2, x^2, x^2, x^2]

[x, x, x, x]

Calculate the cumulative product along the rows in both directions. Specify the
'reverse' option to work from right to left in each row.

rowsDirect = cumprod(X,2)

rowsReverse = cumprod(X,2,'reverse')

 cumprod

4-261

rowsDirect =

[x, x^2, x^3, x^4]

[x, x^2, x^3, x^4]

[x, x^2, x^3, x^4]

[x, x^2, x^3, x^4]

rowsReverse =

[x^4, x^3, x^2, x]

[x^4, x^3, x^2, x]

[x^4, x^3, x^2, x]

[x^4, x^3, x^2, x]

Input Arguments

A — Input array
symbolic vector | symbolic matrix

Input array, specified as a vector or matrix.

dim — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. The default value is 1.

Consider a two-dimensional input array, A.

• cumprod(A,1)) works on successive elements in the columns of A and returns the
cumulative product of each column.

• cumprod(A,2) works on successive elements in the rows of A and returns the
cumulative product of each row.

4 Functions — Alphabetical List

4-262

cumprod returns A if dim is greater than ndims(A).

direction — Direction of cumulation
'forward' (default) | 'reverse'

Direction of cumulation, specified as the string 'forward' (default) or 'reverse'.

• 'forward' works from 1 to end of the active dimension.
• 'reverse' works from end to 1 of the active dimension.

Output Arguments

B — Cumulative product array
vector | matrix

Cumulative product array, returned as a vector or matrix of the same size as the input A.

See Also
cumsum | int | symprod | symsum

Introduced in R2013b

 cumsum

4-263

cumsum
Symbolic cumulative sum

Syntax

B = cumsum(A)

B = cumsum(A,dim)

B = cumsum(___ ,direction)

Description

B = cumsum(A) returns an array the same size as A containing the cumulative sum.

• If A is a vector, then cumsum(A) returns a vector containing the cumulative sum of
the elements of A.

• If A is a matrix, then cumsum(A) returns a matrix containing the cumulative sums of
each column of A.

B = cumsum(A,dim) returns the cumulative sum along dimension dim. For example, if
A is a matrix, then cumsum(A,2) returns the cumulative sum of each row.

B = cumsum(___ ,direction) specifies the direction using any of the previous
syntaxes. For instance, cumsum(A,2,'reverse') returns the cumulative sum within
the rows of A by working from end to beginning of the second dimension.

Examples

Cumulative Sum of Vector

Create a vector and find the cumulative sum of its elements.

V = 1./factorial(sym([1:5]))

sum_V = cumsum(V)

V =

4 Functions — Alphabetical List

4-264

[1, 1/2, 1/6, 1/24, 1/120]

sum_V =

[1, 3/2, 5/3, 41/24, 103/60]

Cumulative Sum of Each Column in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix A all elements of which equal 1.

A = sym(ones(4,4))

A =

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

Compute the cumulative sum of elements of A. By default, cumsum returns the
cumulative sum of each column.

sumA = cumsum(A)

sumA =

[1, 1, 1, 1]

[2, 2, 2, 2]

[3, 3, 3, 3]

[4, 4, 4, 4]

Cumulative Sum of Each Row in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix A all elements of which equal 1.

A = sym(ones(4,4))

A =

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

Compute the cumulative sum of each row of the matrix A.

sumA = cumsum(A,2)

 cumsum

4-265

sumA =

[1, 2, 3, 4]

[1, 2, 3, 4]

[1, 2, 3, 4]

[1, 2, 3, 4]

Reverse Cumulative Sum

Create matrix a 4-by-4 symbolic matrix, all elements of which equal 1.

A = sym(ones(4,4))

A =

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

Calculate the cumulative sum along the columns in both directions. Specify the
'reverse' option to work from right to left in each row.

columnsDirect = cumsum(A)

columnsReverse = cumsum(A,'reverse')

columnsDirect =

[1, 1, 1, 1]

[2, 2, 2, 2]

[3, 3, 3, 3]

[4, 4, 4, 4]

columnsReverse =

[4, 4, 4, 4]

[3, 3, 3, 3]

[2, 2, 2, 2]

[1, 1, 1, 1]

Calculate the cumulative sum along the rows in both directions. Specify the 'reverse'
option to work from right to left in each row.

rowsDirect = cumsum(A,2)

rowsReverse = cumsum(A,2,'reverse')

rowsDirect =

[1, 2, 3, 4]

4 Functions — Alphabetical List

4-266

[1, 2, 3, 4]

[1, 2, 3, 4]

[1, 2, 3, 4]

rowsReverse =

[4, 3, 2, 1]

[4, 3, 2, 1]

[4, 3, 2, 1]

[4, 3, 2, 1]

Input Arguments

A — Input array
symbolic vector | symbolic matrix

Input array, specified as a vector or matrix.

dim — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. The default value is 1.

Consider a two-dimensional input array, A:

• cumsum(A,1) works on successive elements in the columns of A and returns the
cumulative sum of each column.

• cumsum(A,2) works on successive elements in the rows of A and returns the
cumulative sum of each row.

cumsum returns A if dim is greater than ndims(A).

 cumsum

4-267

direction — Direction of cumulation
'forward' (default) | 'reverse'

Direction of cumulation, specified as the string 'forward' (default) or 'reverse'.

• 'forward' works from 1 to end of the active dimension.
• 'reverse' works from end to 1 of the active dimension.

Output Arguments

B — Cumulative sum array
vector | matrix

Cumulative sum array, returned as a vector or matrix of the same size as the input A.

See Also
cumprod | int | symprod | symsum

Introduced in R2013b

4 Functions — Alphabetical List

4-268

curl

Curl of vector field

Syntax

curl(V,X)

curl(V)

Description

curl(V,X) returns the curl of the vector field V with respect to the vector X. The vector
field V and the vector X are both three-dimensional.

curl(V) returns the curl of the vector field V with respect to the vector of variables
returned by symvar(V,3).

Input Arguments

V

Three-dimensional vector of symbolic expressions or symbolic functions.

X

Three-dimensional vector with respect to which you compute the curl.

Examples

Compute the curl of this vector field with respect to vector X = (x, y, z) in Cartesian
coordinates:

syms x y z

 curl

4-269

curl([x^3*y^2*z, y^3*z^2*x, z^3*x^2*y], [x, y, z])

ans =

 x^2*z^3 - 2*x*y^3*z

 x^3*y^2 - 2*x*y*z^3

 - 2*x^3*y*z + y^3*z^2

Compute the curl of the gradient of this scalar function. The curl of the gradient of any
scalar function is the vector of 0s:

syms x y z

f = x^2 + y^2 + z^2;

curl(gradient(f, [x, y, z]), [x, y, z])

ans =

 0

 0

 0

The vector Laplacian of a vector field V is defined as:

— = — — ◊() - —¥ —¥()2
V V V

Compute the vector Laplacian of this vector field using the curl, divergence, and
gradient functions:

syms x y z

V = [x^2*y, y^2*z, z^2*x];

gradient(divergence(V, [x, y, z])) - curl(curl(V, [x, y, z]), [x, y, z])

ans =

 2*y

 2*z

 2*x

More About

Curl of a Vector Field

The curl of the vector field V = (V1, V2, V3) with respect to the vector X = (X1, X2, X3) in
Cartesian coordinates is the vector

4 Functions — Alphabetical List

4-270

curl V V

V

X

V

X

V

X

V

X

V

X

V

X

() = —¥ =

∂
∂

-
∂
∂

∂
∂

-
∂
∂

∂
∂

-
∂
∂

Ê

Ë

Á
Á
Á
Á
Á

3

2

2

3

1

3

3

1

2

1

1

2

ÁÁ
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜̃

See Also
diff | divergence | gradient | jacobian | hessian | laplacian | potential |
vectorPotential

Introduced in R2012a

 daeFunction

4-271

daeFunction
Convert system of differential algebraic equations to MATLAB function handle suitable
for ode15i

Syntax

f = daeFunction(eqs,vars)

f = daeFunction(eqs,vars,p1,...,pN)

f = daeFunction(___ ,Name,Value)

Description

f = daeFunction(eqs,vars) converts a system of symbolic first-order differential
algebraic equations (DAEs) to a MATLAB function handle acceptable as an input
argument to the numerical MATLAB DAE solver ode15i.

f = daeFunction(eqs,vars,p1,...,pN) lets you specify the symbolic parameters of
the system as p1,...,pN.

f = daeFunction(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Examples

Convert DAE System to Function Handle

Create the system of differential algebraic equations. Here, the symbolic functions x1(t)
and x2(t) represent the state variables of the system. The system also contains constant
symbolic parameters a, b, and the parameter function r(t). These parameters do not
represent state variables. Specify the equations and state variables as two symbolic
vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic
function calls.

syms x1(t) x2(t) a b r(t)

4 Functions — Alphabetical List

4-272

eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)^2,...

 x1(t)^2 + x2(t)^2 == r(t)^2];

vars = [x1(t), x2(t)];

Use daeFunction to generate a MATLAB function handle f depending on the variables
x1(t), x2(t) and on the parameters a, b, r(t).

f = daeFunction(eqs, vars, a, b, r(t))

f =

 @(t,in2,in3,param1,param2,param3)[in3(1,:)-param1.*in2(1,:)...

-param2.*in2(2,:).^2;-param3.^2+in2(1,:).^2+in2(2,:).^2]

You also can generate a file instead of generating a MATLAB function handle. If the
file myfile.m already exists in the current folder, daeFunction replaces the existing
function with the converted symbolic expression. You can open and edit the resulting file.

f = daeFunction(eqs, vars, a, b, r(t), 'File', 'myfile');

function eqs = myfile(t,in2,in3,param1,param2,param3)

%MYFILE

% EQS = MYFILE(T,IN2,IN3,PARAM1,PARAM2,PARAM3)

YP1 = in3(1,:);

x1 = in2(1,:);

x2 = in2(2,:);

t2 = x2.^2;

eqs = [YP1-param2.*t2-param1.*x1;t2-param3.^2+x1.^2];

Specify the parameter values, and create the reduced function handle F as follows.

a = -0.6;

b = -0.1;

r = @(t) cos(t)/(1 + t^2);

F = @(t, Y, YP) f(t,Y,YP,a,b,r(t));

Specify consistent initial conditions for the DAE system.

t0 = 0;

y0 = [-r(t0)*sin(0.1); r(t0)*cos(0.1)];

yp0= [a*y0(1) + b*y0(2)^2; 1.234];

Now, use ode15i to solve the system of equations.

ode15i(F, [t0, 1], y0, yp0)

 daeFunction

4-273

Input Arguments

eqs — System of first-order DAEs
vector of symbolic equations | vector of symbolic expressions

System of first-order DAEs, specified as a vector of symbolic equations or expressions.
Here, expressions represent equations with zero right side.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).

4 Functions — Alphabetical List

4-274

Example: [x(t),y(t)] or [x(t);y(t)]

p1,...,pN — Parameters of system
symbolic variables | symbolic functions | symbolic function calls | symbolic vector |
symbolic matrix

Parameters of the system, specified as symbolic variables, functions, or function calls,
such as f(t). You can also specify parameters of the system as a vector or matrix of
symbolic variables, functions, or function calls. If eqs contains symbolic parameters
other than the variables specified in vars, you must specify these additional parameters
as p1,...,pN.

Name-Value Pair Arguments

Example: daeFunction(eqns,vars,'File','myfile')

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'File' — Path to file containing generated code
string

Path to the file containing generated code, specified as a string. The generated file
accepts arguments of type double, and can be used without Symbolic Math Toolbox. If
the value is an empty string, odeFunction generates an anonymous function. If the
string does not end in .m, the function appends .m.

By default, daeFunction with the File argument generates a file containing optimized
code. Optimized means intermediate variables are automatically generated to simplify
or speed up the code. MATLAB generates intermediate variables as a lowercase letter
t followed by an automatically generated number, for example t32. To disable code
optimization, use the Optimize argument.

'Optimize' — Flag preventing optimization of code written to function file
true (default) | false

Flag preventing optimization of code written to a function file, specified as false or
true.

 daeFunction

4-275

By default, daeFunction with the File argument generates a file containing optimized
code. Optimized means intermediate variables are automatically generated to simplify
or speed up the code. MATLAB generates intermediate variables as a lowercase letter t
followed by an automatically generated number, for example t32.

daeFunction without the File argument (or with a file path specified by an empty
string) creates a function handle. In this case, the code is not optimized. If you try to
enforce code optimization by setting Optimize to true, then daeFunction throws an
error.

'Sparse' — Flag that switches between sparse and dense matrix generation
false (default) | true

Flag that switches between sparse and dense matrix generation, specified as true or
false. When you specify 'Sparse',true, the generated function represents symbolic
matrices by sparse numeric matrices. Use 'Sparse',true when you convert symbolic
matrices containing many zero elements. Often, operations on sparse matrices are more
efficient than the same operations on dense matrices.

Output Arguments

f — Function handle that can serve as input argument to ode15i
MATLAB function handle

Function handle that can serve as input argument to ode15i, returned as a MATLAB
function handle.

See Also
decic | findDecoupledBlocks | incidenceMatrix | isLowIndexDAE |
massMatrixForm | matlabFunction | ode15i | odeFunction | reduceDAEIndex |
reduceDAEToODE | reduceDifferentialOrder | reduceRedundancies

Introduced in R2014b

4 Functions — Alphabetical List

4-276

dawson

Dawson integral

Syntax

dawson(X)

Description

dawson(X) represents the Dawson integral.

Examples

Dawson Integral for Numeric and Symbolic Arguments

Depending on its arguments, dawson returns floating-point or exact symbolic results.

Compute the Dawson integrals for these numbers. Because these numbers are not
symbolic objects, dawson returns floating-point results.

A = dawson([-Inf, -3/2, -1, 0, 2, Inf])

A =

 0 -0.4282 -0.5381 0 0.3013 0

Compute the Dawson integrals for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, dawson returns unresolved symbolic calls.

symA = dawson(sym([-Inf, -3/2, -1, 0, 2, Inf]))

symA =

[0, -dawson(3/2), -dawson(1), 0, dawson(2), 0]

Use vpa to approximate symbolic results with floating-point numbers:

 dawson

4-277

vpa(symA)

ans =

[0,...

-0.42824907108539862547719010515175,...

-0.53807950691276841913638742040756,...

0,...

0.30134038892379196603466443928642,...

0]

Plot the Dawson Integral

Plot the Dawson integral on the interval from -10 to 10.

syms x

ezplot(dawson(x), [-10, 10])

grid on

4 Functions — Alphabetical List

4-278

Handle Expressions Containing Dawson Integral

Many functions, such as diff and limit, can handle expressions containing dawson.

Find the first and second derivatives of the Dawson integral:

syms x

diff(dawson(x), x)

diff(dawson(x), x, x)

ans =

1 - 2*x*dawson(x)

 dawson

4-279

ans =

2*x*(2*x*dawson(x) - 1) - 2*dawson(x)

Find the limit of this expression involving dawson:

limit(x*dawson(x), Inf)

ans =

1/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Dawson Integral

The Dawson integral, also called the Dawson function, is defined as follows:

dawson x D x e e dt
x t

x

() = () = - Ú
2 2

0

Symbolic Math Toolbox uses this definition to implement dawson.

The alternative definition of the Dawson integral is

D x e e dt
x t

x

() = -Ú
2 2

0

Tips

• dawson(0) returns 0.

4 Functions — Alphabetical List

4-280

• dawson(Inf) returns 0.
• dawson(-Inf) returns 0.

See Also
erf | erfc

Introduced in R2014a

 decic

4-281

decic

Find consistent initial conditions for first-order implicit ODE system with algebraic
constraints

Syntax

[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est,

options)

Description

[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,

yp0_est,options) finds consistent initial conditions for the system of first-order
implicit ordinary differential equations with algebraic constraints returned by the
reduceDAEToODE function.

The call [eqs,constraintEqs] = reduceDAEToODE(DA_eqs,vars) reduces the
system of differential algebraic equations DA_eqs to the system of implicit ODEs eqs. It
also returns constraint equations encountered during system reduction. For the variables
of this ODE system and their derivatives, decic finds consistent initial conditions y0,
yp0 at the time t0.

Substituting the numerical values y0, yp0 into the differential equations subs(eqs,
[t; vars(t); diff(vars(t))], [t0; y0; yp0]) and the constraint equations
subs(constr, [t; vars(t); diff(vars(t))], [t0; y0; yp0]) produces zero
vectors. Here, vars must be a column vector.

y0_est specifies numerical estimates for the values of the variables vars at the time
t0, and fixedVars indicates the values in y0_est that must not change during the
numerical search. The optional argument yp0_est lets you specify numerical estimates
for the values of the derivatives of the variables vars at the time t0.

4 Functions — Alphabetical List

4-282

Examples

Find Consistent Initial Conditions for ODE System

Reduce the DAE system to a system of implicit ODEs. Then, find consistent initial
conditions for the variables of the resulting ODE system and their first derivatives.

Create the following differential algebraic system.

syms x(t) y(t)

DA_eqs = [diff(x(t),t) == cos(t) + y(t),...

 x(t)^2 + y(t)^2 == 1];

vars = [x(t); y(t)];

Use reduceDAEToODE to convert this system to a system of implicit ODEs.

[eqs, constraintEqs] = reduceDAEToODE(DA_eqs, vars)

eqs =

 diff(x(t), t) - y(t) - cos(t)

 - 2*x(t)*diff(x(t), t) - 2*y(t)*diff(y(t), t)

constraintEqs =

1 - y(t)^2 - x(t)^2

Create an option set that specifies numerical tolerances for the numerical search.

options = odeset('RelTol', 10.0^(-7), 'AbsTol', 10.0^(-7));

Fix values t0 = 0 for the time and numerical estimates for consistent values of the
variables and their derivatives.

t0 = 0;

y0_est = [0.1, 0.9];

yp0_est = [0.0, 0.0];

You can treat the constraint as an algebraic equation for the variable x with the fixed
parameter y. For this, set fixedVars = [0 1]. Alternatively, you can treat it as an
algebraic equation for the variable y with the fixed parameter x. For this, set fixedVars
= [1 0].

First, set the initial value x(t0) = y0_est(1) = 0.1.

fixedVars = [1 0];

 decic

4-283

[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est,options)

y0 =

 0.1000

 0.9950

yp0 =

 1.9950

 -0.2005

Now, change fixedVars to [0 1]. This fixes y(t0) = y0_est(2) = 0.9.

fixedVars = [0 1];

[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est,options)

y0 =

 -0.4359

 0.9000

yp0 =

 1.9000

 0.9202

Verify that these initial values are consistent initial values satisfying the equations and
the constraints.

subs(eqs, [t; vars; diff(vars,t)], [t0; y0; yp0])

ans =

 0

 0

subs(constraintEqs, [t; vars; diff(vars,t)], [t0; y0; yp0])

ans =

0

Input Arguments

eqs — System of implicit ordinary differential equations
vector of symbolic equations | vector of symbolic expressions

System of implicit ordinary differential equations, specified as a vector of symbolic
equations or expressions. Here, expressions represent equations with zero right side.

4 Functions — Alphabetical List

4-284

Typically, you use expressions returned by reduceDAEToODE.

vars — State variables of original DAE system
vector of symbolic functions | vector of symbolic function calls

State variables of original DAE system, specified as a vector of symbolic functions or
function calls, such as x(t).

Example: [x(t),y(t)] or [x(t);y(t)]

constraintEqs — Constraint equations found by reduceDAEToODE during system
reduction
vector of symbolic equations | vector of symbolic expressions

Constraint equations encountered during system reduction, specified as a vector of
symbolic equations or expressions. These expressions or equations depend on the
variables vars, but not on their derivatives.

Typically, you use constraint equations returned by reduceDAEToODE.

t0 — Initial time
number

Initial time, specified as a number.

y0_est — Estimates for values of variables vars at initial time t0
numeric vector

Estimates for the values of the variables vars at the initial time t0, specified as a
numeric vector.

fixedVars — Input vector indicating which elements of y0_est are fixed values
vector with elements 0 or 1

Input vector indicating which elements of y0_est are fixed values, specified as a vector
with 0s or 1s. Fixed values of y0_est correspond to values 1 in fixedVars. These
values are not modified during the numerical search. The zero entries in fixedVars
correspond to those variables in y0_est for which decic solves the constraint equations.
The number of 0s must coincide with the number of constraint equations. The Jacobian
matrix of the constraints with respect to the variables vars(fixedVars == 0) must be
invertible.

yp0_est — Estimates for values of first derivatives of variables vars at initial time t0
numeric vector

 decic

4-285

Estimates for the values of the first derivatives of the variables vars at the initial time
t0, specified as a numeric vector.

options — Options for numerical search
options structure, returned by odeset

Options for numerical search, specified as an options structure, returned by odeset. For
example, you can specify tolerances for the numerical search here.

Output Arguments

y0 — Consistent initial values for variables
numeric column vector

Consistent initial values for variables, returned as a numeric column vector.

yp0 — Consistent initial values for first derivatives of variables
numeric column vector

Consistent initial values for first derivatives of variables, returned as a numeric column
vector.

See Also
daeFunction | findDecoupledBlocks | incidenceMatrix | isLowIndexDAE
| massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE |
reduceDifferentialOrder | reduceRedundancies

Introduced in R2014b

4 Functions — Alphabetical List

4-286

det
Compute determinant of symbolic matrix

Syntax

r = det(A)

Description

r = det(A) computes the determinant of A, where A is a symbolic or numeric matrix.
det(A) returns a symbolic expression for a symbolic A and a numeric value for a
numeric A.

Examples

Compute the determinant of the following symbolic matrix:

syms a b c d

det([a, b; c, d])

ans =

a*d - b*c

Compute the determinant of the following matrix containing the symbolic numbers:

A = sym([2/3 1/3; 1 1])

r = det(A)

A =

[2/3, 1/3]

[1, 1]

r =

1/3

See Also
rank | eig

 det

4-287

Introduced before R2006a

4 Functions — Alphabetical List

4-288

diag
Create or extract diagonals of symbolic matrices

Syntax

diag(A,k)

diag(A)

Description

diag(A,k) returns a square symbolic matrix of order n + abs(k), with the elements
of A on the k-th diagonal. A must present a row or column vector with n components. The
value k = 0 signifies the main diagonal. The value k > 0 signifies the k-th diagonal
above the main diagonal. The value k < 0 signifies the k-th diagonal below the main
diagonal. If A is a square symbolic matrix, diag(A, k) returns a column vector formed
from the elements of the k-th diagonal of A.

diag(A), where A is a vector with n components, returns an n-by-n diagonal matrix
having A as its main diagonal. If A is a square symbolic matrix, diag(A) returns the
main diagonal of A.

Examples

Create a symbolic matrix with the main diagonal presented by the elements of the vector
v:

syms a b c

v = [a b c];

diag(v)

ans =

[a, 0, 0]

[0, b, 0]

[0, 0, c]

Create a symbolic matrix with the second diagonal below the main one presented by the
elements of the vector v:

 diag

4-289

syms a b c

v = [a b c];

diag(v, -2)

ans =

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[a, 0, 0, 0, 0]

[0, b, 0, 0, 0]

[0, 0, c, 0, 0]

Extract the main diagonal from a square matrix:

syms a b c x y z

A = [a, b, c; 1, 2, 3; x, y, z];

diag(A)

ans =

 a

 2

 z

Extract the first diagonal above the main one:

syms a b c x y z

A = [a, b, c; 1, 2, 3; x, y, z];

diag(A, 1)

ans =

 b

 3

See Also
tril | triu

Introduced before R2006a

4 Functions — Alphabetical List

4-290

diff
Differentiate symbolic expression or function

Syntax

diff(F)

diff(F,var)

diff(F,n)

diff(F,var,n)

diff(F,n,var)

diff(F,var1,...,varN)

Description

diff(F) differentiates F with respect to the variable determined by symvar(F,1).

diff(F,var) differentiates F with respect to the variable var.

diff(F,n) computes the nth derivative of F with respect to the variable determined by
symvar.

diff(F,var,n) computes the nth derivative of F with respect to the variable var. This
syntax is equivalent to diff(F,n,var).

diff(F,var1,...,varN) differentiates F with respect to the variables
var1,...,varN.

Examples

Differentiation of Univariate Function

Find the first derivative of this univariate function:

syms x

f(x) = sin(x^2);

 diff

4-291

df = diff(f,x)

df(x) =

2*x*cos(x^2)

Differentiation with Respect to Particular Variable

Find the first derivative of this expression:

syms x t

diff(sin(x*t^2))

ans =

t^2*cos(t^2*x)

Because you did not specify the differentiation variable, diff uses the default variable
defined by symvar. For this expression, the default variable is x:

symvar(sin(x*t^2),1)

ans =

x

Now, find the derivative of this expression with respect to the variable t:

diff(sin(x*t^2),t)

ans =

2*t*x*cos(t^2*x)

Higher-Order Derivatives of Univariate Expression

Find the 4th, 5th, and 6th derivatives of this expression:

syms t

d4 = diff(t^6,4)

d5 = diff(t^6,5)

d6 = diff(t^6,6)

d4 =

360*t^2

d5 =

720*t

4 Functions — Alphabetical List

4-292

d6 =

720

Higher-Order Derivatives of Multivariate Expression with Respect to
Particular Variable

Find the second derivative of this expression with respect to the variable y:

syms x y

diff(x*cos(x*y), y, 2)

ans =

-x^3*cos(x*y)

Higher-Order Derivatives of Multivariate Expression with Respect to
Default Variable

Compute the second derivative of the expression x*y. If you do not specify the
differentiation variable, diff uses the variable determined by symvar. For this
expression, symvar(x*y,1) returns x. Therefore, diff computes the second derivative
of x*y with respect to x.

syms x y

diff(x*y, 2)

ans =

0

If you use nested diff calls and do not specify the differentiation variable, diff
determines the differentiation variable for each call. For example, differentiate the
expression x*y by calling the diff function twice:

diff(diff(x*y))

ans =

1

In the first call, diff differentiate x*y with respect to x, and returns y. In the second
call, diff differentiates y with respect to y, and returns 1.

Thus, diff(x*y, 2) is equivalent to diff(x*y, x, x), and diff(diff(x*y)) is
equivalent to diff(x*y, x, y).

 diff

4-293

Mixed Derivatives

Differentiate this expression with respect to the variables x and y:

syms x y

diff(x*sin(x*y), x, y)

ans =

2*x*cos(x*y) - x^2*y*sin(x*y)

You also can compute mixed higher-order derivatives by providing all differentiation
variables:

syms x y

diff(x*sin(x*y), x, x, x, y)

ans =

x^2*y^3*sin(x*y) - 6*x*y^2*cos(x*y) - 6*y*sin(x*y)

Input Arguments

F — Expression or function to differentiate
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Expression or function to differentiate, specified as a symbolic expression or function or
as a vector or matrix of symbolic expressions or functions. If F is a vector or a matrix,
diff differentiates each element of F and returns a vector or a matrix of the same size as
F.

var — Differentiation variable
symbolic variable | string

Differentiation variable, specified as a symbolic variable or a string.

var1,...,varN — Differentiation variables
symbolic variables | strings

Differentiation variables, specified as symbolic variables or strings.

n — Differentiation order
nonnegative integer

4 Functions — Alphabetical List

4-294

Differentiation order, specified as a nonnegative integer.

More About

Tips

• When computing mixed higher-order derivatives, do not use n to specify the
differentiation order. Instead, specify all differentiation variables explicitly.

• To improve performance, diff assumes that all mixed derivatives commute. For
example,

∂

∂

∂

∂
() =

∂

∂

∂

∂
()

x y
f x y

y x
f x y, ,

This assumption suffices for most engineering and scientific problems.
• If you differentiate a multivariate expression or function F without specifying the

differentiation variable, then a nested call to diff and diff(F,n) can return
different results. This is because in a nested call, each differentiation step determines
and uses its own differentiation variable. In calls like diff(F,n), the differentiation
variable is determined once by symvar(F,1) and used for all differentiation steps.

• If you differentiate an expression or function containing abs or sign, ensure that
the arguments are real values. For complex arguments of abs and sign, the diff
function formally computes the derivative, but this result is not generally valid
because abs and sign are not differentiable over complex numbers.

See Also
curl | divergence | functionalDerivative | gradient | hessian | int |
jacobian | laplacian | symvar

Introduced before R2006a

 digits

4-295

digits
Variable-precision accuracy

Syntax

digits

digits(d)

d1 = digits

d1 = digits(d)

Description

digits shows the number of significant decimal digits that MuPAD software uses to do
variable-precision arithmetic (VPA). The default value is 32 digits.

digits(d) sets the current VPA accuracy to d significant decimal digits. The value d
must be a positive integer greater than 1 and less than 229 + 1.

d1 = digits assigns the current setting of digits to variable d1.

d1 = digits(d) assigns the current setting of digits to variable d1 and sets VPA
accuracy to d.

Examples

Default Accuracy of Variable-Precision Computations

By default, the minimum number of significant (nonzero) decimal digits is 32.

To obtain the current number of digits, use digits without input arguments:

digits

Digits = 32

To save the current setting, assign the result returned by digits to a variable:

4 Functions — Alphabetical List

4-296

CurrentDigits = digits

CurrentDigits =

 32

Control Accuracy of Variable-Precision Computations

digits lets you specify any number of significant decimal digits from 1 to 229 + 1.

Compute the ratio 1/3 and the ratio 1/3000 with four-digit accuracy:

old = digits(4);

vpa(1/3)

vpa(1/3000)

ans =

0.3333

ans =

0.0003333

Restore the default accuracy setting for further computations:

digits(old)

“Guard” Digits

The number of digits that you specify using the vpa function or the digits function is
the guaranteed number of digits. Internally, the toolbox can use a few more digits than
you specify. These additional digits are called guard digits. For example, set the number
of digits to 4, and then display the floating-point approximation of 1/3 using four digits:

old = digits(4);

a = vpa(1/3)

a =

0.3333

Now, display a using 20 digits. The result shows that the toolbox internally used more
than four digits when computing a. The last digits in the following result are incorrect
because of the round-off error:

digits(20)

vpa(a)

 digits

4-297

digits(old)

ans =

0.33333333333303016843

Hidden Round-Off Errors

Hidden round-off errors can cause unexpected results. For example, compute the number
1/10 with the default 32-digit accuracy and with 10-digit accuracy:

a = vpa(1/10)

old = digits(10);

b = vpa(1/10)

digits(old)

a =

0.1

b =

0.1

Now, compute the difference a - b. The result is not 0:

a - b

ans =

0.000000000000000000086736173798840354720600815844403

The difference a - b is not equal to zero because the toolbox internally boosts the 10-
digit number b = 0.1 to 32-digit accuracy. This process implies round-off errors. The
toolbox actually computes the difference a - b as follows:

b = vpa(b)

a - b

b =

0.09999999999999999991326382620116

ans =

0.000000000000000000086736173798840354720600815844403

Techniques Used to Convert Floating-Point Numbers to Symbolic Objects

Suppose you convert a double number to a symbolic object, and then perform VPA
operations on that object. The results can depend on the conversion technique that you

4 Functions — Alphabetical List

4-298

used to convert a floating-point number to a symbolic object. The sym function lets you
choose the conversion technique by specifying the optional second argument, which
can be 'r', 'f', 'd', or 'e'. The default is 'r'. For example, convert the constant
π = 3.141592653589793... to a symbolic object:

r = sym(pi)

f = sym(pi,'f')

d = sym(pi,'d')

e = sym(pi,'e')

r =

pi

f =

884279719003555/281474976710656

d =

3.1415926535897931159979634685442

e =

pi - (198*eps)/359

Although the toolbox displays these numbers differently on the screen, they are rational
approximations of pi. Use vpa to convert these rational approximations of pi back to
floating-point values.

Set the number of digits to 4. Three of the four approximations give the same result.

digits(4)

vpa(r)

vpa(f)

vpa(d)

vpa(e)

ans =

3.142

ans =

3.142

ans =

3.142

ans =

 digits

4-299

3.142 - 0.5515*eps

Now, set the number of digits to 40. The differences between the symbolic
approximations of pi become more visible.

digits(40)

vpa(r)

vpa(f)

vpa(d)

vpa(e)

ans =

3.141592653589793238462643383279502884197

ans =

3.141592653589793115997963468544185161591

ans =

3.1415926535897931159979634685442

ans =

3.141592653589793238462643383279502884197 -...

0.5515320334261838440111420612813370473538*eps

Input Arguments

d — New accuracy setting
number | symbolic number

New accuracy setting, specified as a number or symbolic number. The setting specifies
the number of significant decimal digits to be used for variable-precision calculations. If
the value d is not an integer, digits rounds it to the nearest integer.

Output Arguments

d1 — Current accuracy setting
double-precision number

Current accuracy setting, returned as a double-precision number. The setting
specifies the number of significant decimal digits currently used for variable-precision
calculations.

4 Functions — Alphabetical List

4-300

See Also
double | vpa

Introduced before R2006a

 dilog

4-301

dilog
Dilogarithm function

Syntax

dilog(X)

Description

dilog(X) returns the dilogarithm function.

Examples

Dilogarithm Function for Numeric and Symbolic Arguments

Depending on its arguments, dilog returns floating-point or exact symbolic results.

Compute the dilogarithm function for these numbers. Because these numbers are not
symbolic objects, dilog returns floating-point results.

A = dilog([-1, 0, 1/4, 1/2, 1, 2])

A =

 2.4674 - 2.1776i 1.6449 + 0.0000i 0.9785 + 0.0000i...

 0.5822 + 0.0000i 0.0000 + 0.0000i -0.8225 + 0.0000i

Compute the dilogarithm function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, dilog returns unresolved symbolic calls.

symA = dilog(sym([-1, 0, 1/4, 1/2, 1, 2]))

symA =

[pi^2/4 - pi*log(2)*1i, pi^2/6, dilog(1/4), pi^2/12 - log(2)^2/2, 0, -pi^2/12]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-302

vpa(symA)

ans =

[2.467401100272339654708622749969 - 2.1775860903036021305006888982376i,...

1.644934066848226436472415166646,...

0.97846939293030610374306666652456,...

0.58224052646501250590265632015968,...

0,...

-0.82246703342411321823620758332301]

Plot Dilogarithm Function

Plot the dilogarithm function on the interval from 0 to 10.

syms x

ezplot(dilog(x), [0, 10])

grid on

 dilog

4-303

Handle Expressions Containing Dilogarithm Function

Many functions, such as diff, int, and limit, can handle expressions containing
dilog.

Find the first and second derivatives of the dilogarithm function:

syms x

diff(dilog(x), x)

diff(dilog(x), x, x)

ans =

-log(x)/(x - 1)

4 Functions — Alphabetical List

4-304

ans =

log(x)/(x - 1)^2 - 1/(x*(x - 1))

Find the indefinite integral of the dilogarithm function:

int(dilog(x), x)

ans =

x*(dilog(x) + log(x) - 1) - dilog(x)

Find the limit of this expression involving dilog:

limit(dilog(x)/x, Inf)

ans =

0

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Dilogarithm Function

There are two common definitions of the dilogarithm function.

The implementation of the dilog function uses the following definition:

dilog x
t

t
dt

x

() =
()

-Ú
ln

1
1

Another common definition of the dilogarithm function is

 dilog

4-305

Li2

0
1

x
t

t
dt

x

() =
-()

Ú
ln

Thus, dilog(x) = Li2(1 – x).

Tips

• dilog(sym(-1)) returns pi^2/4 - pi*log(2)*i.
• dilog(sym(0)) returns pi^2/6.
• dilog(sym(1/2)) returns pi^2/12 - log(2)^2/2.
• dilog(sym(1)) returns 0.
• dilog(sym(2)) returns -pi^2/12.
• dilog(sym(i)) returns pi^2/16 - (pi*log(2)*i)/4 - catalan*i.
• dilog(sym(-i)) returns catalan*i + (pi*log(2)*i)/4 + pi^2/16.
• dilog(sym(1 + i)) returns - catalan*i - pi^2/48.
• dilog(sym(1 - i)) returns catalan*i - pi^2/48.
• dilog(sym(Inf)) returns -Inf.

References

[1] Stegun, I. A. “Miscellaneous Functions.” Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
log | zeta

Introduced in R2014a

4 Functions — Alphabetical List

4-306

dirac
Dirac delta function

Syntax

dirac(x)

dirac(n,x)

Description

dirac(x) represents the Dirac delta function of x.

dirac(n,x) represents the nth derivative of the Dirac delta function at x.

Examples

Handle Expressions Involving Dirac and Heaviside Functions

Compute derivatives and integrals of expressions involving the Dirac delta and Heaviside
functions.

Find the first and second derivatives of the Heaviside function. The result is the Dirac
delta function and its first derivative.

syms x

diff(heaviside(x), x)

diff(heaviside(x), x, x)

ans =

dirac(x)

ans =

dirac(1, x)

Find the indefinite integral of the Dirac delta function. The results returned by int do
not include integration constants.

 dirac

4-307

int(dirac(x), x)

ans =

sign(x)/2

Find the integral of this expression involving the Dirac delta function.

syms a

int(dirac(x - a)*sin(x), x, -Inf, Inf)

ans =

sin(a)

Use Assumptions on Variables

dirac takes into account assumptions on variables.

syms x real

assumeAlso(x ~= 0)

dirac(x)

ans =

0

For further computations, clear the assumptions.

syms x clear

Evaluate Dirac delta Function for Symbolic Matrix

Compute the Dirac delta function of x and its first three derivatives.

Use a vector n = [0, 1, 2, 3] to specify the order of derivatives. The dirac function
expands the scalar into a vector of the same size as n and computes the result.

n = [0, 1, 2, 3];

d = dirac(n, x)

d =

[dirac(x), dirac(1, x), dirac(2, x), dirac(3, x)]

Substitute x with 0.

subs(d, x, 0)

4 Functions — Alphabetical List

4-308

ans =

[Inf, -Inf, Inf, -Inf]

Input Arguments

x — Input
number | symbolic number | symbolic variable | symbolic expression | symbolic
function | vector | matrix | multidimensional array

Input, specified as a number, symbolic number, variable, expression, or function,
representing a real number. This input can also be a vector, matrix, or multidimensional
array of numbers, symbolic numbers, variables, expressions, or functions.

n — Order of derivative
nonnegative number | symbolic variable | symbolic expression | symbolic function |
vector | matrix | multidimensional array

Order of derivative, specified as a nonnegative number, or symbolic variable, expression,
or function representing a nonnegative number. This input can also be a vector, matrix,
or multidimensional array of nonnegative numbers, symbolic numbers, variables,
expressions, or functions.

More About

Dirac delta Function

The Dirac delta function, δ(x), has the value 0 for all x ≠ 0, and ∞ for x = 0.

For any smooth function f and a real number a,

dirac x a f x f a() () ()- =

-•

•

Ú

Tips

• For complex values x with nonzero imaginary parts, dirac returns NaN.
• dirac returns floating-point results for numeric arguments that are not symbolic

objects.

 dirac

4-309

• dirac acts element-wise on nonscalar inputs.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then dirac expands the scalar into a vector or matrix of the same
size as the other argument with all elements equal to that scalar.

See Also
heaviside | kroneckerDelta

Introduced before R2006a

4 Functions — Alphabetical List

4-310

disp
Display symbolic input

Syntax

disp(X)

Description

disp(X) displays the symbolic input X. disp does not display the argument’s name.

Examples

Display Symbolic Scalar

syms x

y = x^3 - exp(x);

disp(y)

x^3 - exp(x)

Display Symbolic Matrix

A = sym('a%d%d',[3 3]);

disp(A)

[a11, a12, a13]

[a21, a22, a23]

[a31, a32, a33]

Display Symbolic Function

syms f(x)

f(x) = x+1;

disp(f)

 disp

4-311

x + 1

symbolic function inputs: x

Display Sentence with Text and Symbolic Expressions

Display the sentence “Euler’s formula is e x i x
ix

= () + ()cos sin ”.

To concatenate strings with symbolic expressions, convert the symbolic expressions to
strings using char.

syms x

disp(['Euler''s formula is ',char(exp(i*x)),' = ',char(cos(x)+i*sin(x)),'.'])

Euler's formula is exp(x*1i) = cos(x) + sin(x)*1i.

Because ' terminates the string, repeat it in Euler''s for MATLAB to interpret it as an
apostrophe and not a string terminator.

Input Arguments

X — Symbolic input to display
symbolic variable | symbolic vector | symbolic matrix | symbolic function | symbolic
multidimensional array | symbolic expression

Symbolic input to display, specified as a symbolic variable, vector, matrix, function,
multidimensional array, or expression.

See Also
char | disp | display | pretty

Introduced before R2006a

4 Functions — Alphabetical List

4-312

display
Display symbolic input

Syntax

display(X)

Description

display(X) displays the symbolic input X.

Examples

Display Symbolic Scalar

syms x

y = x^3 - exp(x);

display(y)

y =

x^3 - exp(x)

Display Symbolic Matrix

A = sym('a%d%d',[3 3]);

display(A)

A =

[a11, a12, a13]

[a21, a22, a23]

[a31, a32, a33]

Display Symbolic Function

syms f(x)

 display

4-313

f(x) = x+1;

display(f)

f(x) =

x + 1

Display Sentence with Text and Symbolic Expressions

Display the sentence “Euler’s formula is e x i x
ix

= () + ()cos sin ”.

To concatenate strings with symbolic expressions, convert the symbolic expressions to
strings using char.

syms x

display(['Euler''s formula is ',char(exp(i*x)),' = ',char(cos(x)+i*sin(x)),'.'])

Euler's formula is exp(x*1i) = cos(x) + sin(x)*1i.

Because ' terminates the string, you need to repeat it in Euler''s for MATLAB to
interpret it as an apostrophe and not a string terminator.

Input Arguments

X — Symbolic input to display
symbolic variable | symbolic vector | symbolic matrix | symbolic function | symbolic
multidimensional array | symbolic expression

Symbolic input to display, specified as a symbolic variable, vector, matrix, function,
multidimensional array, or expression.

See Also
char | disp | display | pretty

Introduced before R2006a

4 Functions — Alphabetical List

4-314

divergence
Divergence of vector field

Syntax

divergence(V,X)

Description

divergence(V,X) returns the divergence of vector field V with respect to the vector X in
Cartesian coordinates. Vectors V and X must have the same length.

Examples

Find Divergence of Vector Field

Find the divergence of the vector field V(x,y,z) = (x, 2y2, 3z3) with respect to vector
X = (x,y,z) in Cartesian coordinates.

syms x y z

divergence([x, 2*y^2, 3*z^3], [x, y, z])

ans =

9*z^2 + 4*y + 1

Find the divergence of the curl of this vector field. The divergence of the curl of any
vector field is 0.

syms x y z

divergence(curl([x, 2*y^2, 3*z^3], [x, y, z]), [x, y, z])

ans =

0

Find the divergence of the gradient of this scalar function. The result is the Laplacian of
the scalar function.

syms x y z

 divergence

4-315

f = x^2 + y^2 + z^2;

divergence(gradient(f, [x, y, z]), [x, y, z])

ans =

6

Find Electric Charge Density from Electric Field

Gauss’ Law in differential form states that the divergence of electric field is proportional
to the electric charge density as

r r

r

r

— () =
()

. .E r
rr

e
0

Find the electric charge density for the electric field E x i y j
uru r r

= +
2 2 .

syms x y ep0

E = [x^2 y^2];

rho = divergence(E,[x y])*ep0

rho =

ep0*(2*x + 2*y)

Visualize the electric field and electric charge density for -2 < x < 2 and -2 <
y < 2 with ep0 = 1. Create a grid of values of x and y using meshgrid. Find the
values of electric field and charge density by substituting grid values using subs. To
simultaneously substitute the grid values xPlot and yPlot into the charge density rho,
use cells arrays as inputs to subs.

rho = subs(rho,ep0,1);

v = -2:0.1:2;

[xPlot,yPlot] = meshgrid(v);

Ex = subs(E(1),x,xPlot);

Ey = subs(E(2),y,yPlot);

rhoPlot = double(subs(rho,{x,y},{xPlot,yPlot}));

Plot the electric field using quiver. Overlay the charge density using contour. The
contour lines indicate the values of the charge density.

quiver(xPlot,yPlot,Ex,Ey)

hold on

contour(xPlot,yPlot,rhoPlot,'ShowText','on')

4 Functions — Alphabetical List

4-316

title('Contour Plot of Charge Density Over Electric Field')

xlabel('x')

ylabel('y')

Input Arguments

V — Vector field
symbolic expression | symbolic function | vector of symbolic expressions | vector of
symbolic functions

Vector field to find divergence of, specified as a symbolic expression or function, or as a
vector of symbolic expressions or functions. V must be the same length as X.

 divergence

4-317

X — Variables with respect to which you find the divergence
symbolic variable | vector of symbolic variables

Variables with respect to which you find the divergence, specified as a symbolic variable
or a vector of symbolic variables. X must be the same length as V.

More About

Divergence of Vector Field

The divergence of the vector field V = (V1,...,Vn) with respect to the vector X = (X1,...,Xn) in
Cartesian coordinates is the sum of partial derivatives of V with respect to X1,...,Xn

div V V
V

x

i

ii

n

() .
r r

= —◊ =
∂

∂
=

Â
1

See Also
curl | diff | gradient | hessian | jacobian | laplacian | potential |
vectorPotential

Introduced in R2012a

4 Functions — Alphabetical List

4-318

divisors
Divisors of integer or expression

Syntax

divisors(n)

divisors(expr,vars)

Description

divisors(n) finds all nonnegative divisors of an integer n.

divisors(expr,vars) finds the divisors of a polynomial expression expr. Here, vars
are polynomial variables.

Examples

Divisors of Integers

Find all nonnegative divisors of these integers.

Find the divisors of integers. You can use double precision numbers or numbers
converted to symbolic objects. If you call divisors for a double-precision number, then it
returns a vector of double-precision numbers.

divisors(42)

ans =

 1 2 3 6 7 14 21 42

Find the divisors of negative integers. divisors returns nonnegative divisors for
negative integers.

divisors(-42)

ans =

 divisors

4-319

 1 2 3 6 7 14 21 42

If you call divisors for a symbolic number, it returns a symbolic vector.

divisors(sym(42))

ans =

[1, 2, 3, 6, 7, 14, 21, 42]

The only divisor of 0 is 0.

divisors(0)

ans =

 0

Divisors of Univariate Polynomials

Find the divisors of univariate polynomial expressions.

Find the divisors of this univariate polynomial. You can specify the polynomial as a
symbolic expression.

syms x

divisors(x^4 - 1, x)

ans =

[1, x - 1, x + 1, (x - 1)*(x + 1), x^2 + 1, (x^2 + 1)*(x - 1),...

(x^2 + 1)*(x + 1), (x^2 + 1)*(x - 1)*(x + 1)]

You also can use a symbolic function to specify the polynomial.

syms f(t)

f(t) = t^5;

divisors(f,t)

ans(t) =

[1, t, t^2, t^3, t^4, t^5]

When finding the divisors of a polynomial, divisors does not return the divisors of the
constant factor.

f(t) = 9*t^5;

divisors(f,t)

4 Functions — Alphabetical List

4-320

ans(t) =

[1, t, t^2, t^3, t^4, t^5]

Divisors of Multivariate Polynomials

Find the divisors of multivariate polynomial expressions.

Find the divisors of the multivariate polynomial expression. Suppose that u and v are
variables, and a is a symbolic parameter. Specify the variables as a symbolic vector.

syms a u v

divisors(a*u^2*v^3, [u,v])

ans =

[1, u, u^2, v, u*v, u^2*v, v^2, u*v^2, u^2*v^2, v^3, u*v^3, u^2*v^3]

Now, suppose that this expression contains only one variable (for example, v), while
a and u are symbolic parameters. Here, divisors treats the expression a*u^2 as a
constant and ignores it, returning only the divisors of v^3.

divisors(a*u^2*v^3, v)

ans =

[1, v, v^2, v^3]

Input Arguments

n — Number for which to find divisors
number | symbolic number

Number for which to find the divisors, specified as a number or symbolic number.

expr — Polynomial expression for which to find divisors
symbolic expression | symbolic function

Polynomial expression for which to find divisors, specified as a symbolic expression or
symbolic function.

vars — Polynomial variables
symbolic variable | vector of symbolic variables

Polynomial variables, specified as a symbolic variable or a vector of symbolic variables.

 divisors

4-321

More About

Tips

• divisors(0) returns 0.
• divisors(expr,vars) does not return the divisors of the constant factor when

finding the divisors of a polynomial.
• If you do not specify polynomial variables, divisors returns as many divisors as

it can find, including the divisors of constant symbolic expressions. For example,
divisors(sym(pi)^2*x^2) returns [1, pi, pi^2, x, pi*x, pi^2*x, x^2,
pi*x^2, pi^2*x^2] while divisors(sym(pi)^2*x^2, x) returns [1, x,
x^2].

• For rational numbers, divisors returns all divisors of the numerator divided by all
divisors of the denominator. For example, divisors(sym(9/8)) returns [1, 3,
9, 1/2, 3/2, 9/2, 1/4, 3/4, 9/4, 1/8, 3/8, 9/8].

See Also
coeffs | factor | numden

Introduced in R2014b

4 Functions — Alphabetical List

4-322

doc
Get help for MuPAD functions

Syntax

doc(symengine)

doc(symengine,'MuPAD_function_name')

Description

doc(symengine) opens “Getting Started with MuPAD”.

doc(symengine,'MuPAD_function_name') opens the documentation page for
MuPAD_function_name.

Examples

doc(symengine,'simplify') opens the documentation page for the MuPAD
simplify function.

Introduced in R2008b

 double

4-323

double
Convert symbolic matrix to MATLAB numeric form

Syntax

r = double(S)

Description

r = double(S) converts the symbolic object S to a numeric object r.

Input Arguments

S

Symbolic constant, constant expression, or symbolic matrix whose entries are constants
or constant expressions.

Output Arguments

r

If S is a symbolic constant or constant expression, r is a double-precision floating-
point number representing the value of S. If S is a symbolic matrix whose entries are
constants or constant expressions, r is a matrix of double precision floating-point
numbers representing the values of the entries of S.

Examples

Find the numeric value for the expression 1 5

2

+ :

4 Functions — Alphabetical List

4-324

double(sym('(1+sqrt(5))/2')))

1.6180

Find the numeric value for the entries of this matrix T:

a = sym(2*sqrt(2));

b = sym((1-sqrt(3))^2);

T = [a, b; a*b, b/a];

double(T)

ans =

 2.8284 0.5359

 1.5157 0.1895

Find the numeric value for this expression. By default, double uses a new upper limit of
664 digits for the working precision and returns the value 0:

x = sym('((exp(200) + 1)/(exp(200) - 1)) - 1');

double(x)

ans =

 0

To get a more accurate result, increase the precision of computations:

digits(1000)

double(x)

ans =

 2.7678e-87

More About

Tips

• The working precision for double depends on the input argument. It is also
ultimately limited by 664 digits. If your computation requires a larger working
precision, specify the number of digits explicitly using the digits function.

See Also
sym | vpa

 double

4-325

Introduced before R2006a

4 Functions — Alphabetical List

4-326

dsolve
Ordinary differential equation and system solver

Syntax
S = dsolve(eqn)

S = dsolve(eqn,cond)

S = dsolve(eqn,cond,Name,Value)

Y = dsolve(eqns)

Y = dsolve(eqns,conds)

Y = dsolve(eqns,conds,Name,Value)

[y1,...,yN] = dsolve(eqns)

[y1,...,yN] = dsolve(eqns,conds)

[y1,...,yN] = dsolve(eqns,conds,Name,Value)

Description
S = dsolve(eqn) solves the ordinary differential equation eqn. Here eqn is a symbolic
equation containing diff to indicate derivatives. Alternatively, you can use a string with
the letter D indicating derivatives. For example, syms y(x); dsolve(diff(y) == y
+ 1) and dsolve('Dy = y + 1','x') both solve the equation dy/dx = y + 1 with
respect to the variable x. Also, eqn can be an array of such equations or strings.

S = dsolve(eqn,cond) solves the ordinary differential equation eqn with the initial
or boundary condition cond.

S = dsolve(eqn,cond,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Y = dsolve(eqns) solves the system of ordinary differential equations eqns and
returns a structure array that contains the solutions. The number of fields in the
structure array corresponds to the number of independent variables in the system.

Y = dsolve(eqns,conds) solves the system of ordinary differential equations eqns
with the initial or boundary conditions conds.

Y = dsolve(eqns,conds,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

 dsolve

4-327

[y1,...,yN] = dsolve(eqns) solves the system of ordinary differential equations
eqns and assigns the solutions to the variables y1,...,yN.

[y1,...,yN] = dsolve(eqns,conds) solves the system of ordinary differential
equations eqns with the initial or boundary conditions conds.

[y1,...,yN] = dsolve(eqns,conds,Name,Value) uses additional options specified
by one or more Name,Value pair arguments.

Input Arguments

eqn

Symbolic equation, string representing an ordinary differential equation, or array of
symbolic equations or strings.

When representing eqn as a symbolic equation, you must create a symbolic function,
for example y(x). Here x is an independent variable for which you solve an ordinary
differential equation. Use the == operator to create an equation. Use the diff function to
indicate differentiation. For example, to solve d2y(x)/dx2 = x*y(x), enter:

syms y(x)

dsolve(diff(y, 2) == x*y)

When representing eqn as a string, use the letter D to indicate differentiation. By
default, dsolve assumes that the independent variable is t. Thus, Dy means dy/dt. You
can specify the independent variable. The letter D followed by a digit indicates repeated
differentiation. Any character immediately following a differentiation operator is a
dependent variable. For example, to solve y''(x) = x*y(x), enter:

dsolve('D2y = x*y','x')

or

dsolve('D2y == x*y','x')

cond

Equation or string representing an initial or boundary condition. If you use equations,
assign expressions with diff to some intermediate variables. For example, use Dy, D2y,
and so on as intermediate variables:

4 Functions — Alphabetical List

4-328

Dy = diff(y);

D2y = diff(y, 2);

Then define initial conditions using symbolic equations, such as y(a) == b and Dy(a)
== b. Here a and b are constants.

If you represent initial and boundary conditions as strings, you do not need to create
intermediate variables. In this case, follow the same rules as you do when creating an
equation eqn as a string. For example, specify 'y(a) = b' and 'Dy(a) = b'. When
using strings, you can use = or == in equations.

eqns

Symbolic equations or strings separated by commas and representing a system of
ordinary differential equations. Each equation or string represents an ordinary
differential equation.

conds

Symbolic equations or strings separated by commas and representing initial or boundary
conditions or both types of conditions. Each equation or string represents an initial or
boundary condition. If the number of the specified conditions is less than the number of
dependent variables, the resulting solutions contain arbitrary constants C1, C2,....

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'IgnoreAnalyticConstraints'

By default, the solver applies the purely algebraic simplifications to the expressions
on both sides of equations. These simplifications might not be generally valid.
Therefore, by default the solver does not guarantee general correctness and
completeness of the results. To solve ordinary differential equations without additional
assumptions, set IgnoreAnalyticConstraints to false. The results obtained with
IgnoreAnalyticConstraints set to false are correct for all values of the arguments.

If you do not set IgnoreAnalyticConstraints to false, always verify results
returned by the dsolve command.

 dsolve

4-329

Default: true

'MaxDegree'

Do not use explicit formulas that involve radicals when solving polynomial equations of
degrees larger than the specified value. This value must be a positive integer smaller
than 5.

Default: 2

Output Arguments

S

Symbolic array that contains solutions of an equation. The size of a symbolic array
corresponds to the number of the solutions.

Y

Structure array that contains solutions of a system of equations. The number of fields in
the structure array corresponds to the number of independent variables in a system.

y1,...,yN

Variables to which the solver assigns the solutions of a system of equations. The number
of output variables or symbolic arrays must equal the number of independent variables
in a system. The toolbox sorts independent variables alphabetically, and then assigns the
solutions for these variables to output variables or symbolic arrays.

Examples

Solve these ordinary differential equations. Use == to create an equation, and diff to
indicate differentiation:

syms a x(t)

dsolve(diff(x) == -a*x)

ans =

C2*exp(-a*t)

syms f(t)

4 Functions — Alphabetical List

4-330

dsolve(diff(f) == f + sin(t))

ans =

C5*exp(t) - (2^(1/2)*cos(t - pi/4))/2

Solve this ordinary differential equation with the initial condition y(0) = b:

syms a b y(t)

dsolve(diff(y) == a*y, y(0) == b)

Specifying the initial condition lets you eliminate arbitrary constants, such as C1,
C2,...:

ans =

b*exp(a*t)

Solve this ordinary differential equation with the initial and boundary conditions. To
specify a condition that contains a derivative, assign the derivative to a variable:

syms a y(t)

Dy = diff(y);

dsolve(diff(y, 2) == -a^2*y, y(0) == 1, Dy(pi/a) == 0)

Because the equation contains the second-order derivative d2y/dt2, specifying two
conditions lets you eliminate arbitrary constants in the solution:

ans =

exp(-a*t*1i)/2 + exp(a*t*1i)/2

Solve this system of ordinary differential equations:

syms x(t) y(t)

z = dsolve(diff(x) == y, diff(y) == -x)

When you assign the solution of a system of equations to a single output, dsolve returns
a structure containing the solutions:

z =

 y: [1x1 sym]

 x: [1x1 sym]

To see the results, enter z.x and z.y:

z.x

ans =

C12*cos(t) + C11*sin(t)

 dsolve

4-331

z.y

ans =

C11*cos(t) - C12*sin(t)

By default, the solver applies a set of purely algebraic simplifications that are not correct
in general, but that can produce simple and practical solutions:

syms a y(t)

dsolve(diff(y) == a/sqrt(y) + y, y(a) == 1)

ans =

(exp((3*t)/2 - (3*a)/2 + log(a + 1)) - a)^(2/3)

To obtain complete and generally correct solutions, set the value of
IgnoreAnalyticConstraints to false:

dsolve(diff(y) == a/sqrt(y) + y, y(a) == 1, 'IgnoreAnalyticConstraints', false)

Warning: The solutions are subject to the following

conditions:

PI/2 < angle(-a) in(C22, 'integer')

.

ans =

(- a + exp((3*t)/2 - (3*a)/2 + log(a + 1) + pi*C22*2i))^(2/3)

If you apply algebraic simplifications, you can get explicit solutions for some equations
for which the solver cannot compute them using strict mathematical rules:

syms y(t)

dsolve(sqrt(diff(y)) == sqrt(y) + log(y^2))

Warning: Explicit solution could not be found; implicit solution returned.

ans =

 16*lambertw(0, 1/4)^2

 16*lambertw(0, -1/4)^2

 solve(int(1/(log(y^2) + y^(1/2))^2, y,...

 'IgnoreSpecialCases', true,...

 'IgnoreAnalyticConstraints', true) - t - C27 == 0, y)

versus

dsolve(sqrt(diff(y)) == sqrt(y) + log(y^2), 'IgnoreAnalyticConstraints', false)

Warning: Explicit solution could not be found; implicit solution returned.

ans =

 solve(log(y^2) + y^(1/2) == 0, y)

 solve(int(1/(log(y^2) + y^(1/2))^2, y,...

4 Functions — Alphabetical List

4-332

 'IgnoreSpecialCases', true) - t - C32 == 0, y)

When you solve a higher-order polynomial equation, the solver sometimes uses RootOf
to return the results:

syms a y(x)

dsolve(diff(y) == a/(y^2 + 1))

Warning: Explicit solution could not be found; implicit solution returned.

ans =

root(z^3 + 3*z - 3*a*x - 3*C26, z)

To get an explicit solution for such equations, try calling the solver with MaxDegree. The
option specifies the maximum degree of polynomials for which the solver tries to return
explicit solutions. The default value is 2. By increasing this value, you can get explicit
solutions for higher-order polynomials. For example, increase the value of MaxDegree to
4 and get explicit solutions instead of RootOf for this equation:

s = dsolve(diff(y) == a/(y^2 + 1), 'MaxDegree', 4);

pretty(s)

/ 1 \

| #1 - -- |

| #1 |

| |

| / 1 \ |

| sqrt(3) | -- + #1 | 1i |

| \ #1 / 1 #1 |

| ---------------------- + ---- - -- |

| 2 2 #1 2 |

| |

| / 1 \ |

| sqrt(3) | -- + #1 | 1i |

| 1 \ #1 / #1 |

| ---- - ---------------------- - -- |

\ 2 #1 2 2 /

where

 / / 2 \ \1/3

 | 3 C29 3 a x | 9 (C29 + a x) | |

#1 == | ----- + ----- + sqrt| -------------- + 1 | |

 \ 2 2 \ 4 / /

 dsolve

4-333

If dsolve can find neither an explicit nor an implicit solution, then it issues a warning
and returns the empty sym:

syms y(x)

dsolve(exp(diff(y)) == 0)

 Warning: Explicit solution could not be found.

ans =

[empty sym]

Returning the empty symbolic object does not prove that there are no solutions.

Solve this equation specifying it as a string. By default, dsolve assumes that the
independent variable is t:

dsolve('Dy^2 + y^2 == 1')

ans =

 1

 -1

 cosh(C49 + t*1i)

 cosh(C45 - t*1i)

Now solve this equation with respect to the variable s:

dsolve('Dy^2 + y^2 == 1','s')

ans =

 1

 -1

 cosh(C57 + s*1i)

 cosh(C53 - s*1i)

More About

Tips

• The names of symbolic variables used in differential equations should not contain the
letter D because dsolve assumes that D is a differential operator and any character
immediately following D is a dependent variable.

• If dsolve cannot find a closed-form (explicit) solution, it attempts to find an implicit
solution. When dsolve returns an implicit solution, it issues this warning:

4 Functions — Alphabetical List

4-334

Warning: Explicit solution could not be found;

implicit solution returned.

• If dsolve can find neither an explicit nor an implicit solution, then it issues a
warning and returns the empty sym. In this case, try to find a numeric solution using
the MATLAB ode23 or ode45 function. In some cases, the output is an equivalent
lower-order differential equation or an integral.

Algorithms

If you do not set the value of IgnoreAnalyticConstraints to false, the solver
applies these rules to the expressions on both sides of an equation:

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the following equality
is valid for all values of a, b, and c:

 (a·b)c = ac·bc.
• log(ab) = b·log(a) for all values of a and b. In particular, the following equality is valid

for all values of a, b, and c:

 (ab)c = ab·c.
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, f(g(x)) = x is assumed to be valid for all complex x. In particular:

• log(ex) = x
• asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x
• asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x
• Wk(x·ex) = x for all values of k

• The solver can multiply both sides of an equation by any expression except 0.
• The solutions of polynomial equations must be complete.

• “Solve a Single Differential Equation” on page 2-153
• “Solve a System of Differential Equations” on page 2-157

See Also
functionalDerivative | linsolve | ode23 | ode45 | odeToVectorField | solve
| syms | vpasolve

 dsolve

4-335

Introduced before R2006a

4 Functions — Alphabetical List

4-336

ei
One-argument exponential integral function

Syntax

ei(x)

Description

ei(x) returns the one-argument exponential integral defined as

ei x
e

t
dt

tx

() =
-•
Ú .

Examples

Exponential Integral for Floating-Point and Symbolic Numbers

Compute exponential integrals for numeric inputs. Because these numbers are not
symbolic objects, you get floating-point results.

s = [ei(-2), ei(-1/2), ei(1), ei(sqrt(2))]

s =

 -0.0489 -0.5598 1.8951 3.0485

Compute exponential integrals for the same numbers converted to symbolic objects. For
most symbolic (exact) numbers, ei returns unresolved symbolic calls.

s = [ei(sym(-2)), ei(sym(-1/2)), ei(sym(1)), ei(sqrt(sym(2)))]

s =

[ei(-2), ei(-1/2), ei(1), ei(2^(1/2))]

Use vpa to approximate this result with 10-digit accuracy.

 ei

4-337

vpa(s, 10)

ans =

[-0.04890051071, -0.5597735948, 1.895117816, 3.048462479]

Branch Cut at Negative Real Axis

The negative real axis is a branch cut. The exponential integral has a jump of height 2 π i
when crossing this cut. Compute the exponential integrals at -1, above -1, and below -1
to demonstrate this.

[ei(-1), ei(-1 + 10^(-10)*i), ei(-1 - 10^(-10)*i)]

ans =

 -0.2194 + 0.0000i -0.2194 + 3.1416i -0.2194 - 3.1416i

Derivatives of Exponential Integral

Compute the first, second, and third derivatives of a one-argument exponential integral.

syms x

diff(ei(x), x)

diff(ei(x), x, 2)

diff(ei(x), x, 3)

ans =

exp(x)/x

ans =

exp(x)/x - exp(x)/x^2

ans =

exp(x)/x - (2*exp(x))/x^2 + (2*exp(x))/x^3

Limits of Exponential Integral

Compute the limits of a one-argument exponential integral.

syms x

limit(ei(2*x^2/(1+x)), x, -Inf)

limit(ei(2*x^2/(1+x)), x, 0)

limit(ei(2*x^2/(1+x)), x, Inf)

4 Functions — Alphabetical List

4-338

ans =

0

ans =

-Inf

ans =

Inf

Input Arguments

x — Input
floating-point number | symbolic number | symbolic variable | symbolic expression |
symbolic function | symbolic vector | symbolic matrix

Input specified as a floating-point number or symbolic number, variable, expression,
function, vector, or matrix.

More About

Tips

• The one-argument exponential integral is singular at x = 0. The toolbox uses this
special value: ei(0) = -Inf.

Algorithms

The relation between ei and expint is

ei(x) = -expint(1,-x) + (ln(x)-ln(1/x))/2 - ln(-x)

Both functions ei(x) and expint(1,x) have a logarithmic singularity at the origin
and a branch cut along the negative real axis. The ei function is not continuous when
approached from above or below this branch cut.

References

[1] Gautschi, W., and W. F. Gahill “Exponential Integral and Related Functions.”
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

 ei

4-339

See Also
expint | expint | int | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-340

eig
Eigenvalues and eigenvectors of symbolic matrix

Syntax

lambda = eig(A)

[V,D] = eig(A)

[V,D,P] = eig(A)

lambda = eig(vpa(A))

[V,D] = eig(vpa(A))

Description

lambda = eig(A) returns a symbolic vector containing the eigenvalues of the square
symbolic matrix A.

[V,D] = eig(A) returns matrices V and D. The columns of V present eigenvectors of A.
The diagonal matrix D contains eigenvalues. If the resulting V has the same size as A, the
matrix A has a full set of linearly independent eigenvectors that satisfy A*V = V*D.

[V,D,P] = eig(A) returns a vector of indices P. The length of P equals to the total
number of linearly independent eigenvectors, so that A*V = V*D(P,P).

lambda = eig(vpa(A)) returns numeric eigenvalues using variable-precision
arithmetic.

[V,D] = eig(vpa(A)) returns numeric eigenvectors using variable-precision
arithmetic. If A does not have a full set of eigenvectors, the columns of V are not linearly
independent.

Examples

Compute the eigenvalues for the magic square of order 5:

M = sym(magic(5));

eig(M)

 eig

4-341

ans =

 65

 (625/2 - (5*3145^(1/2))/2)^(1/2)

 ((5*3145^(1/2))/2 + 625/2)^(1/2)

 -(625/2 - (5*3145^(1/2))/2)^(1/2)

 -((5*3145^(1/2))/2 + 625/2)^(1/2)

Compute the eigenvalues for the magic square of order 5 using variable-precision
arithmetic:

M = sym(magic(5));

eig(vpa(M))

ans =

 65.0

 21.27676547147379553062642669797423

 13.12628093070921880252564308594914

 -13.126280930709218802525643085949

 -21.276765471473795530626426697974

Compute the eigenvalues and eigenvectors for one of the MATLAB test matrices:

A = sym(gallery(5))

[v, lambda] = eig(A)

A =

[-9, 11, -21, 63, -252]

[70, -69, 141, -421, 1684]

[-575, 575, -1149, 3451, -13801]

[3891, -3891, 7782, -23345, 93365]

[1024, -1024, 2048, -6144, 24572]

v =

 0

 21/256

 -71/128

 973/256

 1

lambda =

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

4 Functions — Alphabetical List

4-342

More About
• “Eigenvalues” on page 2-107

See Also
charpoly | svd | vpa | jordan

Introduced before R2006a

 ellipke

4-343

ellipke
Complete elliptic integrals of the first and second kinds

Syntax

[K,E] = ellipke(m)

Description

[K,E] = ellipke(m) returns the complete elliptic integrals of the first and second
kinds.

Input Arguments

m

Symbolic number, variable, expression, or function. This argument also can be a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Output Arguments

K

Complete elliptic integral of the first kind.

E

Complete elliptic integral of the second kind.

Examples

Compute the complete elliptic integrals of the first and second kinds for these numbers.
Because these numbers are not symbolic objects, you get floating-point results.

4 Functions — Alphabetical List

4-344

[K0, E0] = ellipke(0)

[K05, E05] = ellipke(1/2)

K0 =

 1.5708

E0 =

 1.5708

K05 =

 1.8541

E05 =

 1.3506

Compute the complete elliptic integrals for the same numbers converted to symbolic
objects. For most symbolic (exact) numbers, ellipke returns results using the
ellipticK and ellipticE functions.

[K0, E0] = ellipke(sym(0))

[K05, E05] = ellipke(sym(1/2))

K0 =

pi/2

E0 =

pi/2

K05 =

ellipticK(1/2)

E05 =

ellipticE(1/2)

Use vpa to approximate K05 and E05 with floating-point numbers:

vpa([K05, E05], 10)

ans =

[1.854074677, 1.350643881]

If the argument does not belong to the range from 0 to 1, then convert that argument to a
symbolic object before using ellipke:

[K, E] = ellipke(sym(pi/2))

 ellipke

4-345

K =

ellipticK(pi/2)

E =

ellipticE(pi/2)

Alternatively, use ellipticK and ellipticE to compute the integrals of the first and
the second kinds separately:

K = ellipticK(sym(pi/2))

E = ellipticE(sym(pi/2))

K =

ellipticK(pi/2)

E =

ellipticE(pi/2)

Call ellipke for this symbolic matrix. When the input argument is a matrix, ellipke
computes the complete elliptic integrals of the first and second kinds for each element.

[K, E] = ellipke(sym([-1 0; 1/2 1]))

K =

[ellipticK(-1), pi/2]

[ellipticK(1/2), Inf]

E =

[ellipticE(-1), pi/2]

[ellipticE(1/2), 1]

Alternatives

You can use ellipticK and ellipticE to compute elliptic integrals of the first and
second kinds separately.

More About

Complete Elliptic Integral of the First Kind

The complete elliptic integral of the first kind is defined as follows:

4 Functions — Alphabetical List

4-346

K m F m

m

d() = Ê
ËÁ

ˆ
¯̃

=
-

Ú
p

q
q

p

2

1

1 2
0

2

|
sin

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Complete Elliptic Integral of the Second Kind

The complete elliptic integral of the second kind is defined as follows:

E m E m m d() = Ê
ËÁ

ˆ
¯̃

= -Ú
p

q q
p

2
1 2

0

2

| sin

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips

• Calling ellipke for numbers that are not symbolic objects invokes the MATLAB
ellipke function. This function accepts only 0 <= x <= 1. To compute the complete
elliptic integrals of the first and second kinds for the values out of this range, use sym
to convert the numbers to symbolic objects, and then call ellipke for those symbolic
objects. Alternatively, use the ellipticK and ellipticE functions to compute the
integrals separately.

• For most symbolic (exact) numbers, ellipke returns results using the ellipticK
and ellipticE functions. You can approximate such results with floating-point
numbers using vpa.

• If m is a vector or a matrix, then [K,E] = ellipke(m) returns the complete elliptic
integrals of the first and second kinds, evaluated for each element of m.

References

[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

 ellipke

4-347

See Also
ellipke | ellipticE | ellipticK | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-348

ellipticCE

Complementary complete elliptic integral of the second kind

Syntax

ellipticCE(m)

Description

ellipticCE(m) returns the complementary complete elliptic integral of the second
kind.

Input Arguments

m

Number, symbolic number, variable, expression, or function. This argument also can be a
vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Examples

Compute the complementary complete elliptic integrals of the second kind for these
numbers. Because these numbers are not symbolic objects, you get floating-point results.

s = [ellipticCE(0), ellipticCE(pi/4),...

 ellipticCE(1), ellipticCE(pi/2)]

s =

 1.0000 1.4828 1.5708 1.7753

Compute the complementary complete elliptic integrals of the second kind for the same
numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipticCE
returns unresolved symbolic calls.

 ellipticCE

4-349

s = [ellipticCE(sym(0)), ellipticCE(sym(pi/4)),...

 ellipticCE(sym(1)), ellipticCE(sym(pi/2))]

s =

[1, ellipticCE(pi/4), pi/2, ellipticCE(pi/2)]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =

[1.0, 1.482786927, 1.570796327, 1.775344699]

Differentiate these expressions involving the complementary complete elliptic integral of
the second kind:

syms m

diff(ellipticCE(m))

diff(ellipticCE(m^2), m, 2)

ans =

ellipticCE(m)/(2*m - 2) - ellipticCK(m)/(2*m - 2)

ans =

(2*ellipticCE(m^2))/(2*m^2 - 2) -...

(2*ellipticCK(m^2))/(2*m^2 - 2) +...

2*m*(((2*m*ellipticCK(m^2))/(2*m^2 - 2) -...

ellipticCE(m^2)/(m*(m^2 - 1)))/(2*m^2 - 2) +...

(2*m*(ellipticCE(m^2)/(2*m^2 - 2) -...

ellipticCK(m^2)/(2*m^2 - 2)))/(2*m^2 - 2) -...

(4*m*ellipticCE(m^2))/(2*m^2 - 2)^2 +...

(4*m*ellipticCK(m^2))/(2*m^2 - 2)^2)

Here, ellipticCK represents the complementary complete elliptic integral of the first
kind.

Plot the complementary complete elliptic integral of the second kind:

syms m

ezplot(ellipticCE(m))

title('Complementary complete elliptic integral of the second kind')

ylabel('ellipticCE(m)')

grid on

4 Functions — Alphabetical List

4-350

Call ellipticCE for this symbolic matrix. When the input argument is a matrix,
ellipticCE computes the complementary complete elliptic integral of the second kind
for each element.

ellipticCE(sym([pi/6 pi/4; pi/3 pi/2]))

ans =

[ellipticCE(pi/6), ellipticCE(pi/4)]

[ellipticCE(pi/3), ellipticCE(pi/2)]

 ellipticCE

4-351

More About

Complementary Complete Elliptic Integral of the Second Kind

The complementary complete elliptic integral of the second kind is defined as
E'(m) = E(1–m), where E(m) is the complete elliptic integral of the second kind:

E m E m m d() = Ê
ËÁ

ˆ
¯̃

= -Ú
p

q q
p

2
1 2

0

2

| sin

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips

• ellipticCE returns floating-point results for numeric arguments that are not
symbolic objects.

• For most symbolic (exact) numbers, ellipticCE returns unresolved symbolic calls.
You can approximate such results with floating-point numbers using vpa.

• If m is a vector or a matrix, then ellipticCE(m) returns the complementary
complete elliptic integral of the second kind, evaluated for each element of m.

References

[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
ellipke | ellipticCK | ellipticCPi | ellipticE | ellipticF | ellipticK |
ellipticPi | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-352

ellipticCK

Complementary complete elliptic integral of the first kind

Syntax

ellipticCK(m)

Description

ellipticCK(m) returns the complementary complete elliptic integral of the first kind.

Input Arguments

m

Number, symbolic number, variable, expression, or function. This argument also can be a
vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Examples

Compute the complementary complete elliptic integrals of the first kind for these
numbers. Because these numbers are not symbolic objects, you get floating-point results.

s = [ellipticCK(1/2), ellipticCK(pi/4), ellipticCK(1), ellipticCK(inf)]

s =

 1.8541 1.6671 1.5708 NaN

Compute the complete elliptic integrals of the first kind for the same numbers converted
to symbolic objects. For most symbolic (exact) numbers, ellipticCK returns unresolved
symbolic calls.

s = [ellipticCK(sym(1/2)), ellipticCK(sym(pi/4)),...

 ellipticCK

4-353

 ellipticCK(sym(1)), ellipticCK(sym(inf))]

s =

[ellipticCK(1/2), ellipticCK(pi/4), pi/2, ellipticCK(Inf)]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =

[1.854074677, 1.667061338, 1.570796327, NaN]

Differentiate these expressions involving the complementary complete elliptic integral of
the first kind:

syms m

diff(ellipticCK(m))

diff(ellipticCK(m^2), m, 2)

ans =

ellipticCE(m)/(2*m*(m - 1)) - ellipticCK(m)/(2*m - 2)

ans =

(2*(ellipticCE(m^2)/(2*m^2 - 2) -...

ellipticCK(m^2)/(2*m^2 - 2)))/(m^2 - 1) -...

(2*ellipticCE(m^2))/(m^2 - 1)^2 -...

(2*ellipticCK(m^2))/(2*m^2 - 2) +...

(8*m^2*ellipticCK(m^2))/(2*m^2 - 2)^2 +...

(2*m*((2*m*ellipticCK(m^2))/(2*m^2 - 2) -...

ellipticCE(m^2)/(m*(m^2 - 1))))/(2*m^2 - 2) -...

ellipticCE(m^2)/(m^2*(m^2 - 1))

Here, ellipticCE represents the complementary complete elliptic integral of the second
kind.

Plot the complementary complete elliptic integral of the first kind:

syms m

ezplot(ellipticCK(m), [0.1, 5])

title('Complementary complete elliptic integral of the first kind')

ylabel('ellipticCK(m)')

grid on

hold off

4 Functions — Alphabetical List

4-354

Call ellipticCK for this symbolic matrix. When the input argument is a matrix,
ellipticCK computes the complementary complete elliptic integral of the first kind for
each element.

ellipticCK(sym([pi/6 pi/4; pi/3 pi/2]))

ans =

[ellipticCK(pi/6), ellipticCK(pi/4)]

[ellipticCK(pi/3), ellipticCK(pi/2)]

 ellipticCK

4-355

More About

Complementary Complete Elliptic Integral of the First Kind

The complementary complete elliptic integral of the first kind is defined as
K'(m) = K(1–m), where K(m) is the complete elliptic integral of the first kind:

K m F m

m

d() = Ê
ËÁ

ˆ
¯̃

=
-

Ú
p

q
q

p

2

1

1 2
0

2

|
sin

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips

• ellipticK returns floating-point results for numeric arguments that are not
symbolic objects.

• For most symbolic (exact) numbers, ellipticCK returns unresolved symbolic
calls. You can approximate such results with floating-point numbers using the vpa
function.

• If m is a vector or a matrix, then ellipticCK(m) returns the complementary
complete elliptic integral of the first kind, evaluated for each element of m.

References

[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
ellipke | ellipticCE | ellipticCPi | ellipticE | ellipticF | ellipticK |
ellipticPi | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-356

ellipticCPi
Complementary complete elliptic integral of the third kind

Syntax

ellipticCPi(n,m)

Description

ellipticCPi(n,m) returns the complementary complete elliptic integral of the third
kind.

Input Arguments

n

Number, symbolic number, variable, expression, or function specifying the characteristic.
This argument also can be a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

m

Number, symbolic number, variable, expression, or function specifying the parameter.
This argument also can be a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

Examples

Compute the complementary complete elliptic integrals of the third kind for these
numbers. Because these numbers are not symbolic objects, you get floating-point results.

s = [ellipticCPi(-1, 1/3), ellipticCPi(0, 1/2),...

 ellipticCPi(9/10, 1), ellipticCPi(-1, 0)]

s =

 1.3703 1.8541 4.9673 Inf

 ellipticCPi

4-357

Compute the complementary complete elliptic integrals of the third kind for the
same numbers converted to symbolic objects. For most symbolic (exact) numbers,
ellipticCPi returns unresolved symbolic calls.

s = [ellipticCPi(-1, sym(1/3)), ellipticCPi(sym(0), 1/2),...

 ellipticCPi(sym(9/10), 1), ellipticCPi(-1, sym(0))]

s =

[ellipticCPi(-1, 1/3), ellipticCK(1/2), (pi*10^(1/2))/2, Inf]

Here, ellipticCK represents the complementary complete elliptic integrals of the first
kind.

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =

[1.370337322, 1.854074677, 4.967294133, Inf]

Differentiate these expressions involving the complementary complete elliptic integral of
the third kind:

syms n m

diff(ellipticCPi(n, m), n)

diff(ellipticCPi(n, m), m)

ans =

ellipticCK(m)/(2*n*(n - 1)) -...

ellipticCE(m)/(2*(n - 1)*(m + n - 1)) -...

(ellipticCPi(n, m)*(n^2 + m - 1))/(2*n*(n - 1)*(m + n - 1))

ans =

ellipticCE(m)/(2*m*(m + n - 1)) - ellipticCPi(n, m)/(2*(m + n - 1))

Here, ellipticCK and ellipticCE represent the complementary complete elliptic
integrals of the first and second kinds.

More About

Complementary Complete Elliptic Integral of the Third Kind

The complementary complete elliptic integral of the third kind is defined as
Π'(m) = Π(n, 1–m), where Π(n,m) is the complete elliptic integral of the third kind:

4 Functions — Alphabetical List

4-358

P Pn m n m

n m

d, ; |
sin sin

() = Ê
ËÁ

ˆ
¯̃

=
-() -

Ú
p

q q
q

p

2

1

1 12 2
0

2

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips

• ellipticCPi returns floating-point results for numeric arguments that are not
symbolic objects.

• For most symbolic (exact) numbers, ellipticCPi returns unresolved symbolic calls.
You can approximate such results with floating-point numbers using vpa.

• At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then ellipticCPi expands the scalar into a vector or matrix of
the same size as the other argument with all elements equal to that scalar.

References

[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
ellipke | ellipticCE | ellipticCK | ellipticE | ellipticF | ellipticK |
ellipticPi | vpa

Introduced in R2013a

 ellipticE

4-359

ellipticE
Complete and incomplete elliptic integrals of the second kind

Syntax

ellipticE(m)

ellipticE(phi,m)

Description

ellipticE(m) returns the complete elliptic integral of the second kind.

ellipticE(phi,m) returns the incomplete elliptic integral of the second kind.

Input Arguments

m

Number, symbolic number, variable, expression, or function specifying the parameter.
This argument also can be a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

phi

Number, symbolic number, variable, expression, or function specifying the amplitude.
This argument also can be a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

Examples

Compute the complete elliptic integrals of the second kind for these numbers. Because
these numbers are not symbolic objects, you get floating-point results.

s = [ellipticE(-10.5), ellipticE(-pi/4),...

 ellipticE(0), ellipticE(1)]

4 Functions — Alphabetical List

4-360

s =

 3.7096 1.8443 1.5708 1.0000

Compute the complete elliptic integral of the second kind for the same numbers
converted to symbolic objects. For most symbolic (exact) numbers, ellipticE returns
unresolved symbolic calls.

s = [ellipticE(sym(-10.5)), ellipticE(sym(-pi/4)),...

 ellipticE(sym(0)), ellipticE(sym(1))]

s =

[ellipticE(-21/2), ellipticE(-pi/4), pi/2, 1]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =

[3.70961391, 1.844349247, 1.570796327, 1.0]

Differentiate these expressions involving elliptic integrals of the second kind:

syms m

diff(ellipticE(pi/3, m))

diff(ellipticE(m^2), m, 2)

ans =

ellipticE(pi/3, m)/(2*m) - ellipticF(pi/3, m)/(2*m)

ans =

2*m*((ellipticE(m^2)/(2*m^2) -...

ellipticK(m^2)/(2*m^2))/m - ellipticE(m^2)/m^3 +...

ellipticK(m^2)/m^3 + (ellipticK(m^2)/m +...

ellipticE(m^2)/(m*(m^2 - 1)))/(2*m^2)) +...

ellipticE(m^2)/m^2 - ellipticK(m^2)/m^2

Here, ellipticK and ellipticF represent the complete and incomplete elliptic
integrals of the first kind, respectively.

Plot the incomplete elliptic integrals ellipticE(phi,m) for phi = pi/4 and phi =
pi/3. Also plot the complete elliptic integral ellipticE(m):

syms m

ezplot(ellipticE(pi/4, m))

 ellipticE

4-361

hold on

ezplot(ellipticE(pi/3, m))

ezplot(ellipticE(m))

title('Elliptic integrals of the second kind')

ylabel('ellipticE(m)')

legend('E(\pi/4|m)', 'E(\pi/3|m)', 'E(m)', 'Location', 'Best')

grid on

hold off

Call ellipticE for this symbolic matrix. When the input argument is a matrix,
ellipticE computes the complete elliptic integral of the second kind for each element.

ellipticE(sym([1/3 1; 1/2 0]))

4 Functions — Alphabetical List

4-362

ans =

[ellipticE(1/3), 1]

[ellipticE(1/2), pi/2]

Alternatives

You can use ellipke to compute elliptic integrals of the first and second kinds in one
function call.

More About

Incomplete Elliptic Integral of the Second Kind

The incomplete elliptic integral of the second kind is defined as follows:

E m m dj q q
j

| sin() = -Ú 1 2

0

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Complete Elliptic Integral of the Second Kind

The complete elliptic integral of the second kind is defined as follows:

E m E m m d() = Ê
ËÁ

ˆ
¯̃

= -Ú
p

q q
p

2
1 2

0

2

| sin

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips

• ellipticE returns floating-point results for numeric arguments that are not
symbolic objects.

 ellipticE

4-363

• For most symbolic (exact) numbers, ellipticE returns unresolved symbolic calls.
You can approximate such results with floating-point numbers using vpa.

• If m is a vector or a matrix, then ellipticE(m) returns the complete elliptic integral
of the second kind, evaluated for each element of m.

• At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then ellipticE expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

• ellipticE(pi/2, m) = ellipticE(m).

References

[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticF | ellipticK |
ellipticPi | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-364

ellipticF
Incomplete elliptic integral of the first kind

Syntax

ellipticF(phi,m)

Description

ellipticF(phi,m) returns the incomplete elliptic integral of the first kind.

Input Arguments

m

Number, symbolic number, variable, expression, or function specifying the parameter.
This argument also can be a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

phi

Number, symbolic number, variable, expression, or function specifying the amplitude.
This argument also can be a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

Examples

Compute the incomplete elliptic integrals of the first kind for these numbers. Because
these numbers are not symbolic objects, you get floating-point results.

s = [ellipticF(pi/3, -10.5), ellipticF(pi/4, -pi),...

 ellipticF(1, -1), ellipticF(pi/2, 0)]

s =

 ellipticF

4-365

 0.6184 0.6486 0.8964 1.5708

Compute the incomplete elliptic integrals of the first kind for the same numbers
converted to symbolic objects. For most symbolic (exact) numbers, ellipticF returns
unresolved symbolic calls.

s = [ellipticF(sym(pi/3), -10.5), ellipticF(sym(pi/4), -pi),...

ellipticF(sym(1), -1), ellipticF(pi/6, sym(0))]

s =

[ellipticF(pi/3, -21/2), ellipticF(pi/4, -pi), ellipticF(1, -1), pi/6]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =

[0.6184459461, 0.6485970495, 0.8963937895, 0.5235987756]

Differentiate this expression involving the incomplete elliptic integral of the first kind:

syms m

diff(ellipticF(pi/4, m))

ans =

1/(4*(1 - m/2)^(1/2)*(m - 1)) - ellipticF(pi/4, m)/(2*m) -...

ellipticE(pi/4, m)/(2*m*(m - 1))

Here, ellipticE represents the incomplete elliptic integral of the second kind.

Plot the incomplete elliptic integrals ellipticF(phi, m) for phi = pi/4 and phi =
pi/3. Also plot the complete elliptic integral ellipticK(m):

syms m

ezplot(ellipticF(pi/4, m))

hold on

ezplot(ellipticF(pi/3, m))

ezplot(ellipticK(m))

title('Elliptic integrals of the first kind')

ylabel('ellipticF(m)')

legend('F(pi/4|m', 'F(pi/3|m)', 'K(m)', 'Location', 'Best')

grid on

4 Functions — Alphabetical List

4-366

hold off

More About

Incomplete Elliptic Integral of the First Kind

The complete elliptic integral of the first kind is defined as follows:

F m

m

dj
q

q
j

|
sin

() =
-

Ú
1

1 2
0

 ellipticF

4-367

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips

• ellipticF returns floating-point results for numeric arguments that are not
symbolic objects.

• For most symbolic (exact) numbers, ellipticF returns unresolved symbolic calls.
You can approximate such results with floating-point numbers using vpa.

• At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, ellipticF expands the scalar into a vector or matrix of the same
size as the other argument with all elements equal to that scalar.

• ellipticF(pi/2, m) = ellipticK(m).

References

[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticE | ellipticK |
ellipticPi | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-368

ellipticK

Complete elliptic integral of the first kind

Syntax

ellipticK(m)

Description

ellipticK(m) returns the complete elliptic integral of the first kind.

Input Arguments

m

Number, symbolic number, variable, expression, or function. This argument also can be a
vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Examples

Compute the complete elliptic integrals of the first kind for these numbers. Because these
numbers are not symbolic objects, you get floating-point results.

s = [ellipticK(1/2), ellipticK(pi/4), ellipticK(1), ellipticK(-5.5)]

s =

 1.8541 2.2253 Inf 0.9325

Compute the complete elliptic integrals of the first kind for the same numbers converted
to symbolic objects. For most symbolic (exact) numbers, ellipticK returns unresolved
symbolic calls.

s = [ellipticK(sym(1/2)), ellipticK(sym(pi/4)),...

 ellipticK

4-369

 ellipticK(sym(1)), ellipticK(sym(-5.5))]

s =

[ellipticK(1/2), ellipticK(pi/4), Inf, ellipticK(-11/2)]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =

[1.854074677, 2.225253684, Inf, 0.9324665884]

Differentiate these expressions involving the complete elliptic integral of the first kind:

syms m

diff(ellipticK(m))

diff(ellipticK(m^2), m, 2)

ans =

- ellipticK(m)/(2*m) - ellipticE(m)/(2*m*(m - 1))

ans =

(2*ellipticE(m^2))/(m^2 - 1)^2 - (2*(ellipticE(m^2)/(2*m^2) -...

ellipticK(m^2)/(2*m^2)))/(m^2 - 1) + ellipticK(m^2)/m^2 +...

(ellipticK(m^2)/m + ellipticE(m^2)/(m*(m^2 - 1)))/m +...

ellipticE(m^2)/(m^2*(m^2 - 1))

Here, ellipticE represents the complete elliptic integral of the second kind.

Plot the complete elliptic integral of the first kind:

syms m

ezplot(ellipticK(m))

title('Complete elliptic integral of the first kind')

ylabel('ellipticK(m)')

grid on

4 Functions — Alphabetical List

4-370

Call ellipticK for this symbolic matrix. When the input argument is a matrix,
ellipticK computes the complete elliptic integral of the first kind for each element.

ellipticK(sym([-2*pi -4; 0 1]))

ans =

[ellipticK(-2*pi), ellipticK(-4)]

[pi/2, Inf]

Alternatives
You can use ellipke to compute elliptic integrals of the first and second kinds in one
function call.

 ellipticK

4-371

More About

Complete Elliptic Integral of the First Kind

The complete elliptic integral of the first kind is defined as follows:

K m F m

m

d() = Ê
ËÁ

ˆ
¯̃

=
-

Ú
p

q
q

p

2

1

1 2
0

2

|
sin

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips

• ellipticK returns floating-point results for numeric arguments that are not
symbolic objects.

• For most symbolic (exact) numbers, ellipticK returns unresolved symbolic calls.
You can approximate such results with floating-point numbers using vpa.

• If m is a vector or a matrix, then ellipticK(m) returns the complete elliptic integral
of the first kind, evaluated for each element of m.

References

[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticE | ellipticF |
ellipticPi | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-372

ellipticPi

Complete and incomplete elliptic integrals of the third kind

Syntax

ellipticPi(n,m)

ellipticPi(n,phi,m)

Description

ellipticPi(n,m) returns the complete elliptic integral of the third kind.

ellipticPi(n,phi,m) returns the incomplete elliptic integral of the third kind.

Input Arguments

n

Number, symbolic number, variable, expression, or function specifying the characteristic.
This argument also can be a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

m

Number, symbolic number, variable, expression, or function specifying the parameter.
This argument also can be a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

phi

Number, symbolic number, variable, expression, or function specifying the amplitude.
This argument also can be a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

 ellipticPi

4-373

Examples

Compute the incomplete elliptic integrals of the third kind for these numbers. Because
these numbers are not symbolic objects, you get floating-point results.

s = [ellipticPi(-2.3, pi/4, 0), ellipticPi(1/3, pi/3, 1/2),...

ellipticPi(-1, 0, 1), ellipticPi(2, pi/6, 2)]

s =

 0.5877 1.2850 0 0.7507

Compute the incomplete elliptic integrals of the third kind for the same numbers
converted to symbolic objects. For most symbolic (exact) numbers, ellipticPi returns
unresolved symbolic calls.

s = [ellipticPi(-2.3, sym(pi/4), 0), ellipticPi(sym(1/3), pi/3, 1/2),...

ellipticPi(-1, sym(0), 1), ellipticPi(2, pi/6, sym(2))]

s =

[ellipticPi(-23/10, pi/4, 0), ellipticPi(1/3, pi/3, 1/2),...

0, (2^(1/2)*3^(1/2))/2 - ellipticE(pi/6, 2)]

Here, ellipticE represents the incomplete elliptic integral of the second kind.

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =

[0.5876852228, 1.285032276, 0, 0.7507322117]

Differentiate these expressions involving the complete elliptic integral of the third kind:

syms n m

diff(ellipticPi(n, m), n)

diff(ellipticPi(n, m), m)

ans =

ellipticK(m)/(2*n*(n - 1)) + ellipticE(m)/(2*(m - n)*(n - 1)) -...

(ellipticPi(n, m)*(- n^2 + m))/(2*n*(m - n)*(n - 1))

ans =

- ellipticPi(n, m)/(2*(m - n)) - ellipticE(m)/(2*(m - n)*(m - 1))

Here, ellipticK and ellipticE represent the complete elliptic integrals of the first
and second kinds.

4 Functions — Alphabetical List

4-374

Call ellipticPi for the scalar and the matrix. When one input argument is a matrix,
ellipticPi expands the scalar argument to a matrix of the same size with all its
elements equal to the scalar.

ellipticPi(sym(0), sym([1/3 1; 1/2 0]))

ans =

[ellipticK(1/3), Inf]

[ellipticK(1/2), pi/2]

Here, ellipticK represents the complete elliptic integral of the first kind.

More About

Incomplete Elliptic Integral of the Third Kind

The incomplete elliptic integral of the third kind is defined as follows:

P n m

n m

d; |
sin sin

j
q q

q
j

() =
-() -

Ú
1

1 12 2
0

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Complete Elliptic Integral of the Third Kind

The complete elliptic integral of the third kind is defined as follows:

P Pn m n m

n m

d, ; |
sin sin

() = Ê
ËÁ

ˆ
¯̃

=
-() -

Ú
p

q q
q

p

2

1

1 12 2
0

2

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips

• ellipticPi returns floating-point results for numeric arguments that are not
symbolic objects.

 ellipticPi

4-375

• For most symbolic (exact) numbers, ellipticPi returns unresolved symbolic calls.
You can approximate such results with floating-point numbers using vpa.

• All non-scalar arguments must have the same size. If one or two input arguments are
non-scalar, then ellipticPi expands the scalars into vectors or matrices of the same
size as the non-scalar arguments, with all elements equal to the corresponding scalar.

• ellipticPi(n, pi/2, m) = ellipticPi(n, m).

References

[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticE | ellipticF |
ellipticK | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-376

eq

Define equation

Compatibility

In previous releases, eq in some cases evaluated equations involving only symbolic
numbers and returned logical 1 or 0. To obtain the same results as in previous releases,
wrap equations in isAlways. For example, use isAlways(A == B).

Syntax

A == B

eq(A,B)

Description

A == B creates a symbolic equation. You can use that equation as an argument for such
functions as solve, assume, ezplot, and subs.

eq(A,B) is equivalent to A == B.

Input Arguments

A

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

B

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

 eq

4-377

Examples
Solve this trigonometric equation. To define the equation, use the relational operator ==.

syms x

solve(sin(x) == cos(x), x)

ans =

pi/4

Plot this trigonometric equation. To define the equation, use the relational operator ==.

syms x y

ezplot(sin(x^2) == sin(y^2))

4 Functions — Alphabetical List

4-378

Test the equality of two symbolic expressions by using isAlways.

syms x

isAlways(x + 1 == x + 1)

ans =

 1

isAlways(sin(x)/cos(x) == tan(x))

ans =

 1

Check the equality of two symbolic matrices.

A = sym(hilb(3));

B = sym([1, 1/2, 5; 1/2, 2, 1/4; 1/3, 1/8, 1/5]);

isAlways(A == B)

ans =

 1 1 0

 1 0 1

 1 0 1

If you compare a matrix and a scalar, then == expands the scalar into a matrix of the
same dimensions as the input matrix.

A = sym(hilb(3));

B = sym(1/2);

isAlways(A == B)

ans =

 0 1 0

 1 0 0

 0 0 0

More About

Tips

• Calling == or eq for non-symbolic A and B invokes the MATLAB eq function. This
function returns a logical array with elements set to logical 1 (true) where A and B
are equal; otherwise, it returns logical 0 (false).

 eq

4-379

• If both A and B are arrays, then these arrays must have the same dimensions. A == B
returns an array of equations A(i,j,...) == B(i,j,...)

• If one input is scalar and the other is an array, then == expands the scalar into an
array of the same dimensions as the input array. In other words, if A is a variable
(for example, x), and B is an m-by-n matrix, then A is expanded into m-by-n matrix of
elements, each set to x.

See Also
ge | gt | isAlways | le | lt | ne | solve

Introduced in R2012a

4 Functions — Alphabetical List

4-380

equationsToMatrix
Convert set of linear equations to matrix form

Syntax

[A,b] = equationsToMatrix(eqns,vars)

[A,b] = equationsToMatrix(eqns)

A = equationsToMatrix(eqns,vars)

A = equationsToMatrix(eqns)

Description

[A,b] = equationsToMatrix(eqns,vars) converts eqns to the matrix form. Here
eqns must be linear equations in vars.

[A,b] = equationsToMatrix(eqns) converts eqns to the matrix form. Here
eqns must be a linear system of equations in all variables that symvar finds in these
equations.

A = equationsToMatrix(eqns,vars) converts eqns to the matrix form and returns
only the coefficient matrix. Here eqns must be linear equations in vars.

A = equationsToMatrix(eqns) converts eqns to the matrix form and returns only
the coefficient matrix. Here eqns must be a linear system of equations in all variables
that symvar finds in these equations.

Input Arguments

eqns

Vector of equations or equations separated by commas. Each equation is either a
symbolic equation defined by the relation operator == or a symbolic expression. If you
specify a symbolic expression (without the right side), equationsToMatrix assumes
that the right side is 0.

Equations must be linear in terms of vars.

 equationsToMatrix

4-381

vars

Independent variables of eqns. You can specify vars as a vector. Alternatively, you can
list variables separating them by commas.

Default: Variables determined by symvar

Output Arguments

A

Coefficient matrix of the system of linear equations.

b

Vector containing the right sides of equations.

Examples

Convert this system of linear equations to the matrix form. To get the coefficient matrix
and the vector of the right sides of equations, assign the result to a vector of two output
arguments:

syms x y z

[A, b] = equationsToMatrix([x + y - 2*z == 0, x + y + z == 1,...

 2*y - z + 5 == 0], [x, y, z])

A =

[1, 1, -2]

[1, 1, 1]

[0, 2, -1]

b =

 0

 1

 -5

Convert this system of linear equations to the matrix form. Assigning the result of the
equationsToMatrix call to a single output argument, you get the coefficient matrix. In
this case, equationsToMatrix does not return the vector containing the right sides of
equations:

4 Functions — Alphabetical List

4-382

syms x y z

A = equationsToMatrix([x + y - 2*z == 0, x + y + z == 1,...

 2*y - z + 5 == 0], [x, y, z])

A =

[1, 1, -2]

[1, 1, 1]

[0, 2, -1]

Convert this linear system of equations to the matrix form without specifying
independent variables. The toolbox uses symvar to identify variables:

syms s t

[A, b] = equationsToMatrix([s - 2*t + 1 == 0, 3*s - t == 10])

A =

[1, -2]

[3, -1]

b =

 -1

 10

Find the vector of variables determined for this system by symvar:

X = symvar([s - 2*t + 1 == 0, 3*s - t == 10])

X =

[s, t]

Convert X to a column vector:

X = X.'

X =

 s

 t

Verify that A, b, and X form the original equations:

A*X == b

ans =

 s - 2*t == -1

 3*s - t == 10

 equationsToMatrix

4-383

If the system is only linear in some variables, specify those variables explicitly:

syms a s t

[A, b] = equationsToMatrix([s - 2*t + a == 0, 3*s - a*t == 10], [t, s])

A =

[-2, 1]

[-a, 3]

b =

 -a

 10

You also can specify equations and variables all together, without using vectors and
simply separating each equation or variable by a comma. Specify all equations first, and
then specify variables:

syms x y

[A, b] = equationsToMatrix(x + y == 1, x - y + 1, x, y)

A =

[1, 1]

[1, -1]

b =

 1

 -1

Now change the order of the input arguments as follows. equationsToMatrix
finds the variable y, then it finds the expression x — y + 1. After that, it assumes
that all remaining arguments are equations, and stops looking for variables. Thus,
equationsToMatrix finds the variable y and the system of equations x + y = 1, x
= 0, x - y + 1 = 0:

[A, b] = equationsToMatrix(x + y == 1, x, x - y + 1, y)

A =

 1

 0

 -1

b =

 1 - x

 -x

 - x - 1

4 Functions — Alphabetical List

4-384

If you try to convert a nonlinear system of equations, equationsToMatrix throws an
error:

syms x y

[A, b] = equationsToMatrix(x^2 + y^2 == 1, x - y + 1, x, y)

Error using symengine (line 56)

Cannot convert to matrix form because

the system does not seem to be linear.

More About

Matrix Representation of a System of Linear Equations

A system of linear equations

a x a x a x b

a x a x a x b

a x a x

n n

n n

m m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =

+ + + =

+ +

…

…

L

…++ =a x bmn n m

can be represented as the matrix equation A x b◊ =

r r

, where A is the coefficient matrix:

A

a a

a a

n

m mn

=
Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

11 1

1

…

M O M

L

and b
r

 is the vector containing the right sides of equations:

b

b

bm

r
M=

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

1

Tips

• If you specify equations and variables all together, without dividing them into two
vectors, specify all equations first, and then specify variables. If input arguments are

 equationsToMatrix

4-385

not vectors, equationsToMatrix searches for variables starting from the last input
argument. When it finds the first argument that is not a single variable, it assumes
that all remaining arguments are equations, and therefore stops looking for variables.

See Also
linsolve | odeToVectorField | solve | symvar

Introduced in R2012b

4 Functions — Alphabetical List

4-386

erf
Error function

Syntax

erf(X)

Description

erf(X) represents the error function of X. If X is a vector or a matrix, erf(X) computes
the error function of each element of X.

Examples

Error Function for Floating-Point and Symbolic Numbers

Depending on its arguments, erf can return floating-point or exact symbolic results.

Compute the error function for these numbers. Because these numbers are not symbolic
objects, you get the floating-point results:

A = [erf(1/2), erf(1.41), erf(sqrt(2))]

A =

 0.5205 0.9539 0.9545

Compute the error function for the same numbers converted to symbolic objects. For most
symbolic (exact) numbers, erf returns unresolved symbolic calls:

symA = [erf(sym(1/2)), erf(sym(1.41)), erf(sqrt(sym(2)))]

symA =

[erf(1/2), erf(141/100), erf(2^(1/2))]

Use vpa to approximate symbolic results with the required number of digits:

 erf

4-387

d = digits(10);

vpa(symA)

digits(d)

ans =

[0.5204998778, 0.9538524394, 0.9544997361]

Error Function for Variables and Expressions

For most symbolic variables and expressions, erf returns unresolved symbolic calls.

Compute the error function for x and sin(x) + x*exp(x):

syms x

f = sin(x) + x*exp(x);

erf(x)

erf(f)

ans =

erf(x)

ans =

erf(sin(x) + x*exp(x))

Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, erf returns the error function for each
element of that vector or matrix.

Compute the error function for elements of matrix M and vector V:

M = sym([0 inf; 1/3 -inf]);

V = sym([1; -i*inf]);

erf(M)

erf(V)

ans =

[0, 1]

[erf(1/3), -1]

ans =

 erf(1)

 -Inf*1i

4 Functions — Alphabetical List

4-388

Special Values of Error Function

erf returns special values for particular parameters.

Compute the error function for x = 0, x = ∞, and x = –∞. Use sym to convert 0 and
infinities to symbolic objects. The error function has special values for these parameters:

[erf(sym(0)), erf(sym(Inf)), erf(sym(-Inf))]

ans =

[0, 1, -1]

Compute the error function for complex infinities. Use sym to convert complex infinities
to symbolic objects:

[erf(sym(i*Inf)), erf(sym(-i*Inf))]

ans =

[Inf*1i, -Inf*1i]

Handling Expressions That Contain Error Function

Many functions, such as diff and int, can handle expressions containing erf.

Compute the first and second derivatives of the error function:

syms x

diff(erf(x), x)

diff(erf(x), x, 2)

ans =

(2*exp(-x^2))/pi^(1/2)

ans =

-(4*x*exp(-x^2))/pi^(1/2)

Compute the integrals of these expressions:

int(erf(x), x)

int(erf(log(x)), x)

ans =

exp(-x^2)/pi^(1/2) + x*erf(x)

ans =

x*erf(log(x)) - int((2*exp(-log(x)^2))/pi^(1/2), x)

 erf

4-389

Plot Error Function

Plot the error function on the interval from -5 to 5.

syms x

ezplot(erf(x),[-5,5])

grid on

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

4 Functions — Alphabetical List

4-390

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Error Function

The following integral defines the error function:

erf x e dtt
x

() = -Ú
2 2

0
p

Tips

• Calling erf for a number that is not a symbolic object invokes the MATLAB erf
function. This function accepts real arguments only. If you want to compute the error
function for a complex number, use sym to convert that number to a symbolic object,
and then call erf for that symbolic object.

• For most symbolic (exact) numbers, erf returns unresolved symbolic calls. You can
approximate such results with floating-point numbers using vpa.

Algorithms

The toolbox can simplify expressions that contain error functions and their inverses. For
real values x, the toolbox applies these simplification rules:

• erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 - erf(x)) =

erfcinv(erfc(x)) = x

• erfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 + erf(x)) =

erfcinv(2 - erfc(x)) = -x

For any value x, the system applies these simplification rules:

• erfcinv(x) = erfinv(1 - x)

• erfinv(-x) = -erfinv(x)

• erfcinv(2 - x) = -erfcinv(x)

• erf(erfinv(x)) = erfc(erfcinv(x)) = x

 erf

4-391

• erf(erfcinv(x)) = erfc(erfinv(x)) = 1 - x

References

[1] Gautschi, W. “Error Function and Fresnel Integrals.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz
and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
erfc | erfcinv | erfi | erfinv

Introduced before R2006a

4 Functions — Alphabetical List

4-392

erfc
Complementary error function

Syntax

erfc(X)

erfc(K,X)

Description

erfc(X) represents the complementary error function of X, that is,erfc(X) = 1 -
erf(X).

erfc(K,X) represents the iterated integral of the complementary error function of X,
that is, erfc(K, X) = int(erfc(K - 1, y), y, X, inf).

Examples

Complementary Error Function for Floating-Point and Symbolic Numbers

Depending on its arguments, erfc can return floating-point or exact symbolic results.

Compute the complementary error function for these numbers. Because these numbers
are not symbolic objects, you get the floating-point results:

A = [erfc(1/2), erfc(1.41), erfc(sqrt(2))]

A =

 0.4795 0.0461 0.0455

Compute the complementary error function for the same numbers converted to symbolic
objects. For most symbolic (exact) numbers, erfc returns unresolved symbolic calls:

symA = [erfc(sym(1/2)), erfc(sym(1.41)), erfc(sqrt(sym(2)))]

symA =

 erfc

4-393

[erfc(1/2), erfc(141/100), erfc(2^(1/2))]

Use vpa to approximate symbolic results with the required number of digits:

d = digits(10);

vpa(symA)

digits(d)

ans =

[0.4795001222, 0.04614756064, 0.0455002639]

Error Function for Variables and Expressions

For most symbolic variables and expressions, erfc returns unresolved symbolic calls.

Compute the complementary error function for x and sin(x) + x*exp(x):

syms x

f = sin(x) + x*exp(x);

erfc(x)

erfc(f)

ans =

erfc(x)

ans =

erfc(sin(x) + x*exp(x))

Complementary Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, erfc returns the complementary error
function for each element of that vector or matrix.

Compute the complementary error function for elements of matrix M and vector V:

M = sym([0 inf; 1/3 -inf]);

V = sym([1; -i*inf]);

erfc(M)

erfc(V)

ans =

[1, 0]

[erfc(1/3), 2]

4 Functions — Alphabetical List

4-394

ans =

 erfc(1)

 1 + Inf*1i

Compute the iterated integral of the complementary error function for the elements of V
and M, and the integer -1:

erfc(-1, M)

erfc(-1, V)

ans =

[2/pi^(1/2), 0]

[(2*exp(-1/9))/pi^(1/2), 0]

ans =

 (2*exp(-1))/pi^(1/2)

 Inf

Special Values of Complementary Error Function

erfc returns special values for particular parameters.

Compute the complementary error function for x = 0, x = ∞, and x = –∞. The
complementary error function has special values for these parameters:

[erfc(0), erfc(Inf), erfc(-Inf)]

ans =

 1 0 2

Compute the complementary error function for complex infinities. Use sym to convert
complex infinities to symbolic objects:

[erfc(sym(i*Inf)), erfc(sym(-i*Inf))]

ans =

[1 - Inf*1i, 1 + Inf*1i]

Handling Expressions That Contain Complementary Error Function

Many functions, such as diff and int, can handle expressions containing erfc.

 erfc

4-395

Compute the first and second derivatives of the complementary error function:

syms x

diff(erfc(x), x)

diff(erfc(x), x, 2)

ans =

-(2*exp(-x^2))/pi^(1/2)

ans =

(4*x*exp(-x^2))/pi^(1/2)

Compute the integrals of these expressions:

syms x

int(erfc(-1, x), x)

ans =

erf(x)

int(erfc(x), x)

ans =

x*erfc(x) - exp(-x^2)/pi^(1/2)

int(erfc(2, x), x)

ans =

(x^3*erfc(x))/6 - exp(-x^2)/(6*pi^(1/2)) +...

(x*erfc(x))/4 - (x^2*exp(-x^2))/(6*pi^(1/2))

Plot Complementary Error Function

Plot the complementary error function on the interval from -5 to 5.

syms x

ezplot(erfc(x),[-5,5])

grid on

4 Functions — Alphabetical List

4-396

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

K — Input representing an integer larger than -2
number | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector | symbolic matrix

 erfc

4-397

Input representing an integer larger than -2, specified as a number, symbolic number,
variable, expression, or function. This arguments can also be a vector or matrix of
numbers, symbolic numbers, variables, expressions, or functions.

More About

Complementary Error Function

The following integral defines the complementary error function:

erfc x e dt erf xt

x

() = = - ()-
•

Ú
2

1
2

p

Here erf(x) is the error function.

Iterated Integral of Complementary Error Function

The following integral is the iterated integral of the complementary error function:

erfc k x erfc k y dy

x

, ,() = -()
•

Ú 1

Here, erfc x erfc x0,() = () .

Tips

• Calling erfc for a number that is not a symbolic object invokes the MATLAB erfc
function. This function accepts real arguments only. If you want to compute the
complementary error function for a complex number, use sym to convert that number
to a symbolic object, and then call erfc for that symbolic object.

• For most symbolic (exact) numbers, erfc returns unresolved symbolic calls. You can
approximate such results with floating-point numbers using vpa.

• At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then erfc expands the scalar into a vector or matrix of the same
size as the other argument with all elements equal to that scalar.

4 Functions — Alphabetical List

4-398

Algorithms

The toolbox can simplify expressions that contain error functions and their inverses. For
real values x, the toolbox applies these simplification rules:

• erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 - erf(x)) =

erfcinv(erfc(x)) = x

• erfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 + erf(x)) =

erfcinv(2 - erfc(x)) = -x

For any value x, the system applies these simplification rules:

• erfcinv(x) = erfinv(1 - x)

• erfinv(-x) = -erfinv(x)

• erfcinv(2 - x) = -erfcinv(x)

• erf(erfinv(x)) = erfc(erfcinv(x)) = x

• erf(erfcinv(x)) = erfc(erfinv(x)) = 1 - x

References

[1] Gautschi, W. “Error Function and Fresnel Integrals.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz
and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
erf | erfcinv | erfi | erfinv

Introduced in R2011b

 erfcinv

4-399

erfcinv

Inverse complementary error function

Syntax

erfcinv(X)

Description

erfcinv(X) computes the inverse complementary error function of X. If X is a vector or a
matrix, erfcinv(X) computes the inverse complementary error function of each element
of X.

Examples

Inverse Complementary Error Function for Floating-Point and Symbolic
Numbers

Depending on its arguments, erfcinv can return floating-point or exact symbolic
results.

Compute the inverse complementary error function for these numbers. Because these
numbers are not symbolic objects, you get floating-point results:

A = [erfcinv(1/2), erfcinv(1.33), erfcinv(3/2)]

A =

 0.4769 -0.3013 -0.4769

Compute the inverse complementary error function for the same numbers converted
to symbolic objects. For most symbolic (exact) numbers, erfcinv returns unresolved
symbolic calls:

symA = [erfcinv(sym(1/2)), erfcinv(sym(1.33)), erfcinv(sym(3/2))]

4 Functions — Alphabetical List

4-400

symA =

[-erfcinv(3/2), erfcinv(133/100), erfcinv(3/2)]

Use vpa to approximate symbolic results with the required number of digits:

d = digits(10);

vpa(symA)

digits(d)

ans =

[0.4769362762, -0.3013321461, -0.4769362762]

Inverse Complementary Error Function for Complex Numbers

To compute the inverse complementary error function for complex numbers, first convert
them to symbolic numbers.

Compute the inverse complementary error function for complex numbers. Use sym to
convert complex numbers to symbolic objects:

[erfcinv(sym(2 + 3*i)), erfcinv(sym(1 - i))]

ans =

[erfcinv(2 + 3i), -erfcinv(1 + 1i)]

Inverse Complementary Error Function for Variables and Expressions

For most symbolic variables and expressions, erfcinv returns unresolved symbolic calls.

Compute the inverse complementary error function for x and sin(x) + x*exp(x). For
most symbolic variables and expressions, erfcinv returns unresolved symbolic calls:

syms x

f = sin(x) + x*exp(x);

erfcinv(x)

erfcinv(f)

ans =

erfcinv(x)

ans =

 erfcinv

4-401

erfcinv(sin(x) + x*exp(x))

Inverse Complementary Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, erfcinv returns the inverse
complementary error function for each element of that vector or matrix.

Compute the inverse complementary error function for elements of matrix M and vector V:

M = sym([0 1 + i; 1/3 1]);

V = sym([2; inf]);

erfcinv(M)

erfcinv(V)

ans =

[Inf, erfcinv(1 + 1i)]

[-erfcinv(5/3), 0]

ans =

 -Inf

 -erfcinv(-Inf)

Special Values of Inverse Complementary Error Function

erfcinv returns special values for particular parameters.

Compute the inverse complementary error function for x = 0, x = 1, and x = 2. The inverse
complementary error function has special values for these parameters:

[erfcinv(0), erfcinv(1), erfcinv(2)]

ans =

 Inf 0 -Inf

Handling Expressions That Contain Inverse Complementary Error Function

Many functions, such as diff and int, can handle expressions containing erfcinv.

Compute the first and second derivatives of the inverse complementary error function:

syms x

4 Functions — Alphabetical List

4-402

diff(erfcinv(x), x)

diff(erfcinv(x), x, 2)

ans =

-(pi^(1/2)*exp(erfcinv(x)^2))/2

ans =

(pi*exp(2*erfcinv(x)^2)*erfcinv(x))/2

Compute the integral of the inverse complementary error function:

int(erfcinv(x), x)

ans =

exp(-erfcinv(x)^2)/pi^(1/2)

Plot Inverse Complementary Error Function

Plot the inverse complementary error function on the interval from 0 to 2.

syms x

ezplot(erfcinv(x),[0,2])

grid on

 erfcinv

4-403

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

4 Functions — Alphabetical List

4-404

More About

Inverse Complementary Error Function

The inverse complementary error function is defined as erfc-1(x), such that
erfc(erfc-1(x)) = x. Here

erfc x e dt erf xt

x

() = = - ()-
•

Ú
2

1
2

p

is the complementary error function.

Tips

• Calling erfcinv for a number that is not a symbolic object invokes the MATLAB
erfcinv function. This function accepts real arguments only. If you want to compute
the inverse complementary error function for a complex number, use sym to convert
that number to a symbolic object, and then call erfcinv for that symbolic object.

• If x < 0 or x > 2, the MATLAB erfcinv function returns NaN. The symbolic erfcinv
function returns unresolved symbolic calls for such numbers. To call the symbolic
erfcinv function, convert its argument to a symbolic object using sym.

Algorithms

The toolbox can simplify expressions that contain error functions and their inverses. For
real values x, the toolbox applies these simplification rules:

• erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 - erf(x)) =

erfcinv(erfc(x)) = x

• erfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 + erf(x)) =

erfcinv(2 - erfc(x)) = -x

For any value x, the toolbox applies these simplification rules:

• erfcinv(x) = erfinv(1 - x)

• erfinv(-x) = -erfinv(x)

• erfcinv(2 - x) = -erfcinv(x)

• erf(erfinv(x)) = erfc(erfcinv(x)) = x

 erfcinv

4-405

• erf(erfcinv(x)) = erfc(erfinv(x)) = 1 - x

References

[1] Gautschi, W. “Error Function and Fresnel Integrals.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz
and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
erf | erfc | erfi | erfinv

Introduced in R2012a

4 Functions — Alphabetical List

4-406

erfi
Imaginary error function

Syntax
erfi(x)

Description
erfi(x) returns the imaginary error function of x. If x is a vector or a matrix, erfi(x)
returns the imaginary error function of each element of x.

Examples

Imaginary Error Function for Floating-Point and Symbolic Numbers

Depending on its arguments, erfi can return floating-point or exact symbolic results.

Compute the imaginary error function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

s = [erfi(1/2), erfi(1.41), erfi(sqrt(2))]

s =

 0.6150 3.7382 3.7731

Compute the imaginary error function for the same numbers converted to symbolic
objects. For most symbolic (exact) numbers, erfi returns unresolved symbolic calls.

s = [erfi(sym(1/2)), erfi(sym(1.41)), erfi(sqrt(sym(2)))]

s =

[erfi(1/2), erfi(141/100), erfi(2^(1/2))]

Use vpa to approximate this result with the 10-digit accuracy:

vpa(s, 10)

ans =

 erfi

4-407

[0.6149520947, 3.738199581, 3.773122512]

Imaginary Error Function for Variables and Expressions

Compute the imaginary error function for x and sin(x) + x*exp(x). For most
symbolic variables and expressions, erfi returns unresolved symbolic calls.

syms x

f = sin(x) + x*exp(x);

erfi(x)

erfi(f)

ans =

erfi(x)

ans =

erfi(sin(x) + x*exp(x))

Imaginary Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, erfi returns the imaginary error function
for each element of that vector or matrix.

Compute the imaginary error function for elements of matrix M and vector V:

M = sym([0 inf; 1/3 -inf]);

V = sym([1; -i*inf]);

erfi(M)

erfi(V)

ans =

[0, Inf]

[erfi(1/3), -Inf]

ans =

 erfi(1)

 -1i

Special Values of Imaginary Error Function

Compute the imaginary error function for x = 0, x = ∞, and x = –∞. Use sym to convert
0 and infinities to symbolic objects. The imaginary error function has special values for
these parameters:

4 Functions — Alphabetical List

4-408

[erfi(sym(0)), erfi(sym(inf)), erfi(sym(-inf))]

ans =

[0, Inf, -Inf]

Compute the imaginary error function for complex infinities. Use sym to convert complex
infinities to symbolic objects:

[erfi(sym(i*inf)), erfi(sym(-i*inf))]

ans =

[1i, -1i]

Handling Expressions That Contain Imaginary Error Function

Many functions, such as diff and int, can handle expressions containing erfi.

Compute the first and second derivatives of the imaginary error function:

syms x

diff(erfi(x), x)

diff(erfi(x), x, 2)

ans =

(2*exp(x^2))/pi^(1/2)

ans =

(4*x*exp(x^2))/pi^(1/2)

Compute the integrals of these expressions:

int(erfi(x), x)

int(erfi(log(x)), x)

ans =

x*erfi(x) - exp(x^2)/pi^(1/2)

ans =

x*erfi(log(x)) - int((2*exp(log(x)^2))/pi^(1/2), x)

Plot Imaginary Error Function

Plot the imaginary error function on the interval from -2 to 2.

 erfi

4-409

syms x

ezplot(erfi(x),[-2,2])

grid on

Input Arguments

x — Input
floating-point number | symbolic number | symbolic variable | symbolic expression |
symbolic function | symbolic vector | symbolic matrix

Input, specified as a floating-point or symbolic number, variable, expression, function,
vector, or matrix.

4 Functions — Alphabetical List

4-410

More About

Imaginary Error Function

The imaginary error function is defined as:

erfi x ierf ix e dtt
x

() = - () = Ú
2 2

0
p

Tips

• erfi returns special values for these parameters:

• erfi(0) = 0

• erfi(inf) = inf

• erfi(-inf) = -inf

• erfi(i*inf) = i

• erfi(-i*inf) = -i

See Also
erf | erfc | erfcinv | erfinv | vpa

Introduced in R2013a

 erfinv

4-411

erfinv
Inverse error function

Syntax
erfinv(X)

Description
erfinv(X) computes the inverse error function of X. If X is a vector or a matrix,
erfinv(X) computes the inverse error function of each element of X.

Examples

Inverse Error Function for Floating-Point and Symbolic Numbers

Depending on its arguments, erfinv can return floating-point or exact symbolic results.

Compute the inverse error function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results:

A = [erfinv(1/2), erfinv(0.33), erfinv(-1/3)]

A =

 0.4769 0.3013 -0.3046

Compute the inverse error function for the same numbers converted to symbolic objects.
For most symbolic (exact) numbers, erfinv returns unresolved symbolic calls:

symA = [erfinv(sym(1)/2), erfinv(sym(0.33)), erfinv(sym(-1)/3)]

symA =

[erfinv(1/2), erfinv(33/100), -erfinv(1/3)]

Use vpa to approximate symbolic results with the required number of digits:

d = digits(10);

vpa(symA)

digits(d)

4 Functions — Alphabetical List

4-412

ans =

[0.4769362762, 0.3013321461, -0.3045701942]

Inverse Error Function for Complex Numbers

To compute the inverse error function for complex numbers, first convert them to
symbolic numbers.

Compute the inverse error function for complex numbers. Use sym to convert complex
numbers to symbolic objects:

[erfinv(sym(2 + 3*i)), erfinv(sym(1 - i))]

ans =

[erfinv(2 + 3i), erfinv(1 - 1i)]

Inverse Error Function for Variables and Expressions

For most symbolic variables and expressions, erfinv returns unresolved symbolic calls.

Compute the inverse error function for x and sin(x) + x*exp(x). For most symbolic
variables and expressions, erfinv returns unresolved symbolic calls:

syms x

f = sin(x) + x*exp(x);

erfinv(x)

erfinv(f)

ans =

erfinv(x)

ans =

erfinv(sin(x) + x*exp(x))

Inverse Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, erfinv returns the inverse error function
for each element of that vector or matrix.

Compute the inverse error function for elements of matrix M and vector V:

M = sym([0 1 + i; 1/3 1]);

V = sym([-1; inf]);

 erfinv

4-413

erfinv(M)

erfinv(V)

ans =

[0, erfinv(1 + 1i)]

[erfinv(1/3), Inf]

ans =

 -Inf

 erfinv(Inf)

Special Values of Inverse Complementary Error Function

erfinv returns special values for particular parameters.

Compute the inverse error function for x = –1, x = 0, and x = 1. The inverse error function
has special values for these parameters:

[erfinv(-1), erfinv(0), erfinv(1)]

ans =

 -Inf 0 Inf

Handling Expressions That Contain Inverse Complementary Error Function

Many functions, such as diff and int, can handle expressions containing erfinv.

Compute the first and second derivatives of the inverse error function:

syms x

diff(erfinv(x), x)

diff(erfinv(x), x, 2)

ans =

(pi^(1/2)*exp(erfinv(x)^2))/2

ans =

(pi*exp(2*erfinv(x)^2)*erfinv(x))/2

Compute the integral of the inverse error function:

int(erfinv(x), x)

ans =

-exp(-erfinv(x)^2)/pi^(1/2)

4 Functions — Alphabetical List

4-414

Plot Inverse Error Function

Plot the inverse error function on the interval from -1 to 1.

syms x

ezplot(erfinv(x),[-1,1])

grid on

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

 erfinv

4-415

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Inverse Error Function

The inverse error function is defined as erf -1(x), such that erf(erf -1(x)) = erf -1(erf(x)) = x.
Here

erf x e dtt
x

() = -Ú
2 2

0
p

is the error function.

Tips

• Calling erfinv for a number that is not a symbolic object invokes the MATLAB
erfinv function. This function accepts real arguments only. If you want to compute
the inverse error function for a complex number, use sym to convert that number to a
symbolic object, and then call erfinv for that symbolic object.

• If x < –1 or x > 1, the MATLAB erfinv function returns NaN. The symbolic erfinv
function returns unresolved symbolic calls for such numbers. To call the symbolic
erfinv function, convert its argument to a symbolic object using sym.

Algorithms

The toolbox can simplify expressions that contain error functions and their inverses. For
real values x, the toolbox applies these simplification rules:

• erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 - erf(x)) =

erfcinv(erfc(x)) = x

• erfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 + erf(x)) =

erfcinv(2 - erfc(x)) = -x

For any value x, the toolbox applies these simplification rules:

• erfcinv(x) = erfinv(1 - x)

4 Functions — Alphabetical List

4-416

• erfinv(-x) = -erfinv(x)

• erfcinv(2 - x) = -erfcinv(x)

• erf(erfinv(x)) = erfc(erfcinv(x)) = x

• erf(erfcinv(x)) = erfc(erfinv(x)) = 1 - x

References

[1] Gautschi, W. “Error Function and Fresnel Integrals.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz
and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
erf | erfc | erfcinv | erfi

Introduced in R2012a

 euler

4-417

euler
Euler numbers and polynomials

Syntax

euler(n)

euler(n,x)

Description

euler(n) returns the nth Euler number.

euler(n,x) returns the nth Euler polynomial.

Examples

Euler Numbers with Odd and Even Indices

The Euler numbers with even indices alternate the signs. Any Euler number with an odd
index is 0.

Compute the even-indexed Euler numbers with the indices from 0 to 10:

euler(0:2:10)

ans =

 1 -1 5 -61...

 1385 -50521

Compute the odd-indexed Euler numbers with the indices from 1 to 11:

euler(1:2:11)

ans =

 0 0 0 0 0 0

4 Functions — Alphabetical List

4-418

Euler Polynomials

For the Euler polynomials, use euler with two input arguments.

Compute the first, second, and third Euler polynomials in variables x, y, and z,
respectively:

syms x y z

euler(1, x)

euler(2, y)

euler(3, z)

ans =

x - 1/2

ans =

y^2 - y

ans =

z^3 - (3*z^2)/2 + 1/4

If the second argument is a number, euler evaluates the polynomial at that number.
Here, the result is a floating-point number because the input arguments are not symbolic
numbers:

euler(2, 1/3)

ans =

 -0.2222

To get the exact symbolic result, convert at least one number to a symbolic object:

euler(2, sym(1/3))

ans =

-2/9

Plot Euler Polynomials

Plot the first six Euler polynomials.

syms x

for n = 0:5

 euler

4-419

 ezplot(euler(n, x), [-1, 2])

 hold on

end

title('Euler Polynomials')

grid on

hold off

Handle Expressions Containing Euler Polynomials

Many functions, such as diff and expand, can handle expressions containing euler.

Find the first and second derivatives of the Euler polynomial:

4 Functions — Alphabetical List

4-420

syms n x

diff(euler(n,x^2), x)

ans =

2*n*x*euler(n - 1, x^2)

diff(euler(n,x^2), x, x)

ans =

2*n*euler(n - 1, x^2) + 4*n*x^2*euler(n - 2, x^2)*(n - 1)

Expand these expressions containing the Euler polynomials:

expand(euler(n, 2 - x))

ans =

2*(1 - x)^n - (-1)^n*euler(n, x)

expand(euler(n, 2*x))

ans =

(2*2^n*bernoulli(n + 1, x + 1/2))/(n + 1) -...

(2*2^n*bernoulli(n + 1, x))/(n + 1)

Input Arguments

n — Index of the Euler number or polynomial
nonnegative integer | symbolic nonnegative integer | symbolic variable | symbolic
expression | symbolic function | symbolic vector | symbolic matrix

Index of the Euler number or polynomial, specified as a nonnegative integer, symbolic
nonnegative integer, variable, expression, function, vector, or matrix. If n is a vector or
matrix, euler returns Euler numbers or polynomials for each element of n. If one input
argument is a scalar and the other one is a vector or a matrix, euler(n,x) expands the
scalar into a vector or matrix of the same size as the other argument with all elements
equal to that scalar.

x — Polynomial variable
symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic
matrix

Polynomial variable, specified as a symbolic variable, expression, function, vector, or
matrix. If x is a vector or matrix, euler returns Euler numbers or polynomials for

 euler

4-421

each element of x. When you use the euler function to find Euler polynomials, at least
one argument must be a scalar or both arguments must be vectors or matrices of the
same size. If one input argument is a scalar and the other one is a vector or a matrix,
euler(n,x) expands the scalar into a vector or matrix of the same size as the other
argument with all elements equal to that scalar.

More About

Euler Polynomials

The Euler polynomials are defined as follows:

2

1 0

e

e

n x
t

n

xt

t

n

n+
= ()

=

•

Â euler ,
!

Euler Numbers

The Euler numbers are defined in terms of Euler polynomials as follows:

euler euler ,n n
n() = Ê

Ë
Á

ˆ
¯
˜2

1

2

Tips

• For the other meaning of Euler’s number, e = 2.71828…, call exp(1) to return the
double-precision representation. For the exact representation of Euler’s number e, call
exp(sym(1)).

• For the Euler-Mascheroni constant, see eulergamma.

See Also
bernoulli | eulergamma

Introduced in R2014a

4 Functions — Alphabetical List

4-422

eulergamma
Euler-Mascheroni constant

Syntax
eulergamma

Description
eulergamma represents the Euler-Mascheroni constant. To get a floating-point
approximation with the current precision set by digits, use vpa(eulergamma).

Examples

Represent and Numerically Approximate the Euler-Mascheroni Constant

Represent the Euler-Mascheroni constant using eulergamma, which returns the
symbolic form eulergamma.

eulergamma

ans =

eulergamma

Use eulergamma in symbolic calculations. Numerically approximate your result with
vpa.

a = eulergamma;

g = a^2 + log(a)

gVpa = vpa(g)

g =

log(eulergamma) + eulergamma^2

gVpa =

-0.21636138917392614801928563244766

Find the double-precision approximation of the Euler-Mascheroni constant using
double.

 eulergamma

4-423

double(eulergamma)

ans =

 0.5772

Show Relation of Euler-Mascheroni Constant to Gamma Functions

Show the relations between the Euler-Mascheroni constant γ, digamma function Ψ, and
gamma function Γ.

Show that g = - ()Y 1 .

-psi(sym(1))

ans =

eulergamma

Show that g = - ()
=G ’ .x

x 1

syms x

-subs(diff(gamma(x)),x,1)

ans =

eulergamma

More About

Euler-Mascheroni Constant

The Euler-Mascheroni constant is defined as follows:

g =
Ê

Ë
ÁÁ

ˆ

¯
˜̃ - ()

Ê

Ë
Á
Á

ˆ

¯
˜
˜Æ• =

Âlim ln
n

k

n

k
n

1

1

Tips

• For the value e = 2.71828…, called Euler’s number, use exp(1) to return the double-
precision representation. For the exact representation of Euler’s number e, call
exp(sym(1)).

4 Functions — Alphabetical List

4-424

• For the other meaning of Euler’s numbers and for Euler’s polynomials, see euler.

See Also
coshint | euler

Introduced in R2014a

 evalin

4-425

evalin
Evaluate MuPAD expressions without specifying their arguments

Syntax
result = evalin(symengine,MuPAD_expression)

[result,status] = evalin(symengine,MuPAD_expression)

Description
result = evalin(symengine,MuPAD_expression) evaluates the MuPAD
expression MuPAD_expression, and returns result as a symbolic object. If
MuPAD_expression throws an error in MuPAD, then this syntax throws an error in
MATLAB.

[result,status] = evalin(symengine,MuPAD_expression) lets you catch
errors thrown by MuPAD. This syntax returns the error status in status and the error
message in result if status is nonzero. If status is 0, result is a symbolic object;
otherwise, it is a string.

Input Arguments

MuPAD_expression

String containing a MuPAD expression.

Output Arguments

result

Symbolic object or string containing a MuPAD error message.

status

Integer indicating the error status. If MuPAD_expression executes without errors, the
error status is 0.

4 Functions — Alphabetical List

4-426

Examples
Compute the discriminant of the following polynomial:

evalin(symengine,'polylib::discrim(a*x^2+b*x+c,x)')

ans =

 b^2 - 4*a*c

Try using polylib::discrim to compute the discriminant of the following
nonpolynomial expression:

[result, status] = evalin(symengine,'polylib::discrim(a*x^2+b*x+c*ln(x),x)')

result =

An arithmetical expression is expected.

status =

 2

Alternatives
feval lets you evaluate MuPAD expressions with arguments. When using feval, you
must explicitly specify the arguments of the MuPAD expression.

More About

Tips

• Results returned by evalin can differ from the results that you get using a MuPAD
notebook directly. The reason is that evalin sets a lower level of evaluation to
achieve better performance.

• evalin does not open a MuPAD notebook, and therefore, you cannot use this function
to access MuPAD graphics capabilities.

• “Evaluations in Symbolic Computations”
• “Level of Evaluation”

See Also
feval | read | symengine

 evalin

4-427

Introduced in R2008b

4 Functions — Alphabetical List

4-428

evaluateMuPADNotebook
Evaluate MuPAD notebook

Syntax

evaluateMuPADNotebook(nb)

evaluateMuPADNotebook(nb,'IgnoreErrors',true)

Description

evaluateMuPADNotebook(nb) evaluates the MuPAD notebook with the handle nb and
returns logical 1 (true) if evaluation runs without errors. If nb is a vector of notebook
handles, then this syntax returns a vector of logical 1s.

evaluateMuPADNotebook(nb,'IgnoreErrors',true) does not stop evaluating the
notebook when it encounters an error. This syntax skips any input region of a MuPAD
notebook that causes errors, and proceeds to the next one. If the evaluation runs without
errors, this syntax returns logical 1 (true). Otherwise, it returns logical 0 (false). The
error messages appear in the MuPAD notebook only.

By default, evaluateMuPADNotebook uses 'IgnoreErrors',false, and therefore,
evaluateMuPADNotebook stops when it encounters an error in a notebook. The error
messages appear in the MATLAB Command Window and in the MuPAD notebook.

Examples

Evaluate Particular Notebook

Execute commands in all input regions of a MuPAD notebook. Results of the evaluation
appear in the output regions of the notebook.

Suppose that your current folder contains a MuPAD notebook named myFile1.mn. Open
this notebook keeping its handle in the variable nb1:

nb1 = mupad('myFile1.mn');

 evaluateMuPADNotebook

4-429

Evaluate all input regions in this notebook. If all calculations run without an error, then
evaluateMuPADNotebook returns logical 1 (true):

evaluateMuPADNotebook(nb1)

ans =

 1

Evaluate Several Notebooks

Use a vector of notebook handles to evaluate several notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nb1 = mupad('myFile1.mn')

nb2 = mupad('myFile2.mn')

nb3 = mupad

nb1 =

myFile1

nb2 =

myFile2

nb3 =

Notebook1

Evaluate myFile1.mn and myFile2.mn:

evaluateMuPADNotebook([nb1, nb2])

ans =

 1

Evaluate All Open Notebooks

Identify and evaluate all open MuPAD notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nb1 = mupad('myFile1.mn')

4 Functions — Alphabetical List

4-430

nb2 = mupad('myFile2.mn')

nb3 = mupad

nb1 =

myFile1

nb2 =

myFile2

nb3 =

Notebook1

Get a list of all currently open notebooks:

allNBs = allMuPADNotebooks;

Evaluate all notebooks. If all calculations run without an error, then
evaluateMuPADNotebook returns an array of logical 1s (true):

evaluateMuPADNotebook(allNBs)

ans =

 1

 1

 1

Evaluate All Open Notebooks Ignoring Errors

Identify and evaluate all open MuPAD notebooks skipping evaluations that cause errors.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nb1 = mupad('myFile1.mn')

nb2 = mupad('myFile2.mn')

nb3 = mupad

nb1 =

myFile1

nb2 =

myFile2

nb3 =

Notebook1

 evaluateMuPADNotebook

4-431

Get a list of all currently open notebooks:

allNBs = allMuPADNotebooks;

Evaluate all notebooks using 'IgnoreErrors',true to skip any calculations that cause
errors. If all calculations run without an error, then evaluateMuPADNotebook returns
an array of logical 1s (true):

evaluateMuPADNotebook(allNBs,'IgnoreErrors',true)

ans =

 1

 1

 1

Otherwise, it returns logical 0s for notebooks that cause errors (false):

ans =

 0

 1

 1

• “Create MuPAD Notebooks” on page 3-3
• “Open MuPAD Notebooks” on page 3-6
• “Save MuPAD Notebooks” on page 3-12
• “Evaluate MuPAD Notebooks from MATLAB” on page 3-13
• “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25
• “Close MuPAD Notebooks from MATLAB” on page 3-16

Input Arguments

nb — Pointer to MuPAD notebook
handle to notebook | vector of handles to notebooks

Pointer to MuPAD notebook, specified as a MuPAD notebook handle or a vector of
handles. You create the notebook handle when opening a notebook with the mupad or
openmn function.

You can get the list of all open notebooks using the allMuPADNotebooks
function. evaluateMuPADNotebook accepts a vector of handles returned by
allMuPADNotebooks.

4 Functions — Alphabetical List

4-432

See Also
allMuPADNotebooks | close | getVar | mupad | mupadNotebookTitle | openmn |
setVar

Introduced in R2013b

 expand

4-433

expand
Symbolic expansion of polynomials and elementary functions

Syntax

expand(S)

expand(S,Name,Value)

Description

expand(S) expands the symbolic expression S. expand is often used with polynomials.
It also expands trigonometric, exponential, and logarithmic functions.

expand(S,Name,Value) expands S using additional options specified by one or more
Name,Value pair arguments.

Input Arguments

S

Symbolic expression or symbolic matrix.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'ArithmeticOnly'

If the value is true, expand the arithmetic part of an expression without expanding
trigonometric, hyperbolic, logarithmic, and special functions. This option does not
prevent expansion of powers and roots.

Default: false

4 Functions — Alphabetical List

4-434

'IgnoreAnalyticConstraints'

If the value is true, apply purely algebraic simplifications to an expression.
With IgnoreAnalyticConstraints, expand can return simpler results for the
expressions for which it would return more complicated results otherwise. Using
IgnoreAnalyticConstraints also can lead to results that are not equivalent to the
initial expression.

Default: false

Examples

Expand the expression:

syms x

expand((x - 2)*(x - 4))

ans =

x^2 - 6*x + 8

Expand the trigonometric expression:

syms x y

expand(cos(x + y))

ans =

cos(x)*cos(y) - sin(x)*sin(y)

Expand the exponent:

syms a b

expand(exp((a + b)^2))

ans =

exp(a^2)*exp(b^2)*exp(2*a*b)

Expand the expressions that form a vector:

syms t

expand([sin(2*t), cos(2*t)])

ans =

[2*cos(t)*sin(t), 2*cos(t)^2 - 1]

 expand

4-435

Expand this expression. By default, expand works on all subexpressions including
trigonometric subexpressions:

syms x

expand((sin(3*x) - 1)^2)

ans =

2*sin(x) + sin(x)^2 - 8*cos(x)^2*sin(x) - 8*cos(x)^2*sin(x)^2...

 + 16*cos(x)^4*sin(x)^2 + 1

To prevent expansion of trigonometric, hyperbolic, and logarithmic subexpressions and
subexpressions involving special functions, use ArithmeticOnly:

expand((sin(3*x) - 1)^2, 'ArithmeticOnly', true)

ans =

sin(3*x)^2 - 2*sin(3*x) + 1

Expand this logarithm. By default, the expand function does not expand logarithms
because expanding logarithms is not valid for generic complex values:

syms a b c

expand(log((a*b/c)^2))

ans =

log((a^2*b^2)/c^2)

To apply the simplification rules that let the expand function expand logarithms, use
IgnoreAnalyticConstraints:

expand(log((a*b/c)^2), 'IgnoreAnalyticConstraints', true)

ans =

 2*log(a) + 2*log(b) - 2*log(c)

More About

Algorithms

When you use IgnoreAnalyticConstraints, expand applies these rules:

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the following equality
is valid for all values of a, b, and c:

4 Functions — Alphabetical List

4-436

 (a·b)c = ac·bc.
• log(ab) = b·log(a) for all values of a and b. In particular, the following equality is valid

for all values of a, b, and c:

 (ab)c = ab·c.
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, f(g(x)) = x is assumed to be valid for all complex x. In particular:

• log(ex) = x
• asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x
• asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x
• Wk(x·ex) = x for all values of k

• “Choose Function to Rearrange Expression” on page 2-61

See Also
collect | combine | factor | horner | numden | rewrite | simplify |
simplifyFraction

Introduced before R2006a

 expint

4-437

expint
Exponential integral function

Syntax

expint(x)

expint(n,x)

Description

expint(x) returns the one-argument exponential integral function defined as

expint x
e

t
dt

xt

() =
-•

Ú
1

.

expint(n,x) returns the two-argument exponential integral function defined as

expint n x
e

t

dt

xt

n
, .() =

-•

Ú
1

Examples

One-Argument Exponential Integral for Floating-Point and Symbolic
Numbers

Compute the exponential integrals for floating-point numbers. Because these numbers
are not symbolic objects, you get floating-point results.

s = [expint(1/3), expint(1), expint(-2)]

s =

4 Functions — Alphabetical List

4-438

 0.8289 + 0.0000i 0.2194 + 0.0000i -4.9542 - 3.1416i

Compute the exponential integrals for the same numbers converted to symbolic objects.
For positive values x, expint(x) returns -ei(-x). For negative values x, it returns -
pi*i - ei(-x).

s = [expint(sym(1)/3), expint(sym(1)), expint(sym(-2))]

s =

[-ei(-1/3), -ei(-1), - pi*1i - ei(2)]

Use vpa to approximate this result with 10-digit accuracy.

vpa(s, 10)

ans =

[0.8288877453, 0.2193839344, - 4.954234356 - 3.141592654i]

Two-Argument Exponential Integral for Floating-Point and Symbolic
Numbers

When computing two-argument exponential integrals, convert the numbers to symbolic
objects.

s = [expint(2, sym(1)/3), expint(sym(1), Inf), expint(-1, sym(-2))]

s =

[expint(2, 1/3), 0, -exp(2)/4]

Use vpa to approximate this result with 25-digit accuracy.

vpa(s, 25)

ans =

[0.4402353954575937050522018, 0, -1.847264024732662556807607]

Two-Argument Exponential Integral with Nonpositive First Argument

Compute two-argument exponential integrals. If n is a nonpositive integer, then
expint(n, x) returns an explicit expression in the form exp(-x)*p(1/x), where p is
a polynomial of degree 1 - n.

syms x

 expint

4-439

expint(0, x)

expint(-1, x)

expint(-2, x)

ans =

exp(-x)/x

ans =

exp(-x)*(1/x + 1/x^2)

ans =

exp(-x)*(1/x + 2/x^2 + 2/x^3)

Derivatives of Exponential Integral

Compute the first, second, and third derivatives of a one-argument exponential integral.

syms x

diff(expint(x), x)

diff(expint(x), x, 2)

diff(expint(x), x, 3)

ans =

-exp(-x)/x

ans =

exp(-x)/x + exp(-x)/x^2

ans =

- exp(-x)/x - (2*exp(-x))/x^2 - (2*exp(-x))/x^3

Compute the first derivatives of a two-argument exponential integral.

syms n x

diff(expint(n, x), x)

diff(expint(n, x), n)

ans =

-expint(n - 1, x)

ans =

- hypergeom([1 - n, 1 - n], [2 - n, 2 - n],...

 -x)/(n - 1)^2 - (x^(n - 1)*pi*(psi(n) - ...

 log(x) + pi*cot(pi*n)))/(sin(pi*n)*gamma(n))

4 Functions — Alphabetical List

4-440

Input Arguments

x — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function, vector, or matrix.

n — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function, vector, or matrix.
When you compute the two-argument exponential integral function, at least one
argument must be a scalar.

More About

Tips

• Calling expint for numbers that are not symbolic objects invokes the MATLAB
expint function. This function accepts one argument only. To compute the two-
argument exponential integral, use sym to convert the numbers to symbolic objects,
and then call expint for those symbolic objects. You can approximate the results with
floating-point numbers using vpa.

• The following values of the exponential integral differ from those returned by the
MATLAB expint function: expint(sym(Inf)) = 0, expint(-sym(Inf)) = -
Inf, expint(sym(NaN)) = NaN.

• For positive x, expint(x) = -ei(-x). For negative x, expint(x) = -pi*i -
ei(-x).

• If one input argument is a scalar and the other argument is a vector or a matrix, then
expint(n,x) expands the scalar into a vector or matrix of the same size as the other
argument with all elements equal to that scalar.

Algorithms

The relation between expint and ei is

expint(1,-x) = ei(x) + (ln(x)-ln(1/x))/2 - ln(-x)

 expint

4-441

Both functions ei(x) and expint(1,x) have a logarithmic singularity at the origin
and a branch cut along the negative real axis. The ei function is not continuous when
approached from above or below this branch cut.

The expint function is related to the upper incomplete gamma function igamma as

expint(n,x) = (x^(n-1))*igamma(1-n,x)

See Also
ei | expint | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-442

expm

Matrix exponential

Syntax

R = expm(A)

Description

R = expm(A) computes the matrix exponential of the square matrix A.

Examples

Matrix Exponential

Compute the matrix exponential for the 2-by-2 matrix and simplify the result.

syms x

A = [0 x; -x 0];

simplify(expm(A))

ans =

[cos(x), sin(x)]

[-sin(x), cos(x)]

Input Arguments

A — Input matrix
square matrix

Input matrix, specified as a square symbolic matrix.

 expm

4-443

Output Arguments

R — Resulting matrix
symbolic matrix

Resulting function, returned as a symbolic matrix.

More About

Matrix Exponential

The matrix exponential eA of matrix A is

e
k

A A
AA k

k

= = + + +

=

•

Â
1

1
2

0

2

!
…

See Also
eig | funm | jordan | logm | sqrtm

Introduced before R2006a

4 Functions — Alphabetical List

4-444

ezcontour
Contour plotter

Syntax
ezcontour(f)

ezcontour(f,domain)

ezcontour(...,n)

Description
ezcontour(f) plots the contour lines of f(x,y), where f is a symbolic expression that
represents a mathematical function of two variables, such as x and y.

The function f is plotted over the default domain –2π < x < 2π, –2π < y < 2π. MATLAB
software chooses the computational grid according to the amount of variation that occurs;
if the function f is not defined (singular) for points on the grid, then these points are not
plotted.

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x <
max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain endpoints
umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezcontour(u^2 - v^3,
[0,1],[3,6]) plots the contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

ezcontour(...,n) plots f over the default domain using an n-by-n grid. The default
value for n is 60.

ezcontour automatically adds a title and axis labels.

Examples

Plot Contour Lines of Symbolic Expression

The following mathematical expression defines a function of two variables, x and y.

 ezcontour

4-445

f x y x e
x

x y e ex y x y x(,) () () (= - - - -Ê
ËÁ

ˆ
¯̃

-- - + - - - +3 1 10
5

1

3

2 2 1 2 3 5 2 2 1)) .
2 2-y

ezcontour requires a sym argument that expresses this function using MATLAB syntax
to represent exponents, natural logs, etc. This function is represented by the symbolic
expression

syms x y

f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...

 - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)...

 - 1/3*exp(-(x+1)^2 - y^2);

For convenience, this expression is written on three lines.

Pass the sym f to ezcontour along with a domain ranging from -3 to 3 and specify a
computational grid of 49-by-49.

ezcontour(f,[-3,3],49)

4 Functions — Alphabetical List

4-446

In this particular case, the title is too long to fit at the top of the graph so MATLAB
abbreviates the string.

See Also
contour | ezcontourf | ezmesh | ezmeshc | ezplot | ezplot3 | ezpolar |
ezsurf | ezsurfc

Introduced before R2006a

 ezcontourf

4-447

ezcontourf
Filled contour plotter

Syntax

ezcontourf(f)

ezcontourf(f,domain)

ezcontourf(...,n)

Description

ezcontourf(f) plots the contour lines of f(x,y), where f is a sym that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain –2π < x < 2π, –2π < y < 2π. MATLAB
software chooses the computational grid according to the amount of variation that occurs;
if the function f is not defined (singular) for points on the grid, then these points are not
plotted.

ezcontourf(f,domain) plots f(x,y) over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x <
max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain endpoints
umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezcontourf(u^2 - v^3,
[0,1],[3,6]) plots the contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

ezcontourf(...,n) plots f over the default domain using an n-by-n grid. The default
value for n is 60.

ezcontourf automatically adds a title and axis labels.

Examples

The following mathematical expression defines a function of two variables, x and y.

4 Functions — Alphabetical List

4-448

f x y x e
x

x y e ex y x y x(,) () () (= - - - -Ê
ËÁ

ˆ
¯̃

-- - + - - - +3 1 10
5

1

3

2 2 1 2 3 5 2 2 1)) .
2 2-y

ezcontourf requires a sym argument that expresses this function using MATLAB
syntax to represent exponents, natural logs, etc. This function is represented by the
symbolic expression

syms x y

f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...

 - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)...

 - 1/3*exp(-(x+1)^2 - y^2);

For convenience, this expression is written on three lines.

Pass the sym f to ezcontourf along with a domain ranging from -3 to 3 and specify a
grid of 49-by-49.

ezcontourf(f,[-3,3],49)

 ezcontourf

4-449

In this particular case, the title is too long to fit at the top of the graph so MATLAB
abbreviates the string.

See Also
contourf | ezcontour | ezmesh | ezmeshc | ezplot | ezplot3 | ezpolar |
ezsurf | ezsurfc

Introduced before R2006a

4 Functions — Alphabetical List

4-450

ezmesh
3-D mesh plotter

Syntax

ezmesh(f)

ezmesh(f, domain)

ezmesh(x,y,z)

ezmesh(x,y,z,[smin,smax,tmin,tmax])

ezmesh(x,y,z,[min,max])

ezmesh(...,n)

ezmesh(...,'circ')

Description

ezmesh(f) creates a graph of f(x,y), where f is a symbolic expression that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain –2π < x < 2π, –2π < y < 2π. MATLAB
software chooses the computational grid according to the amount of variation that occurs;
if the function f is not defined (singular) for points on the grid, then these points are not
plotted.

ezmesh(f, domain) plots f over the specified domain. domain can be either a 4-by-1
vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max,
min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain endpoints
umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezmesh(u^2 - v^3,
[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezmesh(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t) over the
square –2π < s < 2π, –2π < t < 2π.

ezmesh(x,y,z,[smin,smax,tmin,tmax]) or ezmesh(x,y,z,[min,max]) plots the
parametric surface using the specified domain.

 ezmesh

4-451

ezmesh(...,n) plots f over the default domain using an n-by-n grid. The default value
for n is 60.

ezmesh(...,'circ') plots f over a disk centered on the domain.

Examples

This example visualizes the function,

f x y xe x y(,) ,=
- -

2 2

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a uniform blue color
by setting the colormap to a single color.

syms x y

ezmesh(x*exp(-x^2-y^2),[-2.5,2.5],40)

colormap([0 0 1])

4 Functions — Alphabetical List

4-452

See Also
ezcontour | ezcontourf | ezmeshc | ezplot | ezplot3 | ezpolar | ezsurf |
ezsurfc | mesh

Introduced before R2006a

 ezmeshc

4-453

ezmeshc
Combined mesh and contour plotter

Syntax

ezmeshc(f)

ezmeshc(f,domain)

ezmeshc(x,y,z)

ezmeshc(x,y,z,[smin,smax,tmin,tmax])

ezmeshc(x,y,z,[min,max])

ezmeshc(...,n)

ezmeshc(...,'circ')

Description

ezmeshc(f) creates a graph of f(x,y), where f is a symbolic expression that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain –2π < x < 2π, –2π < y < 2π. MATLAB
software chooses the computational grid according to the amount of variation that occurs;
if the function f is not defined (singular) for points on the grid, then these points are not
plotted.

ezmeshc(f,domain) plots f over the specified domain. domain can be either a 4-by-1
vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max,
min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain endpoints
umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezmeshc(u^2 - v^3,
[0,1],[3,6]) plots u2 – v3 over 0 < u < 1, 3 < v < 6.

ezmeshc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t) over the
square –2π < s < 2π, –2π < t < 2π.

ezmeshc(x,y,z,[smin,smax,tmin,tmax]) or ezmeshc(x,y,z,[min,max]) plots
the parametric surface using the specified domain.

4 Functions — Alphabetical List

4-454

ezmeshc(...,n) plots f over the default domain using an n-by-n grid. The default value
for n is 60.

ezmeshc(...,'circ') plots f over a disk centered on the domain.

Examples

Create a mesh/contour graph of the expression,

f x y
y

x y
(,) ,=

+ +1 2 2

over the domain –5 < x < 5, –2π < y < 2π. Use the mouse to rotate the axes to better
observe the contour lines (this picture uses a view of azimuth = –65 and elevation = 26).

syms x y

ezmeshc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi])

 ezmeshc

4-455

See Also
ezcontour | ezcontourf | ezmesh | ezplot | ezplot3 | ezpolar | ezsurf |
ezsurfc | meshc

Introduced before R2006a

4 Functions — Alphabetical List

4-456

ezplot
Plot symbolic expression, equation, or function

Syntax

ezplot(f)

ezplot(f,[min,max])

ezplot(f,[xmin,xmax,ymin,ymax])

ezplot(x,y)

ezplot(x,y,[tmin,tmax])

ezplot(f,[min,max],fig)

ezplot(f,[xmin,xmax,ymin,ymax],fig)

ezplot(x,y,[tmin,tmax],fig)

h = ezplot(___)

Description

ezplot(f) plots a symbolic expression, equation, or function f. By default, ezplot
plots a univariate expression or function over the range [–2π 2π] or over a subinterval
of this range. If f is an equation or function of two variables, the default range for both
variables is [–2π 2π] or over a subinterval of this range.

ezplot(f,[min,max]) plots f over the specified range. If f is a univariate expression
or function, then [min,max] specifies the range for that variable. This is the range
along the abscissa (horizontal axis). If f is an equation or function of two variables,
then [min,max] specifies the range for both variables, that is the ranges along both the
abscissa and the ordinate.

ezplot(f,[xmin,xmax,ymin,ymax]) plots f over the specified ranges along the
abscissa and the ordinate.

ezplot(x,y) plots the parametrically defined planar curve x = x(t) and y = y(t) over the
default range 0 <= t <= 2π or over a subinterval of this range.

 ezplot

4-457

ezplot(x,y,[tmin,tmax]) plots x = x(t) and y = y(t) over the specified range
tmin <= t <= tmax.

ezplot(f,[min,max],fig) plots f over the specified range in the figure with the
figure number or figure handle fig. The title of each plot window contains the word
Figure and the number, for example, Figure 1, Figure 2, and so on. If fig is already
open, ezplot overwrites the content of that figure with the new plot.

ezplot(f,[xmin,xmax,ymin,ymax],fig) plots f over the specified ranges along the
abscissa and the ordinate in fig.

ezplot(x,y,[tmin,tmax],fig) plots x = x(t) and y = y(t) over the specified range in
fig.

h = ezplot(___) returns the plot handle as either a chart line or contour object.

Input Arguments

f

Symbolic expression, equation, or function.

[min,max]

Numbers specifying the plotting range. For a univariate expression or function, the
plotting range applies to that variable. For an equation or function of two variables,
the plotting range applies to both variables. In this case, the range is the same for the
abscissa and the ordinate.

Default: [-2*pi,2*pi] or its subinterval.

[xmin,xmax,ymin,ymax]

Numbers specifying the plotting range along the abscissa (first two numbers) and the
ordinate (last two numbers).

Default: [-2*pi,2*pi,-2*pi,2*pi] or its subinterval.

fig

Figure handle or number of the figure window where you want to display a plot.

4 Functions — Alphabetical List

4-458

Default: For figure handle, the current figure handle returned by gcf. For figure
number, if no plot windows are open, then 1. If one plot window is open, then the number
in the title of that window. If more than one plot window is open, then the highest
number in the titles of open windows.

x,y

Symbolic expressions or functions defining a parametric curve x = x(t) and y = y(t).

[tmin,tmax]

Numbers specifying the plotting range for a parametric curve.

Default: [0,2*pi] or its subinterval.

Output Arguments

h — Chart line or contour line object
scalar

Chart line or contour line object, returned as a scalar. For details, see Chart Line
Properties and Contour Properties.

Examples

Plot Over Particular Range

Plot the expression erf(x)*sin(x) over the range [–π, π]:

syms x

ezplot(erf(x), [-pi, pi])

 ezplot

4-459

Plot Over Default Range

Plot this equation over the default range.

syms x y

ezplot(x^2 == y^4)

4 Functions — Alphabetical List

4-460

Plot Symbolic Function

Create this symbolic function f(x, y):

syms x y

f(x, y) = sin(x + y)*sin(x*y);

Plot this function over the default range:

ezplot(f)

 ezplot

4-461

Plot Parametric Curve

Plot this parametric curve:

syms t

x = t*sin(5*t);

y = t*cos(5*t);

ezplot(x, y)

4 Functions — Alphabetical List

4-462

More About

Tips

• If you do not specify a plot range, ezplot uses the interval [–2π 2π] as a starting
point. Then it can choose to display a part of the plot over a subinterval of [–2π 2π]
where the plot has significant variation. Also, when selecting the plotting range,
ezplot omits extreme values associated with singularities.

• ezplot open a plot window and displays a plot there. If any plot windows are already
open, ezplot does not create a new window. Instead, it displays the new plot in the
currently active window. (Typically, it is the window with the highest number.) To

 ezplot

4-463

display the new plot in a new plot window or in an existing window other than that
with highest number, use fig.

• If f is an equation or function of two variables, then the alphabetically first variable
defines the abscissa (horizontal axis) and the other variable defines the ordinate
(vertical axis). Thus, ezplot(x^2 == a^2,[-3,3,-2,2]) creates the plot of the
equation x2 = a2 with –3 <= a <= 3 along the horizontal axis, and –2 <= x <= 2 along
the vertical axis.

• “Create Plots” on page 2-214

See Also
ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot3 | ezpolar | ezsurf |
ezsurfc | plot

Introduced before R2006a

4 Functions — Alphabetical List

4-464

ezplot3

3-D parametric curve plotter

Syntax

ezplot3(x,y,z)

ezplot3(x,y,z,[tmin,tmax])

ezplot3(...,'animate')

Description

ezplot3(x,y,z) plots the spatial curve x = x(t), y = y(t), and z = z(t) over the default
domain 0 < t < 2π.

ezplot3(x,y,z,[tmin,tmax]) plots the curve x = x(t), y = y(t), and z = z(t) over the
domain tmin < t < tmax.

ezplot3(...,'animate') produces an animated trace of the spatial curve.

Examples

Plot the parametric curve x = sin(t), y = cos(t), z = t over the domain [0, 6π].

syms t

ezplot3(sin(t), cos(t), t,[0,6*pi])

 ezplot3

4-465

See Also
ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot | ezpolar | ezsurf |
ezsurfc | plot3

Introduced before R2006a

4 Functions — Alphabetical List

4-466

ezpolar

Polar coordinate plotter

Syntax

ezpolar(f)

ezpolar(f, [a, b])

Description

ezpolar(f) plots the polar curve r = f(θ) over the default domain 0 < θ < 2π.

ezpolar(f, [a, b]) plots f for a < θ < b.

Examples

This example creates a polar plot of the function, 1 + cos(t), over the domain [0, 2π].

syms t

ezpolar(1 + cos(t))

 ezpolar

4-467

Introduced before R2006a

4 Functions — Alphabetical List

4-468

ezsurf
Plot 3-D surface

Syntax

ezsurf(f)

ezsurf(f,[xmin,xmax])

ezsurf(f,[xmin,xmax,ymin,ymax])

ezsurf(x,y,z)

ezsurf(x,y,z,[smin,smax])

ezsurf(x,y,z,[smin,smax,tmin,tmax])

ezsurf(___ ,n)

ezsurf(___ ,'circ')

h = ezsurf(___)

Description

ezsurf(f) plots a two-variable symbolic expression or function f(x,y) over the range
-2*pi < x < 2*pi, -2*pi < y < 2*pi.

ezsurf(f,[xmin,xmax]) plots f(x,y) over the specified range xmin < x < xmax.
This is the range along the abscissa (horizontal axis).

ezsurf(f,[xmin,xmax,ymin,ymax]) plots f(x,y) over the specified ranges along the
abscissa, xmin < x < xmax, and the ordinate, ymin < y < ymax.

When determining the range values, ezsurf sorts variables alphabetically. For example,
ezsurf(x^2 - a^3, [0,1,3,6]) plots x^2 - a^3 over 0 < a < 1, 3 < x < 6.

ezsurf(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), z = z(s,t)
over the range -2*pi < s < 2*pi, -2*pi < t < 2*pi.

ezsurf(x,y,z,[smin,smax]) plots the parametric surface x = x(s,t), y =
y(s,t), z = z(s,t) over the specified range smin < s < smax.

 ezsurf

4-469

ezsurf(x,y,z,[smin,smax,tmin,tmax]) plots the parametric surface x = x(s,t),
y = y(s,t), z = z(s,t) over the specified ranges smin < s < smax and tmin < t
< tmax.

ezsurf(___ ,n) specifies the grid. You can specify n after the input arguments in any
of the previous syntaxes. By default, n = 60.

ezsurf(___ ,'circ') creates the surface plot over a disk centered on the range. You
can specify'circ' after the input arguments in any of the previous syntaxes.

h = ezsurf(___) returns a handle h to the surface plot object. You can use the output
argument h with any of the previous syntaxes.

Examples

Plot Function Over Default Range

Plot the symbolic function f(x,y) = real(atan(x + i*y)) over the default range
-2*pi < x < 2*pi, -2*pi < y < 2*pi.

Create the symbolic function.

syms f(x,y)

f(x,y) = real(atan(x + i*y));

Plot this function using ezsurf.

ezsurf(f)

4 Functions — Alphabetical List

4-470

Specify Plotting Ranges

Plot the symbolic expression x^2 + y^2 over the range -1 < x < 1. Because you do
not specify the range for the y-axis, ezsurf chooses it automatically.

syms x y

ezsurf(x^2 + y^2, [-1, 1])

 ezsurf

4-471

Specify the range for both axes.

ezsurf(x^2 + y^2, [-1, 1, -0.5, 1.5])

4 Functions — Alphabetical List

4-472

Plot Parameterized Surface

Define the parametric surface x(s,t), y(s,t), z(s,t) as follows.

syms s t

r = 2 + sin(7*s + 5*t);

x = r*cos(s)*sin(t);

y = r*sin(s)*sin(t);

z = r*cos(t);

Plot the function using ezsurf.

ezsurf(x, y, z, [0, 2*pi, 0, pi])

title('Parametric surface')

 ezsurf

4-473

To create a smoother plot, increase the number of mesh points.

ezsurf(x, y, z, [0, 2*pi, 0, pi], 120)

title('Parametric surface with grid = 120')

4 Functions — Alphabetical List

4-474

Specify Disk Plotting Range

First, plot the expression sin(x^2 + y^2) over the square range -pi/2 < x < pi/2,
-pi/2 < y < pi/2.

syms x y

ezsurf(sin(x^2 + y^2), [-pi/2, pi/2, -pi/2, pi/2])

 ezsurf

4-475

Now, plot the same expression over the disk range.

ezsurf(sin(x^2 + y^2), [-pi/2, pi/2, -pi/2, pi/2],'circ')

4 Functions — Alphabetical List

4-476

Use Handle to Surface Plot

Plot the symbolic expression sin(x)cos(x), and assign the result to the handle h.

syms x y

h = ezsurf(sin(x)*cos(y), [-pi, pi])

h =

 Surface with properties:

 EdgeColor: [0 0 0]

 LineStyle: '-'

 FaceColor: 'flat'

 ezsurf

4-477

 FaceLighting: 'flat'

 FaceAlpha: 1

 XData: [60x60 double]

 YData: [60x60 double]

 ZData: [60x60 double]

 CData: [60x60 double]

 Use GET to show all properties

You can use this handle to change properties of the plot. For example, change the color of
the area outline.

h.EdgeColor = 'red'

4 Functions — Alphabetical List

4-478

h =

 Surface with properties:

 EdgeColor: [1 0 0]

 LineStyle: '-'

 FaceColor: 'flat'

 FaceLighting: 'flat'

 FaceAlpha: 1

 XData: [60x60 double]

 YData: [60x60 double]

 ZData: [60x60 double]

 CData: [60x60 double]

 Use GET to show all properties

 ezsurf

4-479

• “Create Plots” on page 2-214

Input Arguments

f — Function to plot
symbolic expression with two variables | symbolic function of two variables

Function to plot, specified as a symbolic expression or function of two variables.
Example: ezsurf(x^2 + y^2)

x,y,z — Parametric function to plot
three symbolic expressions with two variables | three symbolic functions of two variables

4 Functions — Alphabetical List

4-480

Parametric function to plot, specified as three symbolic expressions or functions of two
variables.
Example: ezsurf(s*cos(t), s*sin(t), t)

n — Grid value
integer

Grid value, specified as an integer. The default grid value is 60.

Output Arguments

h — Surface plot handle
scalar

Surface plot handle, returned as a scalar. It is a unique identifier, which you can use to
query and modify properties of the surface plot.

More About

Tips

• ezsurf chooses the computational grid according to the amount of variation that
occurs. If f is singular for some points on the grid, then ezsurf omits these points.
The value at these points is set to NaN.

See Also
ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot | ezpolar | ezsurfc |
surf

Introduced before R2006a

 ezsurfc

4-481

ezsurfc
Combined surface and contour plotter

Syntax

ezsurfc(f)

ezsurfc(f,domain)

ezsurfc(x,y,z)

ezsurfc(x,y,z,[smin,smax,tmin,tmax])

ezsurfc(x,y,z,[min,max])

ezsurfc(...,n)

ezsurfc(...,'circ')

Description

ezsurfc(f) creates a graph of f(x,y), where f is a symbolic expression that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain –2π < x < 2π, –2π < y < 2π. MATLAB
software chooses the computational grid according to the amount of variation that occurs;
if the function f is not defined (singular) for points on the grid, then these points are not
plotted.

ezsurfc(f,domain) plots f over the specified domain. domain can be either a 4-by-1
vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max,
min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain endpoints
umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezsurfc(u^2 - v^3,
[0,1],[3,6]) plots u2 – v3 over 0 < u < 1, 3 < v < 6.

ezsurfc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t) over the
square –2π < s < 2π, –2π < t < 2π.

ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or ezsurfc(x,y,z,[min,max]) plots
the parametric surface using the specified domain.

4 Functions — Alphabetical List

4-482

ezsurfc(...,n) plots f over the default domain using an n-by-n grid. The default value
for n is 60.

ezsurfc(...,'circ') plots f over a disk centered on the domain.

Examples

Create a surface/contour plot of the expression,

f x y
y

x y
(,) ,=

+ +1 2 2

over the domain –5 < x < 5, –2π < y < 2π, with a computational grid of size 35-by-35. Use
the mouse to rotate the axes to better observe the contour lines (this picture uses a view
of azimuth = -65 and elevation = 26).

syms x y

ezsurfc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi],35)

 ezsurfc

4-483

See Also
ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot | ezpolar | ezsurf |
surfc

Introduced before R2006a

4 Functions — Alphabetical List

4-484

factor
Factorization

Syntax

F = factor(x)

F = factor(x,vars)

F = factor(___ ,Name,Value)

Description

F = factor(x) returns all irreducible factors of x in vector F. If x is an integer, factor
returns the prime factorization of x. If x is a symbolic expression, factor returns the
subexpressions that are factors of x.

F = factor(x,vars) returns an array of factors F, where vars specifies the variables
of interest. All factors not containing a variable in vars are separated into the first entry
F(1). The other entries are irreducible factors of x that contain one or more variables
from vars.

F = factor(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. This syntax can use any of the input arguments from the
previous syntaxes.

Examples

Factor Integer Numbers

F = factor(823429252)

F =

 2 2 59 283 12329

To factor integers greater than flintmax, convert the integer to a symbolic object using
sym. Then place the number in quotation marks to represent it accurately.

 factor

4-485

F = factor(sym('82342925225632328'))

F =

[2, 2, 2, 251, 401, 18311, 5584781]

To factor a negative integer, convert it to a symbolic object using sym.

F = factor(sym(-92465))

F =

[-1, 5, 18493]

Perform Prime Factorization of Large Numbers

Perform prime factorization for 41758540882408627201. Since the integer is greater
than flintmax, convert it to a symbolic object using sym, and place the number in
quotation marks to represent it accurately.

n = sym('41758540882408627201');

factor(n)

ans =

[479001599, 87178291199]

Factor Symbolic Fractions

Factor the fraction 112/81 by converting it into a symbolic object using sym.

F = factor(sym(112/81))

F =

[2, 2, 2, 2, 7, 1/3, 1/3, 1/3, 1/3]

Factor Polynomials

Factor the polynomial x^6-1.

syms x

F = factor(x^6-1)

F =

[x - 1, x + 1, x^2 + x + 1, x^2 - x + 1]

4 Functions — Alphabetical List

4-486

Factor the polynomial y^6-x^6.

syms y

F = factor(y^6-x^6)

F =

[-1, x - y, x + y, x^2 + x*y + y^2, x^2 - x*y + y^2]

Separate Factors Containing Specified Variables

Factor y^2*x^2 for factors containing x.

syms x y

F = factor(y^2*x^2,x)

F =

[y^2, x, x]

factor combines all factors without x into the first element. The remaining elements of
F contain irreducible factors that contain x.

Factor the polynomial y for factors containing symbolic variables b and c.

syms a b c d

y = -a*b^5*c*d*(a^2 - 1)*(a*d - b*c);

F = factor(y,[b c])

F =

[-a*d*(a - 1)*(a + 1), b, b, b, b, b, c, a*d - b*c]

factor combines all factors without b or c into the first element of F. The remaining
elements of F contain irreducible factors of y that contain either b or c.

Choose Factorization Modes

Use the FactorMode argument to choose a particular factorization mode.

Factor an expression without specifying the factorization mode. By default, factor uses
factorization over rational numbers. In this mode, factor keeps rational numbers in
their exact symbolic form.

syms x

 factor

4-487

factor(x^3 + 2, x)

ans =

x^3 + 2

Factor the same expression, but this time use numeric factorization over real numbers.
This mode factors the expression into linear and quadratic irreducible polynomials with
real coefficients and converts all numeric values to floating-point numbers.

factor(x^3 + 2, x, 'FactorMode', 'real')

ans =

[x + 1.2599210498948731647672106072782,...

 x^2 - 1.2599210498948731647672106072782*x + 1.5874010519681994747517056392723]

Factor this expression using factorization over complex numbers. In this mode, factor
reduces quadratic polynomials to linear expressions with complex coefficients. This mode
converts all numeric values to floating-point numbers.

factor(x^3 + 2, x, 'FactorMode', 'complex')

ans =

[x + 1.2599210498948731647672106072782,...

 x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i,...

 x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i]

Factor this expression using the full factorization mode. This mode factors the expression
into linear expressions, reducing quadratic polynomials to linear expressions with
complex coefficients. This mode keeps rational numbers in their exact symbolic form.

factor(x^3 + 2, x, 'FactorMode', 'full')

ans =

[x + 2^(1/3),...

 x - 2^(1/3)*((3^(1/2)*1i)/2 + 1/2),...

 x + 2^(1/3)*((3^(1/2)*1i)/2 - 1/2)]

Approximate the result with floating-point numbers by using vpa. Because the
expression does not contain any symbolic parameters besides the variable x, the result is
the same as in complex factorization mode.

vpa(ans)

ans =

[x + 1.2599210498948731647672106072782,...

4 Functions — Alphabetical List

4-488

 x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i,...

 x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i]

Approximate Results Containing RootOf

In the full factorization mode,factor also can return results as a symbolic sums over
polynomial roots expressed as RootOf.

Factor this expression.

syms x

s = factor(x^3 + x - 3, x, 'FactorMode','full')

s =

[x - root(z^3 + z - 3, z, 1),...

 x - root(z^3 + z - 3, z, 2),...

 x - root(z^3 + z - 3, z, 3)]

Approximate the result with floating-point numbers by using vpa.

 vpa(s)

ans =

[x - 1.2134116627622296341321313773815,...

 x + 0.60670583138111481706606568869074 + 1.450612249188441526515442203395i,...

 x + 0.60670583138111481706606568869074 - 1.450612249188441526515442203395i]

Input Arguments

x — Input to factor
number | symbolic number | symbolic expression | symbolic function

Input to factor, specified as a number, or a symbolic number, expression, or function.

vars — Variables of interest
symbolic variable | vector of symbolic variables

Variables of interest, specified as a symbolic variable or a vector of symbolic variables.
Factors that do not contain a variable specified in vars are grouped into the first
element of F. The remaining elements of F contain irreducible factors of x that contain a
variable in vars.

 factor

4-489

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: factor(x^3 - 2,x,'FactorMode','real')

'FactorMode' — Factorization mode
'rational' (default) | 'real' | 'complex' | 'full'

Factorization mode, specified as the comma-separated pair consisting of 'FactorMode'
and one of these strings.

'rational' Factorization over rational numbers.
'real' Factorization over real numbers. A real numeric factorization is

a factorization into linear and quadratic irreducible polynomials
with real coefficients. This factorization mode requires the
coefficients of the input to be convertible to real floating-point
numbers. All other inputs (for example, those inputs containing
symbolic or complex coefficients) are treated as irreducible.

'complex' Factorization over complex numbers. A complex numeric
factorization is a factorization into linear factors whose coefficients
are floating-point numbers. Such factorization is only available
if the coefficients of the input are convertible to floating-point
numbers, that is, if the roots can be determined numerically.
Symbolic inputs are treated as irreducible.

'full' Full factorization. A full factorization is a symbolic factorization
into linear factors. The result shows these factors using radicals or
as a symsum ranging over a RootOf.

Output Arguments

F — Factors of input
symbolic vector

Factors of input, returned as a symbolic vector.

4 Functions — Alphabetical List

4-490

More About

Tips

• To factor an integer greater than flintmax, wrap the integer with sym. Then
place the integer in quotation marks to represent it accurately, for example,
sym('465971235659856452').

• To factor a negative integer, wrap the integer with sym, for example, sym(-3).

See Also
collect | combine | divisors | expand | horner | numden | rewrite | simplify
| simplifyFraction

Introduced before R2006a

 factorial

4-491

factorial
Factorial function

Syntax

factorial(n)

factorial(A)

Description

factorial(n) returns the factorial of n.

factorial(A) returns the factorials of each element of A.

Input Arguments

n

Symbolic variable or expression representing a nonnegative integer.

A

Vector or matrix of symbolic variables or expressions representing nonnegative integers.

Examples

Compute the factorial function for these expressions:

syms n

f = factorial(n^2 + 1)

f =

factorial(n^2 + 1)

Now substitute the variable n with the value 3:

4 Functions — Alphabetical List

4-492

subs(f, n, 3)

ans =

 3628800

Differentiate the expression involving the factorial function:

syms n

diff(factorial(n^2 + n + 1))

ans =

factorial(n^2 + n + 1)*psi(n^2 + n + 2)*(2*n + 1)

Expand the expression involving the factorial function:

syms n

expand(factorial(n^2 + n + 1))

ans =

factorial(n^2 + n)*(n^2 + n + 1)

Compute the limit for the expression involving the factorial function:

syms n

limit(factorial(n)/exp(n), n, inf)

ans =

Inf

Call factorial for the matrix A. The result is a matrix of the factorial functions:

A = sym([1 2; 3 4]);

factorial(A)

ans =

[1, 2]

[6, 24]

More About

Factorial Function

This product defines the factorial function of a positive integer:

 factorial

4-493

n k

k

n

! =

=

’
1

The factorial function 0! = 1.

Tips

• Calling factorial for a number that is not a symbolic object invokes the MATLAB
factorial function.

See Also
beta | gamma | nchoosek | psi

Introduced in R2012a

4 Functions — Alphabetical List

4-494

feval
Evaluate MuPAD expressions specifying their arguments

Syntax

result = feval(symengine,F,x1,...,xn)

[result,status] = feval(symengine,F,x1,...,xn)

Description

result = feval(symengine,F,x1,...,xn) evaluates F, which is either a MuPAD
function name or a symbolic object, with arguments x1,...,xn, with result a symbolic
object. If F with the arguments x1,...,xn throws an error in MuPAD, then this syntax
throws an error in MATLAB.

[result,status] = feval(symengine,F,x1,...,xn) lets you catch errors thrown
by MuPAD. This syntax returns the error status in status, and the error message in
result if status is nonzero. If status is 0, result is a symbolic object. Otherwise,
result is a string.

Input Arguments

F

MuPAD function name or symbolic object.

x1,...,xn

Arguments of F.

Output Arguments

result

Symbolic object or string containing a MuPAD error message.

 feval

4-495

status

Integer indicating the error status. If F with the arguments x1,...,xn executes without
errors, the error status is 0.

Examples

syms a b c x

p = a*x^2+b*x+c;

feval(symengine,'polylib::discrim', p, x)

ans =

b^2 - 4*a*c

Alternatively, the same calculation based on variables not defined in the MATLAB
workspace is:

feval(symengine,'polylib::discrim', 'a*x^2 + b*x + c', 'x')

ans =

b^2 - 4*a*c

Try using polylib::discrim to compute the discriminant of the following
nonpolynomial expression:

[result, status] = feval(symengine,'polylib::discrim',...

 'a*x^2 + b*x + c*ln(x)', 'x')

result =

An arithmetical expression is expected.

status =

 2

Alternatives

evalin lets you evaluate MuPAD expressions without explicitly specifying their
arguments.

4 Functions — Alphabetical List

4-496

More About

Tips

• Results returned by feval can differ from the results that you get using a MuPAD
notebook directly. The reason is that feval sets a lower level of evaluation to achieve
better performance.

• feval does not open a MuPAD notebook, and therefore, you cannot use this function
to access MuPAD graphics capabilities.

• “Evaluations in Symbolic Computations”
• “Level of Evaluation”

See Also
evalin | read | symengine

Introduced in R2008b

 findDecoupledBlocks

4-497

findDecoupledBlocks
Search for decoupled blocks in systems of equations

Syntax

[eqsBlocks,varsBlocks] = findDecoupledBlocks(eqs,vars)

Description

[eqsBlocks,varsBlocks] = findDecoupledBlocks(eqs,vars) identifies subsets
(blocks) of equations that can be used to define subsets of variables. The number of
variables vars must coincide with the number of equations eqs.

The ith block is the set of equations determining the variables in
vars(varsBlocks{i}). The variables in vars([varsBlocks{1},
…,varsBlocks{i-1}]) are determined recursively by the previous blocks of equations.
After you solve the first block of equations for the first block of variables, the second
block of equations, given by eqs(eqsBlocks{2}), defines a decoupled subset of
equations containing only the subset of variables given by the second block of variables,
vars(varsBlock{2}), plus the variables from the first block (these variables are
known at this time). Thus, if a nontrivial block decomposition is possible, you can split
the solution process for a large system of equations involving many variables into several
steps, where each step involves a smaller subsystem.

The number of blocks length(eqsBlocks) coincides with length(varsBlocks).
If length(eqsBlocks) = length(varsBlocks) = 1, then a nontrivial block
decomposition of the equations is not possible.

Examples

Block Lower Triangular Decomposition of DAE System

Compute a block lower triangular decomposition (BLT decomposition) of a symbolic
system of differential algebraic equations (DAEs).

4 Functions — Alphabetical List

4-498

Create the following system of four differential algebraic equations. Here, the symbolic
function calls x1(t), x2(t), x3(t), and x4(t) represent the state variables of the
system. The system also contains symbolic parameters c1, c2, c3, c4, and functions
f(t,x,y) and g(t,x,y).

syms x1(t) x2(t) x3(t) x4(t)

syms c1 c2 c3 c4

syms f(t,x,y) g(t,x,y)

eqs = [c1*diff(x1(t),t)+c2*diff(x3(t),t)==c3*f(t,x1(t),x3(t));...

 c2*diff(x1(t),t)+c1*diff(x3(t),t)==c4*g(t,x3(t),x4(t));...

 x1(t)==g(t,x1(t),x3(t));...

 x2(t)==f(t,x3(t),x4(t))];

vars = [x1(t), x2(t), x3(t), x4(t)];

Use findDecoupledBlocks to find the block structure of the system.

[eqsBlocks, varsBlocks] = findDecoupledBlocks(eqs, vars)

eqsBlocks =

 [1x2 double] [2] [4]

varsBlocks =

 [1x2 double] [4] [2]

The first block contains two equations in two variables.

eqs(eqsBlocks{1})

ans =

 c1*diff(x1(t), t) + c2*diff(x3(t), t) == c3*f(t, x1(t), x3(t))

 x1(t) == g(t, x1(t), x3(t))

vars(varsBlocks{1})

ans =

[x1(t), x3(t)]

After you solve this block for the variables x1(t), x3(t), you can solve the next block of
equations. This block consists of one equation.

eqs(eqsBlocks{2})

ans =

 findDecoupledBlocks

4-499

c2*diff(x1(t), t) + c1*diff(x3(t), t) == c4*g(t, x3(t), x4(t))

The block involves one variable.

vars(varsBlocks{2})

ans =

x4(t)

After you solve the equation from block 2 for the variable x4(t), the remaining
block of equations, eqs(eqsBlocks{3}), defines the remaining variable,
vars(varsBlocks{3}).

eqs(eqsBlocks{3})

vars(varsBlocks{3})

ans =

x2(t) == f(t, x3(t), x4(t))

ans =

x2(t)

Find the permutations that convert the system to a block lower triangular form.

eqsPerm = [eqsBlocks{:}]

varsPerm = [varsBlocks{:}]

eqsPerm =

 1 3 2 4

varsPerm =

 1 3 4 2

Convert the system to a block lower triangular system of equations.

eqs = eqs(eqsPerm)

vars = vars(varsPerm)

eqs =

 c1*diff(x1(t), t) + c2*diff(x3(t), t) == c3*f(t, x1(t), x3(t))

 x1(t) == g(t, x1(t), x3(t))

 c2*diff(x1(t), t) + c1*diff(x3(t), t) == c4*g(t, x3(t), x4(t))

 x2(t) == f(t, x3(t), x4(t))

vars =

[x1(t), x3(t), x4(t), x2(t)]

4 Functions — Alphabetical List

4-500

Find the incidence matrix of the resulting system. The incidence matrix shows that the
system of permuted equations has three diagonal blocks of size 2-by-2, 1-by-1, and 1-
by-1.

incidenceMatrix(eqs, vars)

ans =

 1 1 0 0

 1 1 0 0

 1 1 1 0

 0 1 1 1

BLT Decomposition and Solution of Linear System

Find blocks of equations in a linear algebraic system, and then solve the system by
sequentially solving each block of equations starting from the first one.

Create the following system of linear algebraic equations.

syms x1 x2 x3 x4 x5 x6 c1 c2 c3

eqs = [c1*x1 + x3 + x5 == c1 + c2 + 1;...

 x1 + x3 + x4 + 2*x6 == 4 + c2;...

 x1 + 2*x3 + c3*x5 == 1 + 2*c2 + c3;...

 x2 + x3 + x4 + x5 == 2 + c2;...

 x1 - c2*x3 + x5 == 2 - c2^2;...

 x1 - x3 + x4 - x6 == 1 - c2];

vars = [x1, x2, x3, x4, x5, x6];

Use findDecoupledBlocks to convert the system to a lower triangular form. For this
system, findDecoupledBlocks identifies three blocks of equations and corresponding
variables.

[eqsBlocks, varsBlocks] = findDecoupledBlocks(eqs, vars)

eqsBlocks =

 [1x3 double] [1x2 double] [4]

varsBlocks =

 [1x3 double] [1x2 double] [2]

Identify the variables in the first block. This block consists of three equations in three
variables.

 findDecoupledBlocks

4-501

vars(varsBlocks{1})

ans =

[x1, x3, x5]

Solve the first block of equations for the first block of variables assigning the solutions to
the corresponding variables.

[x1,x3,x5] = solve(eqs(eqsBlocks{1}), vars(varsBlocks{1}))

x1 =

1

x3 =

c2

x5 =

1

Identify the variables in the second block. This block consists of two equations in two
variables.

vars(varsBlocks{2})

ans =

[x4, x6]

Solve this block of equations assigning the solutions to the corresponding variables.

[x4, x6] = solve(eqs(eqsBlocks{2}), vars(varsBlocks{2}))

x4 =

x3/3 - x1 - c2/3 + 2

x6 =

(2*c2)/3 - (2*x3)/3 + 1

Use subs to evaluate the result for the already known values of variables x1, x3, and x5.

x4 = subs(x4)

x6 = subs(x6)

x4 =

1

x6 =

4 Functions — Alphabetical List

4-502

1

Identify the variables in the third block. This block consists of one equation in one
variable.

vars(varsBlocks{3})

ans =

x2

Solve this equation assigning the solution to x2.

x2 = solve(eqs(eqsBlocks{3}), vars(varsBlocks{3}))

x2 =

c2 - x3 - x4 - x5 + 2

Use subs to evaluate the result for the already known values of all other variables of this
system.

x2 = subs(x2)

x2 =

0

Alternatively, you can rewrite this example using the for-loop. This approach lets you
use the example for larger systems of equations.

syms x1 x2 x3 x4 x5 x6 c1 c2 c3

eqs = [c1*x1 + x3 + x5 == c1 + c2 + 1;...

 x1 + x3 + x4 + 2*x6 == 4 + c2;...

 x1 + 2*x3 + c3*x5 == 1 + 2*c2 + c3;...

 x2 + x3 + x4 + x5 == 2 + c2;...

 x1 - c2*x3 + x5 == 2 - c2^2

 x1 - x3 + x4 - x6 == 1 - c2];

vars = [x1, x2, x3, x4, x5, x6];

[eqsBlocks, varsBlocks] = findDecoupledBlocks(eqs, vars);

vars_sol = vars;

for i = 1:numel(eqsBlocks)

 sol = solve(eqs(eqsBlocks{i}), vars(varsBlocks{i}));

 findDecoupledBlocks

4-503

 vars_sol_per_block = subs(vars(varsBlocks{i}), sol);

 for k=1:i-1

 vars_sol_per_block = subs(vars_sol_per_block, vars(varsBlocks{k}),...

 vars_sol(varsBlocks{k}));

 end

 vars_sol(varsBlocks{i}) = vars_sol_per_block

end

vars_sol =

[1, x2, c2, x4, 1, x6]

vars_sol =

[1, x2, c2, 1, 1, 1]

vars_sol =

[1, 0, c2, 1, 1, 1]

Input Arguments

eqs — System of equations
vector of symbolic equations | vector of symbolic expressions

System of equations, specified as a vector of symbolic equations or expressions.

vars — Variables
vector of symbolic variables | vector of symbolic functions | vector of symbolic function
calls

Variables, specified as a vector of symbolic variables, functions, or function calls, such as
x(t).

Example: [x(t),y(t)] or [x(t);y(t)]

Output Arguments

eqsBlocks — Indices defining blocks of equations
cell array

Indices defining blocks of equations, returned as a cell array. Each block of indices
is a row vector of double-precision integer numbers. The ith block of equations

4 Functions — Alphabetical List

4-504

consists of the equations eqs(eqsBlocks{i}) and involves only the variables in
vars(varsBlocks{1:i}).

varsBlocks — Indices defining blocks of variables
cell array

Indices defining blocks of variables, returned as a cell array. Each block of indices
is a row vector of double-precision integer numbers. The ith block of equations
consists of the equations eqs(eqsBlocks{i}) and involves only the variables in
vars(varsBlocks{1:i}).

More About

Tips

• The implemented algorithm requires that for each variable in vars there must be at
least one matching equation in eqs involving this variable. The same equation cannot
also be matched to another variable. If the system does not satisfy this condition, then
findDecoupledBlocks throws an error. In particular, findDecoupledBlocks
requires that length(eqs) = length(vars).

• Applying the permutations e = [eqsBlocks{:}] to the vector eqs and
v = [varsBlocks{:}] to the vector vars produces an incidence matrix
incidenceMatrix(eqs(e), vars(v)) that has a block lower triangular sparsity
pattern.

See Also
daeFunction | decic | diag | incidenceMatrix | isLowIndexDAE |
massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE |
reduceDifferentialOrder | reduceRedundancies | tril | triu

Introduced in R2014b

 finverse

4-505

finverse
Functional inverse

Syntax

g = finverse(f)

g = finverse(f,var)

Description

g = finverse(f) returns the inverse of function f. Here f is an expression or function
of one symbolic variable, for example, x. Then g is an expression or function, such that
f(g(x)) = x. That is, finverse(f) returns f–1, provided f–1 exists.

g = finverse(f,var) uses the symbolic variable var as the independent variable.
Then g is an expression or function, such that f(g(var)) = var. Use this form when f
contains more than one symbolic variable.

Input Arguments

f

Symbolic expression or function.

var

Symbolic variable.

Output Arguments

g

Symbolic expression or function.

4 Functions — Alphabetical List

4-506

Examples

Compute functional inverse for this trigonometric function:

syms x

f(x) = 1/tan(x);

g = finverse(f)

g(x) =

atan(1/x)

Compute functional inverse for this exponent function:

syms u v

finverse(exp(u - 2*v), u)

ans =

2*v + log(u)

More About

Tips

• finverse does not issue a warning when the inverse is not unique.

See Also
compose | syms

Introduced before R2006a

 fix

4-507

fix
Round toward zero

Syntax

fix(X)

Description

fix(X) is the matrix of the integer parts of X.

fix(X) = floor(X) if X is positive and ceil(X) if X is negative.

See Also
round | ceil | floor | frac

Introduced before R2006a

4 Functions — Alphabetical List

4-508

floor
Round symbolic matrix toward negative infinity

Syntax

floor(X)

Description

floor(X) is the matrix of the greatest integers less than or equal to X.

Examples
x = sym(-5/2);

[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =

[-2, -3, -3, -2, -1/2]

See Also
round | ceil | fix | frac

Introduced before R2006a

 formula

4-509

formula
Mathematical expression defining symbolic function

Syntax

formula(f)

Description

formula(f) returns the mathematical expression that defines f.

Input Arguments

f

Symbolic function.

Examples

Create this symbolic function:

syms x y

f(x, y) = x + y;

Use formula to find the mathematical expression that defines f:

formula(f)

ans =

x + y

Create this symbolic function:

syms f(x, y)

If you do not specify a mathematical expression for the symbolic function, formula
returns the symbolic function definition as follows:

4 Functions — Alphabetical List

4-510

formula(f)

ans =

f(x, y)

See Also
argnames | sym | syms | symvar

Introduced in R2012a

 fortran

4-511

fortran
Fortran representation of symbolic expression

Syntax

fortran(S)

fortran(S,'file',fileName)

Description

fortran(S) returns the Fortran code equivalent to the expression S.

fortran(S,'file',fileName) writes an “optimized” Fortran code fragment that
evaluates the symbolic expression S to the file named fileName. “Optimized” means
intermediate variables are automatically generated in order to simplify the code.
MATLAB generates intermediate variables as a lowercase letter t followed by an
automatically generated number, for example t32.

Examples

The statements

syms x

f = taylor(log(1+x));

fortran(f)

return
ans =

 t0 = x-x**2*(1.0D0/2.0D0)+x**3*(1.0D0/3.0D0)-x**4*(1.0D0/4.0D0)+x*

 &*5*(1.0D0/5.0D0)

The statements

H = sym(hilb(3));

fortran(H)

return

4 Functions — Alphabetical List

4-512

ans =

 H(1,1) = 1.0D0

 H(1,2) = 1.0D0/2.0D0

 H(1,3) = 1.0D0/3.0D0

 H(2,1) = 1.0D0/2.0D0

 H(2,2) = 1.0D0/3.0D0

 H(2,3) = 1.0D0/4.0D0

 H(3,1) = 1.0D0/3.0D0

 H(3,2) = 1.0D0/4.0D0

 H(3,3) = 1.0D0/5.0D0

The statements

syms x

z = exp(-exp(-x));

fortran(diff(z,3),'file','fortrantest')

return a file named fortrantest containing the following:

 t7 = exp(-x)

 t8 = exp(-t7)

 t0 = t8*exp(x*(-2))*(-3)+t8*exp(x*(-3))+t7*t8

See Also
ccode | latex | matlabFunction | pretty

Introduced before R2006a

 fourier

4-513

fourier
Fourier transform

Syntax

fourier(f,trans_var,eval_point)

Description

fourier(f,trans_var,eval_point) computes the Fourier transform of f with
respect to the transformation variable trans_var at the point eval_point.

Examples

Fourier Transform of Symbolic Expression

Compute the Fourier transform of this expression with respect to the variable x at the
evaluation point y.

syms x y

f = exp(-x^2);

fourier(f, x, y)

ans =

pi^(1/2)*exp(-y^2/4)

Default Transformation Variable and Evaluation Point

Compute the Fourier transform of this expression calling the fourier function with
one argument. If you do not specify the transformation variable, then fourier uses the
variable x.

syms x t y

f = exp(-x^2)*exp(-t^2);

fourier(f, y)

4 Functions — Alphabetical List

4-514

ans =

pi^(1/2)*exp(-t^2)*exp(-y^2/4)

If you also do not specify the evaluation point, fourier uses the variable w.

fourier(f)

ans =

pi^(1/2)*exp(-t^2)*exp(-w^2/4)

Fourier Transforms Involving Dirac and Heaviside Functions

Compute the following Fourier transforms that involve the Dirac and Heaviside
functions.

syms t w

fourier(t^3, t, w)

ans =

-pi*dirac(3, w)*2i

syms t0

fourier(heaviside(t - t0), t, w)

ans =

exp(-t0*w*1i)*(pi*dirac(w) - 1i/w)

Fourier Transform Parameters

Specify parameters of the Fourier transform.

Compute the Fourier transform of this expression using the default values c = 1, s =
-1 of the Fourier parameters. (For details, see “Fourier Transform” on page 4-518.)

syms t w

pretty(fourier(t*exp(-t^2), t, w))

 / 2 \

 | w |

 w sqrt(pi) exp| - -- | 1i

 \ 4 /

- -------------------------

 fourier

4-515

 2

Change the values of the Fourier parameters to c = 1, s = 1 by using sympref. Then
compute the Fourier transform of the same expression again.

sympref('FourierParameters', [1, 1]);

pretty(fourier(t*exp(-t^2), t, w))

 / 2 \

 | w |

w sqrt(pi) exp| - -- | 1i

 \ 4 /

 2

Change the values of the Fourier parameters to c = 1/2π, s = 1 by using sympref.
Compute the Fourier transform using these values.

sympref('FourierParameters', [1/(2*sym(pi)), 1]);

pretty(fourier(t*exp(-t^2), t, w))

 / 2 \

 | w |

w exp| - -- | 1i

 \ 4 /

 4 sqrt(pi)

The preferences set by sympref persist through your current and future MATLAB
sessions. To restore the default values of c and s, set sympref to 'default'.

sympref('FourierParameters','default');

Fourier Transform of Function and Its Derivative

The Fourier transform of a function is related to the Fourier transform of its derivative.

syms f(t) w

fourier(diff(f(t), t), t, w)

ans =

w*fourier(f(t), t, w)*1i

4 Functions — Alphabetical List

4-516

Fourier Transform of Matrix

Find the Fourier transform of this matrix. Use matrices of the same size to specify the
transformation variable and evaluation point.

syms a b c d w x y z

fourier([exp(x), 1; sin(y), i*z],[w, x; y, z],[a, b; c, d])

ans =

[2*pi*exp(x)*dirac(a), 2*pi*dirac(b)]

[-pi*(dirac(c - 1) - dirac(c + 1))*1i, -2*pi*dirac(1, d)]

When the input arguments are nonscalars, fourier acts on them element-wise. If
fourier is called with both scalar and nonscalar arguments, then fourier expands
the scalar arguments into arrays of the same size as the nonscalar arguments with all
elements of the array equal to the scalar.

syms w x y z a b c d

fourier(x,[x, w; y, z],[a, b; c, d])

ans =

[pi*dirac(1, a)*2i, 2*pi*x*dirac(b)]

[2*pi*x*dirac(c), 2*pi*x*dirac(d)]

Note that nonscalar input arguments must have the same size.

Fourier Transform of Vector of Symbolic Functions

When the first argument is a symbolic function, the second argument must be a scalar.

syms f1(x) f2(x) a b

f1(x) = exp(x);

f2(x) = x;

fourier([f1, f2],x,[a, b])

ans =

[fourier(exp(x), x, a), pi*dirac(1, b)*2i]

If Fourier Transform Cannot be Found

If fourier cannot find an explicit representation of the transform, it returns an
unevaluated call.

 fourier

4-517

syms f(t) w

F = fourier(f, t, w)

F =

fourier(f(t), t, w)

ifourier returns the original expression.

ifourier(F, w, t)

ans =

f(t)

Input Arguments

f — Input function
symbolic expression | symbolic function | vector of symbolic expressions or functions |
matrix of symbolic expressions or functions

Input function, specified as a symbolic expression or function or a vector or matrix of
symbolic expressions or functions.

trans_var — Transformation variable
x (default) | symbolic variable

Transformation variable, specified as a symbolic variable. This variable is often called
the “time variable” or the “space variable”.

If you do not specify the transformation variable, fourier uses the variable x by default.
If f does not contain x, then the default variable is determined by symvar.

eval_point — Evaluation point
w (default) | v | symbolic variable | symbolic expression | vector of symbolic variables or
expressions | matrix of symbolic variables or expressions

Evaluation point, specified as a symbolic variable, expression, or vector or matrix of
symbolic variables or expressions. This is often called the “frequency variable”.

If you do not specify the evaluation point, fourier uses the variable w by default. If w is
the transformation variable of f, then the default evaluation point is the variable v.

4 Functions — Alphabetical List

4-518

More About

Fourier Transform

The Fourier transform of the expression f = f(x) with respect to the variable x at the point
w is defined as follows:

F w c f x e dxiswx() = ()

-•

•

Ú .

Here, c and s are parameters of the Fourier transform. The fourier function uses c = 1,
s = –1.

Tips

• If you call fourier with two arguments, it assumes that the second argument is the
evaluation point eval_point.

• If f is a matrix, fourier acts element-wise on all components of the matrix.
• If eval_point is a matrix, fourier acts element-wise on all components of the

matrix.
• To compute the inverse Fourier transform, use ifourier.

• “Compute Fourier and Inverse Fourier Transforms” on page 2-193

References

[1] Oberhettinger F., “Tables of Fourier Transforms and Fourier Transforms of
Distributions”, Springer, 1990.

See Also
ifourier | ilaplace | iztrans | laplace | sympref | ztrans

Introduced before R2006a

 frac

4-519

frac
Symbolic matrix element-wise fractional parts

Syntax

frac(X)

Description

frac(X) is the matrix of the fractional parts of the elements: frac(X) = X - fix(X).

Examples
x = sym(-5/2);

[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =

[-2, -3, -3, -2, -1/2]

See Also
round | ceil | floor | fix

Introduced before R2006a

4 Functions — Alphabetical List

4-520

fresnelc
Fresnel cosine integral function

Syntax

fresnelc(z)

Description

fresnelc(z) returns the Fresnel cosine integral of z.

Examples

Fresnel Cosine Integral Function for Numeric and Symbolic Input
Arguments

Find the Fresnel cosine integral function for these numbers. Since these are not symbolic
objects, you receive floating-point results.

fresnelc([-2 0.001 1.22+0.31i])

ans =

-0.4883 + 0.0000i 0.0010 + 0.0000i 0.8617 - 0.2524i

Find the Fresnel cosine integral function symbolically by converting the numbers to
symbolic objects:

y = fresnelc(sym([-2 0.001 1.22+0.31i]))

y =

[-fresnelc(2), fresnelc(1/1000), fresnelc(61/50 + 31i/100)]

Use vpa to approximate results:

vpa(y)

ans =

[-0.48825340607534075450022350335726, 0.00099999999999975325988997279422003,...

 0.86166573430841730950055370401908 - 0.25236540291386150167658349493972i]

 fresnelc

4-521

Fresnel Cosine Integral Function for Special Values

Find the Fresnel cosine integral function for special values:

fresnelc([0 Inf -Inf i*Inf -i*Inf])

ans =

0.0000 + 0.0000i 0.5000 + 0.0000i -0.5000 + 0.0000i...

 0.0000 + 0.5000i 0.0000 - 0.5000i

Fresnel Cosine Integral for Symbolic Functions

Find the Fresnel cosine integral for the function exp(x) + 2*x:

syms f(x)

f = exp(x)+2*x;

fresnelc(f)

ans =

fresnelc(2*x + exp(x))

Fresnel Cosine Integral for Symbolic Vectors and Arrays

Find the Fresnel cosine integral for elements of vector V and matrix M:

syms x

V = [sin(x) 2i -7];

M = [0 2; i exp(x)];

fresnelc(V)

fresnelc(M)

ans =

[fresnelc(sin(x)), fresnelc(2i), -fresnelc(7)]

ans =

[0, fresnelc(2)]

[fresnelc(1i), fresnelc(exp(x))]

Plot Fresnel Cosine Integral Function

Plot the Fresnel cosine integral function from x = -5 to x = 5.

syms x

ezplot(fresnelc(x),[-5,5])

grid on

4 Functions — Alphabetical List

4-522

Differentiate and Find Limits of Fresnel Cosine Integral

The functions diff and limit handle expressions containing fresnelc.

Find the third derivative of the Fresnel cosine integral function:

syms x

diff(fresnelc(x),x,3)

ans =

- pi*sin((pi*x^2)/2) - x^2*pi^2*cos((pi*x^2)/2)

Find the limit of the Fresnel cosine integral function as x tends to infinity:

 fresnelc

4-523

syms x

limit(fresnelc(x),Inf)

ans =

1/2

Taylor Series Expansion of Fresnel Cosine Integral

Use taylor to expand the Fresnel cosine integral in terms of the Taylor series:

syms x

taylor(fresnelc(x))

ans =

x - (x^5*pi^2)/40

Simplify Expressions Containing fresnelc

Use simplify to simplify expressions:

syms x

simplify(3*fresnelc(x)+2*fresnelc(-x))

ans =

fresnelc(x)

Input Arguments

z — Upper limit on Fresnel cosine integral
numeric value | vector | matrix | multidimensional array | symbolic variable | symbolic
expression | symbolic vector | symbolic matrix | symbolic function

Upper limit on the Fresnel cosine integral, specified as a numeric value, vector, matrix,
or as a multidimensional array, or a symbolic variable, expression, vector, matrix, or
function.

More About

Fresnel Cosine Integral

The Fresnel cosine integral of z is

4 Functions — Alphabetical List

4-524

fresnelc cos .z
t

dt
z

() =
Ê

Ë
Á

ˆ

¯
˜Ú

p 2

0 2

Algorithms

fresnelc is analytic throughout the complex plane. It satisfies fresnelc(-z) = -fresnelc(z),
conj(fresnelc(z)) = fresnelc(conj(z)), and fresnelc(i*z) = i*fresnelc(z) for all complex values
of z.

fresnelc returns special values for z = 0, z = ±∞, and z = ±i∞ which are 0, ±5, and ±0.5i.
fresnelc(z) returns symbolic function calls for all other symbolic values of z.

See Also
erf | fresnels

Introduced in R2014a

 fresnels

4-525

fresnels
Fresnel sine integral function

Syntax

fresnels(z)

Description

fresnels(z) returns the Fresnel sine integral of z.

Examples

Fresnel Sine Integral Function for Numeric and Symbolic Arguments

Find the Fresnel sine integral function for these numbers. Since these are not symbolic
objects, you receive floating-point results.

fresnels([-2 0.001 1.22+0.31i])

ans =

-0.3434 + 0.0000i 0.0000 + 0.0000i 0.7697 + 0.2945i

Find the Fresnel sine integral function symbolically by converting the numbers to
symbolic objects:

y = fresnels(sym([-2 0.001 1.22+0.31i]))

y =

[-fresnels(2), fresnels(1/1000), fresnels(61/50 + 31i/100)]

Use vpa to approximate the results:

vpa(y)

ans =

[-0.34341567836369824219530081595807, 0.00000000052359877559820659249174920261227,...

 0.76969209233306959998384249252902 + 0.29449530344285433030167256417637i]

4 Functions — Alphabetical List

4-526

Fresnel Sine Integral for Special Values

Find the Fresnel sine integral function for special values:

fresnels([0 Inf -Inf i*Inf -i*Inf])

ans =

0.0000 + 0.0000i 0.5000 + 0.0000i -0.5000 + 0.0000i 0.0000 - 0.5000i...

 0.0000 + 0.5000i

Fresnel Sine Integral for Symbolic Functions

Find the Fresnel sine integral for the function exp(x) + 2*x:

syms x

f = symfun(exp(x)+2*x,x);

fresnels(f)

ans(x) =

fresnels(2*x + exp(x))

Fresnel Sine Integral for Symbolic Vectors and Arrays

Find the Fresnel sine integral for elements of vector V and matrix M:

syms x

V = [sin(x) 2i -7];

M = [0 2; i exp(x)];

fresnels(V)

fresnels(M)

ans =

[fresnels(sin(x)), fresnels(2i), -fresnels(7)]

ans =

[0, fresnels(2)]

[fresnels(1i), fresnels(exp(x))]

Plot Fresnel Sine Integral Function

Plot the Fresnel sine integral function from x = -5 to x = 5.

syms x

ezplot(fresnels(x),[-5,5])

grid on

 fresnels

4-527

Differentiate and Find Limits of Fresnel Sine Integral

The functions diff and limit handle expressions containing fresnels.

Find the fourth derivative of the Fresnel sine integral function:

syms x

diff(fresnels(x),x,4)

ans =

- 3*x*pi^2*sin((pi*x^2)/2) - x^3*pi^3*cos((pi*x^2)/2)

Find the limit of the Fresnel sine integral function as x tends to infinity:

4 Functions — Alphabetical List

4-528

syms x

limit(fresnels(x),Inf)

ans =

1/2

Taylor Series Expansion of Fresnel Sine Integral

Use taylor to expand the Fresnel sine integral in terms of the Taylor series:

syms x

taylor(fresnels(x))

ans =

(pi*x^3)/6

Simplify Expressions Containing fresnels

Use simplify to simplify expressions:

syms x

simplify(3*fresnels(x)+2*fresnels(-x))

ans =

fresnels(x)

Input Arguments

z — Upper limit on the Fresnel sine integral
numeric value | vector | matrix | multidimensional array | symbolic variable | symbolic
expression | symbolic vector | symbolic matrix | symbolic function

Upper limit on the Fresnel sine integral, specified as a numeric value, vector, matrix, or a
multidimensional array or as a symbolic variable, expression, vector, matrix, or function.

More About

Fresnel Sine Integral

The Fresnel sine integral of z is

 fresnels

4-529

fresnels() sinz
t

dt
z

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃Ú

p 2

0 2

.

Algorithms

The fresnels(z) function is analytic throughout the complex plane. It satisfies
fresnels(-z) = -fresnels(z), conj(fresnels(z)) = fresnels(conj(z)), and fresnels(i*z) = -
i*fresnels(z) for all complex values of z.

fresnels(z) returns special values for z = 0, z = ±∞, and z = ±i∞ which are 0, ±5, and
∓0.5i. fresnels(z) returns symbolic function calls for all other symbolic values of z.

See Also
erf | fresnelc

Introduced in R2014a

4 Functions — Alphabetical List

4-530

functionalDerivative

Functional derivative

Syntax

D = functionalDerivative(f,y)

Description

D = functionalDerivative(f,y) returns the “Functional Derivative” on page
4-534 of the functional F f x y x y x dx= () ()()Ú , , ’ ... with respect to the function

y = y(x), where x represents one or more independent variables. If y is a vector of
symbolic functions, functionalDerivative returns a vector of functional derivatives
with respect to the functions in y, where all functions in y must depend on the same
independent variables.

Examples

Find Functional Derivative

Find the functional derivative of the function given by f y y x y x() = () ()()sin with respect
to the function y.

syms y(x)

f = y*sin(y);

D = functionalDerivative(f,y)

D(x) =

sin(y(x)) + cos(y(x))*y(x)

 functionalDerivative

4-531

Find Functional Derivative of Vector of Functionals

Find the functional derivative of the function given by H u v u
dv

dx
v

d u

dx

,() = +
2

2

2
 with

respect to the functions u and v.

syms u(x) v(x)

H = u^2*diff(v,x)+v*diff(u,x,x);

D = functionalDerivative(H,[u v])

D(x) =

 2*u(x)*diff(v(x), x) + diff(v(x), x, x)

 diff(u(x), x, x) - 2*u(x)*diff(u(x), x)

functionalDerivative returns a vector of symbolic functions containing the
functional derivatives of H with respect to u and v, respectively.

Find Euler-Lagrange Equation for Spring

First find the Lagrangian for a spring with mass m and spring constant k, and then
derive the Euler-Lagrange equation. The Lagrangian is the difference of kinetic energy T
and potential energy V which are functions of the displacement x(t).

syms m k x(t)

T = sym(1)/2*m*diff(x,t)^2;

V = sym(1)/2*k*x^2;

L = T - V

L(t) =

(m*diff(x(t), t)^2)/2 - (k*x(t)^2)/2

Find the Euler-Lagrange equation by finding the functional derivative of L with respect
to x, and equate it to 0.

eqn = functionalDerivative(L,x) == 0

eqn(t) =

- m*diff(x(t), t, t) - k*x(t) == 0

diff(x(t), t, t) is the acceleration. The equation eqn represents the expected
differential equation that describes spring motion.

4 Functions — Alphabetical List

4-532

Solve eqn using dsolve. Obtain the expected form of the solution by assuming mass m
and spring constant k are positive.

assume(m,'positive')

assume(k,'positive')

xSol = dsolve(eqn,x(0) == 0)

xSol =

C5*sin((k^(1/2)*t)/m^(1/2))

Clear assumptions for further calculations.

assume([k m],'clear')

Find Differential Equation for Brachistochrone Problem

The Brachistochrone problem is to find the quickest path of descent under gravity. The
time for a body to move along a curve y(x) under gravity is given by

f
y

gy
=

+1

2

2’
,

where g is the acceleration due to gravity.

Find the quickest path by minimizing f with respect to the path y. The condition for a
minimum is

d

d

f

y
= 0.

Compute this condition to obtain the differential equation that describes the
Brachistochrone problem. Use simplify to simplify the solution to its expected form.

syms g y(x)

assume(g,'positive')

f = sqrt((1+diff(y)^2)/(2*g*y));

eqn = functionalDerivative(f,y) == 0;

eqn = simplify(eqn)

eqn(x) =

diff(y(x), x)^2 + 2*y(x)*diff(y(x), x, x) == -1

 functionalDerivative

4-533

This equation is the standard differential equation for the Brachistochrone problem.

Find Minimal Surface in 3-D Space

If the function u(x,y) describes a surface in 3-D space, then the surface area is found by
the functional

F u f x y u u u dxdy u u dxdyx y x y() = () = + +ÚÚ ÚÚ, , , , ,1
2 2

where ux and uy are the partial derivatives of u with respect to x and y.

Find the equation that describes the minimal surface for a 3-D surface described by the
function u(x,y) by finding the functional derivative of f with respect to u.

syms u(x,y)

f = sqrt(1 + diff(u,x)^2 + diff(u,y)^2);

D = functionalDerivative(f,u)

D(x, y) =

-(diff(u(x, y), y)^2*diff(u(x, y), x, x)...

 + diff(u(x, y), x)^2*diff(u(x, y), y, y)...

 - 2*diff(u(x, y), x)*diff(u(x, y), y)*diff(u(x, y), x, y)...

 + diff(u(x, y), x, x)...

 + diff(u(x, y), y, y))/(diff(u(x, y), x)^2...

 + diff(u(x, y), y)^2 + 1)^(3/2)

The solutions to this equation D describe minimal surfaces in 3-D space such as soap
bubbles.

Input Arguments

f — Expression to find functional derivative of
symbolic variable | symbolic function | symbolic expression

Expression to find functional derivative of, specified as a symbolic variable, function, or
expression. The argument f represents the density of the functional.

y — Differentiation function
symbolic function | vector of symbolic functions | matrix of symbolic functions |
multidimensional array of symbolic functions

4 Functions — Alphabetical List

4-534

Differentiation function, specified as a symbolic function or a vector, matrix, or
multidimensional array of symbolic functions. The argument y can be a function
of one or more independent variables. If y is a vector of symbolic functions,
functionalDerivative returns a vector of functional derivatives with respect to the
functions in y, where all functions in y must depend on the same independent variables.

Output Arguments

D — Functional derivative
symbolic function | vector of symbolic functions

Functional derivative, returned as a symbolic function or a vector of symbolic functions.
If input y is a vector, then D is a vector.

More About

Functional Derivative

Consider functionals

F y f x y x y x y x dx() = () () ()()Ú , , ’ , ’’ , ... ,

W

where Ω is a region in x-space.

For a small change in the value of y, δy, the change in the functional F is

d
d e

ed
d

d
d

e

F

y

d

d
F y y

f x

y
y x dx= +() =

()
() +

=
Ú

0 W

boundary terms.

The expression d

d

f x

y

()
 is the functional derivative of f with respect to y.

See Also
diff | dsolve | int

 functionalDerivative

4-535

Introduced in R2015a

4 Functions — Alphabetical List

4-536

funm
General matrix function

Syntax

F = funm(A,f)

Description

F = funm(A,f) computes the function f(A) for the square matrix A. For details, see
“Matrix Function” on page 4-540.

Examples

Matrix Cube Root

Find matrix B, such that B3 = A, where A is a 3-by-3 identity matrix.

To solve B3 = A, compute the cube root of the matrix A using the funm function. Create
the symbolic function f(x) = x^(1/3) and use it as the second argument for funm. The
cube root of an identity matrix is the identity matrix itself.

A = sym(eye(3))

syms f(x)

f(x) = x^(1/3);

B = funm(A,f)

A =

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

B =

[1, 0, 0]

 funm

4-537

[0, 1, 0]

[0, 0, 1]

Replace one of the 0 elements of matrix A with 1 and compute the matrix cube root again.

A(1,2) = 1

B = funm(A,f)

A =

[1, 1, 0]

[0, 1, 0]

[0, 0, 1]

B =

[1, 1/3, 0]

[0, 1, 0]

[0, 0, 1]

Now, compute the cube root of the upper triangular matrix.

A(1:2,2:3) = 1

B = funm(A,f)

A =

[1, 1, 1]

[0, 1, 1]

[0, 0, 1]

B =

[1, 1/3, 2/9]

[0, 1, 1/3]

[0, 0, 1]

Verify that B3 = A.

B^3

ans =

[1, 1, 1]

[0, 1, 1]

[0, 0, 1]

Matrix Lambert W Function

Find the matrix Lambert W function.

4 Functions — Alphabetical List

4-538

First, create a 3-by-3 matrix A using variable-precision arithmetic with five digit
accuracy. In this example, using variable-precision arithmetic instead of exact symbolic
numbers lets you speed up computations and decrease memory usage. Using only five
digits helps the result to fit on screen.

savedefault = digits(5)

A = vpa(magic(3))

Create the symbolic function f(x) = lambertw(x).

syms f(x)

f(x) = lambertw(x);

To find the Lambert W function (W0 branch) in a matrix sense, callfunm using f(x) as its
second argument.

W0 = funm(A,f)

W0 =

[1.5335 + 0.053465i, 0.11432 + 0.47579i, 0.36208 - 0.52925i]

[0.21343 + 0.073771i, 1.3849 + 0.65649i, 0.41164 - 0.73026i]

[0.26298 - 0.12724i, 0.51074 - 1.1323i, 1.2362 + 1.2595i]

Verify that this result is a solution of the matrix equation A = W0·eW0 within the
specified accuracy.

W0*expm(W0)

ans =

[8.0 - 2.2737e-13i, 1.0 - 9.0949e-13i, 6.0 + 6.8212e-13i]

[3.0 - 3.4106e-13i, 5.0 + 4.5475e-13i, 7.0 - 1.1369e-13i]

[4.0 + 4.5475e-13i, 9.0 - 4.5475e-13i, 2.0 + 4.5475e-13i]

Now, create the symbolic function f(x) representing the branch W-1 of the Lambert W
function.

f(x) = lambertw(-1,x);

Find the W-1 branch for the matrix A.

Wm1 = funm(A,f)

Wm1 =

[0.40925 - 4.7154i, 0.54204 + 0.5947i, 0.13764 - 0.80906i]

[0.38028 + 0.033194i, 0.65189 - 3.8732i, 0.056763 - 1.0898i]

[0.2994 - 0.24756i, - 0.105 - 1.6513i, 0.89453 - 3.0309i]

 funm

4-539

Verify that this result is the solution of the matrix equation A = Wm1·eWm1 within the
specified accuracy.

Wm1*expm(Wm1)

ans =

[8.0 + 5.6417e-12i, 1.0 - 1.5064e-12i, 6.0 + 8.2423e-13i]

[3.0 - 3.4106e-13i, 5.0 - 2.558e-13i, 7.0 - 7.3896e-13i]

[4.0 + 5.6843e-14i, 9.0 - 9.3081e-13i, 2.0 - 1.1369e-13i]

Matrix Exponential, Logarithm, and Square Root

You can use funm with appropriate second arguments to find matrix exponential,
logarithm, and square root. However, the more efficient approach is to use the functions
expm, logm, and sqrtm for this task.

Create this square matrix and find its exponential, logarithm, and square root.

syms x

A = [1 -1; 0 x]

expA = expm(A)

logA = logm(A)

sqrtA = sqrtm(A)

A =

[1, -1]

[0, x]

expA =

[exp(1), (exp(1) - exp(x))/(x - 1)]

[0, exp(x)]

logA =

[0, -log(x)/(x - 1)]

[0, log(x)]

sqrtA =

[1, 1/(x - 1) - x^(1/2)/(x - 1)]

[0, x^(1/2)]

Find the matrix exponential, logarithm, and square root of A using funm. Use the
symbolic expressions exp(x), log(x), and sqrt(x) as the second argument of funm.
The results are identical.

4 Functions — Alphabetical List

4-540

expA = funm(A,exp(x))

logA = funm(A,log(x))

sqrtA = funm(A,sqrt(x))

expA =

[exp(1), exp(1)/(x - 1) - exp(x)/(x - 1)]

[0, exp(x)]

logA =

[0, -log(x)/(x - 1)]

[0, log(x)]

sqrtA =

[1, 1/(x - 1) - x^(1/2)/(x - 1)]

[0, x^(1/2)]

Input Arguments

A — Input matrix
square matrix

Input matrix, specified as a square symbolic or numeric matrix.

f — Function
symbolic function | symbolic expression

Function, specified as a symbolic function or expression.

Output Arguments

F — Resulting matrix
symbolic matrix

Resulting function, returned as a symbolic matrix.

More About

Matrix Function

Matrix function is a scalar function that maps one matrix to another.

 funm

4-541

Suppose, f(x), where x is a scalar, has a Taylor series expansion. Then the matrix
function f(A), where A is a matrix, is defined by the Taylor series of f(A), with addition
and multiplication performed in the matrix sense.

If A can be represented as A = P·D·P-1, where D is a diagonal matrix, such that

D

d

d
n

=
Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

1
0

0

L

M O M

L

then the matrix function f(A) can be computed as follows:

f

f

f

A P

d

d

P

n

() = ◊
()

()

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜
◊ -

1

1

0

0

L

M O M

L

Non-diagonalizable matrices can be represented as A = P·J·P-1, where J is a Jordan
form of the matrix A. Then, the matrix function f(A) can be computed by using the
following definition on each Jordan block:

f

l

l

1 0 0

0

0

1

0 0

L

O O O M

M O O O

M O O O

L L

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

==

() ¢() ¢¢ () ()
-()

¢¢()

-()
f

!

f

!

f

!

f

!

f

!

l l l l

l

0 1 2 1

0

2

1

L

O O O M

M O O O

M O

n

n

OO O

L L

¢()

()

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜̃

f

!

f

!

l

l
1

0 0
0

Tips

• For compatibility with the MATLAB funm function, funm accepts the following
arguments:

• Function handles such as @exp and @sin, as its second input argument.

4 Functions — Alphabetical List

4-542

• The options input argument, such as funm(A,f,options).
• Additional input arguments of the function f, such as

funm(A,f,options,p1,p2,...)

• The exitflag output argument, such as [F,exitflag] = funm(A,f). Here,
exitflag is 1 only if the funm function call errors, for example, if it encounters a
division by zero. Otherwise, exitflag is 0.

For more details and a list of all acceptable function handles, see the MATLAB funm
function.

• If the input matrix A is numeric (not a symbolic object) and the second argument f is
a function handle, then the funm call invokes the MATLAB funm function.

See Also
eig | expm | jordan | logm | sqrtm

Introduced in R2014b

 funtool

4-543

funtool

Function calculator

Syntax

funtool

Description

funtool is a visual function calculator that manipulates and displays functions of one
variable. At the click of a button, for example, funtool draws a graph representing the
sum, product, difference, or ratio of two functions that you specify. funtool includes a
function memory that allows you to store functions for later retrieval.

At startup, funtool displays graphs of a pair of functions, f(x) = x and g(x) = 1.
The graphs plot the functions over the domain [-2*pi, 2*pi]. funtool also displays a
control panel that lets you save, retrieve, redefine, combine, and transform f and g.

4 Functions — Alphabetical List

4-544

Text Fields

The top of the control panel contains a group of editable text fields.

f= Displays a symbolic expression representing f. Edit this field to
redefine f.

g= Displays a symbolic expression representing g. Edit this field to
redefine g.

x= Displays the domain used to plot f and g. Edit this field to specify
a different domain.

 funtool

4-545

a= Displays a constant factor used to modify f (see button
descriptions in the next section). Edit this field to change the value
of the constant factor.

funtool redraws f and g to reflect any changes you make to the contents of the control
panel's text fields.

Control Buttons

The bottom part of the control panel contains an array of buttons that transform f and
perform other operations.

The first row of control buttons replaces f with various transformations of f.

df/dx Derivative of f
int f Integral of f
simplify f Simplified form of f, if possible
num f Numerator of f
den f Denominator of f
1/f Reciprocal of f
finv Inverse of f

The operators int f and finv can fail if the corresponding symbolic expressions do not
exist in closed form.

The second row of buttons translates and scales f and the domain of f by a constant
factor. To specify the factor, enter its value in the field labeled a= on the calculator
control panel. The operations are

f+a Replaces f(x) by f(x) + a.
f-a Replaces f(x) by f(x) - a.
f*a Replaces f(x) by f(x) * a.
f/a Replaces f(x) by f(x) / a.
f^a Replaces f(x) by f(x) ^ a.
f(x+a) Replaces f(x) by f(x + a).
f(x*a) Replaces f(x) by f(x * a).

4 Functions — Alphabetical List

4-546

The first four buttons of the third row replace f with a combination of f and g.

f+g Replaces f(x) by f(x) + g(x).
f-g Replaces f(x) by f(x)-g(x).
f*g Replaces f(x) by f(x) * g(x).
f/g Replaces f(x) by f(x) / g(x).

The remaining buttons on the third row interchange f and g.

g=f Replaces g with f.
swap Replaces f with g and g with f.

The first three buttons in the fourth row allow you to store and retrieve functions from
the calculator's function memory.

Insert Adds f to the end of the list of stored functions.
Cycle Replaces f with the next item on the function list.
Delete Deletes f from the list of stored functions.

The other four buttons on the fourth row perform miscellaneous functions:

Reset Resets the calculator to its initial state.
Help Displays the online help for the calculator.
Demo Runs a short demo of the calculator.
Close Closes the calculator's windows.

See Also
ezplot | syms

Introduced before R2006a

 gamma

4-547

gamma
Gamma function

Syntax

gamma(X)

Description

gamma(X) returns the gamma function of a symbolic variable or symbolic expression X.

Examples

Gamma Function for Numeric and Symbolic Arguments

Depending on its arguments, gamma returns floating-point or exact symbolic results.

Compute the gamma function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

A = gamma([-11/3, -7/5, -1/2, 1/3, 1, 4])

A =

 0.2466 2.6593 -3.5449 2.6789 1.0000 6.0000

Compute the gamma function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, gamma returns unresolved symbolic calls.

symA = gamma(sym([-11/3, -7/5, -1/2, 1/3, 1, 4]))

symA =

[(27*pi*3^(1/2))/(440*gamma(2/3)), gamma(-7/5),...

-2*pi^(1/2), (2*pi*3^(1/2))/(3*gamma(2/3)), 1, 6]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-548

vpa(symA)

ans =

[0.24658411512650858900694446388517,...

2.6592718728800305399898810505738,...

-3.5449077018110320545963349666823,...

2.6789385347077476336556929409747,...

1.0, 6.0]

Plot Gamma Function

Plot the gamma function and add grid lines.

syms x

ezplot(gamma(x))

grid on

 gamma

4-549

Handle Expressions Containing Gamma Function

Many functions, such as diff, limit, and simplify, can handle expressions containing
gamma.

Differentiate the gamma function, and then substitute the variable t with the value 1:

syms t

u = diff(gamma(t^3 + 1))

u1 = subs(u, t, 1)

u =

3*t^2*gamma(t^3 + 1)*psi(t^3 + 1)

4 Functions — Alphabetical List

4-550

u1 =

3 - 3*eulergamma

Approximate the result using vpa:

vpa(u1)

ans =

1.2683530052954014181804637297528

Compute the limit of the following expression that involves the gamma function:

syms x

limit(x/gamma(x), x, inf)

ans =

0

Simplify the following expression:

syms x

simplify(gamma(x)*gamma(1 - x))

ans =

pi/sin(pi*x)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as symbolic number, variable, expression, function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Gamma Function

The following integral defines the gamma function:

 gamma

4-551

G z t e dt
z t() = - -

•

Ú 1

0

.

See Also
beta | factorial | gammaln | nchoosek | pochhammer | psi

Introduced before R2006a

4 Functions — Alphabetical List

4-552

gammaln
Logarithmic gamma function

Syntax

gammaln(X)

Description

gammaln(X) returns the logarithmic gamma function for each element of X.

Examples

Logarithmic Gamma Function for Numeric and Symbolic Arguments

Depending on its arguments, gammaln returns floating-point or exact symbolic results.

Compute the logarithmic gamma function for these numbers. Because these numbers are
not symbolic objects, you get floating-point results.

A = gammaln([1/5, 1/2, 2/3, 8/7, 3])

A =

 1.5241 0.5724 0.3032 -0.0667 0.6931

Compute the logarithmic gamma function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, gammaln returns results in terms of the gammaln,
log, and gamma functions.

symA = gammaln(sym([1/5, 1/2, 2/3, 8/7, 3]))

symA =

[gammaln(1/5), log(pi^(1/2)), gammaln(2/3),...

log(gamma(1/7)/7), log(2)]

Use vpa to approximate symbolic results with floating-point numbers:

 gammaln

4-553

vpa(symA)

ans =

[1.5240638224307845248810564939263,...

0.57236494292470008707171367567653,...

0.30315027514752356867586281737201,...

-0.066740877459477468649396334098109,...

0.69314718055994530941723212145818]

Definition of the Logarithmic Gamma Function on Complex Plane

gammaln is defined for all complex arguments, except negative infinity.

Compute the logarithmic gamma function for positive integer arguments. For such
arguments, the logarithmic gamma function is defined as the natural logarithm of the
gamma function, gammaln(x) = log(gamma(x)).

pos = gammaln(sym([1/4, 1/3, 1, 5, Inf]))

pos =

[log((pi*2^(1/2))/gamma(3/4)), log((2*pi*3^(1/2))/(3*gamma(2/3))), 0, log(24), Inf]

Compute the logarithmic gamma function for nonpositive integer arguments. For
nonpositive integers, gammaln returns Inf.

nonposint = gammaln(sym([0, -1, -2, -5, -10]))

nonposint =

[Inf, Inf, Inf, Inf, Inf]

Compute the logarithmic gamma function for complex and negative rational arguments.
For these arguments, gammaln returns unresolved symbolic calls.

complex = gammaln(sym([i, -1 + 2*i , -2/3, -10/3]))

complex =

[gammaln(1i), gammaln(- 1 + 2i), gammaln(-2/3), gammaln(-10/3)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(complex)

ans =

[- 0.65092319930185633888521683150395 - 1.8724366472624298171188533494366i,...

- 3.3739449232079248379476073664725 - 3.4755939462808110432931921583558i,...

1.3908857550359314511651871524423 - 3.1415926535897932384626433832795i,...

- 0.93719017334928727370096467598178 - 12.566370614359172953850573533118i]

4 Functions — Alphabetical List

4-554

Compute the logarithmic gamma function of negative infinity:

gammaln(sym(-Inf))

ans =

NaN

Plot Logarithmic Gamma Function

Plot the logarithmic gamma function on the interval from 0 to 10.

syms x

ezplot(gammaln(x), 0, 10)

grid on

 gammaln

4-555

To see the negative values better, plot the same function on the interval from 1 to 2.

ezplot(gammaln(x), 1, 2)

grid on

Handle Expressions Containing Logarithmic Gamma Function

Many functions, such as diff and limit, can handle expressions containing lngamma.

Differentiate the logarithmic gamma function:

syms x

diff(gammaln(x), x)

4 Functions — Alphabetical List

4-556

ans =

psi(x)

Compute the limits of these expressions containing the logarithmic gamma function:

syms x

limit(1/gammaln(x), x, Inf)

ans =

0

limit(gammaln(x - 1) - gammaln(x - 2), x, 0)

ans =

log(2) + pi*1i

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as symbolic number, variable, expression, function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Algorithms

For single or double input to gammaln(x), x must be real and positive.

For symbolic input,

• gammaln(x) is defined for all complex x except the singular points 0, -1, -2,
• For positive real x, gammaln(x) represents the logarithmic gamma function

log(gamma(x)).
• For negative real x or for complex x, gammaln(x) = log(gamma(x)) + f(x)2πi where f(x)

is some integer valued function. The integer multiples of 2πi are chosen such that
gammaln(x) is analytic throughout the complex plane with a branch cut along the
negative real semi axis.

 gammaln

4-557

• For negative real x, gammaln(x) is equal to the limit of log(gamma(x)) from
‘above’.

See Also
beta | gamma | log | nchoosek | psi

Introduced in R2014a

4 Functions — Alphabetical List

4-558

gcd

Greatest common divisor

Syntax

G = gcd(A)

G = gcd(A,B)

[G,C,D] = gcd(A,B,X)

Description

G = gcd(A) finds the greatest common divisor of all elements of A.

G = gcd(A,B) finds the greatest common divisor of A and B.

[G,C,D] = gcd(A,B,X) finds the greatest common divisor of A and B, and also returns
the Bézout coefficients, C and D, such that G = A*C + B*D, and X does not appear in
the denominator of Cand D. If you do not specify X, then gcd uses the default variable
determined by symvar.

Examples

Greatest Common Divisor of Four Integers

To find the greatest common divisor of three or more values, specify those values as a
symbolic vector or matrix.

Find the greatest common divisor of these four integers, specified as elements of a
symbolic vector.

A = sym([4420, -128, 8984, -488])

gcd(A)

A =

 gcd

4-559

[4420, -128, 8984, -488]

ans =

4

Alternatively, specify these values as elements of a symbolic matrix.

A = sym([4420, -128; 8984, -488])

gcd(A)

A =

[4420, -128]

[8984, -488]

ans =

4

Greatest Common Divisor of Rational Numbers

The greatest common divisor of rational numbers a1,a2,... is a number g, such that g/
a1,g/a2,... are integers, and gcd(g) = 1.

Find the greatest common divisor of these rational numbers, specified as elements of a
symbolic vector.

gcd(sym([1/4, 1/3, 1/2, 2/3, 3/4]))

ans =

1/12

Greatest Common Divisor of Complex Numbers

gcd computes the greatest common divisor of complex numbers over the Gaussian
integers (complex numbers with integer real and imaginary parts). It returns a complex
number with a positive real part and a nonnegative imaginary part.

Find the greatest common divisor of these complex numbers.

gcd(sym([10 - 5*i, 20 - 10*i, 30 - 15*i]))

ans =

5 + 10i

4 Functions — Alphabetical List

4-560

Greatest Common Divisor of Elements of Matrices

For vectors and matrices, gcd finds the greatest common divisors element-wise.
Nonscalar arguments must be the same size.

Find the greatest common divisors for the elements of these two matrices.

A = sym([309, 186; 486, 224]);

B = sym([558, 444; 1024, 1984]);

gcd(A,B)

ans =

[3, 6]

[2, 32]

Find the greatest common divisors for the elements of matrix A and the value 200. Here,
gcd expands 200 into the 2-by-2 matrix with all elements equal to 200.

gcd(A,200)

ans =

[1, 2]

[2, 8]

Greatest Common Divisor of Polynomials

Find the greatest common divisor of univariate and multivariate polynomials.

Find the greatest common divisor of these univariate polynomials.

syms x

gcd(x^3 - 3*x^2 + 3*x - 1, x^2 - 5*x + 4)

ans =

x - 1

Find the greatest common divisor of these multivariate polynomials. Because there are
more than two polynomials, specify them as elements of a symbolic vector.

syms x y

gcd([x^2*y + x^3, (x + y)^2, x^2 + x*y^2 + x*y + x + y^3 + y])

ans =

 gcd

4-561

x + y

Bézout Coefficients

Find the greatest common divisor and the Bézout coefficients of these polynomials.
For multivariate expressions, use the third input argument to specify the polynomial
variable. When computing Bézout coefficients, gcd ensures that the polynomial variable
does not appear in their denominators.

Find the greatest common divisor and the Bézout coefficients of these polynomials with
respect to variable x.

[G,C,D] = gcd(x^2*y + x^3, (x + y)^2, x)

G =

x + y

C =

1/y^2

D =

1/y - x/y^2

Find the greatest common divisor and the Bézout coefficients of the same polynomials
with respect to variable y.

[G,C,D] = gcd(x^2*y + x^3, (x + y)^2, y)

G =

x + y

C =

1/x^2

D =

0

If you do not specify the polynomial variable, then the toolbox uses symvar to determine
the variable.

[G,C,D] = gcd(x^2*y + x^3, (x + y)^2)

G =

4 Functions — Alphabetical List

4-562

x + y

C =

1/y^2

D =

1/y - x/y^2

Solution to Diophantine Equation

Solve the Diophantine equation, 30x + 56y = 8, for x and y.

Find the greatest common divisor and a pair of Bézout coefficients for 30 and 56.

[G,C,D] = gcd(sym(30),56)

G =

2

C =

-13

D =

7

C = -13 and D = 7 satisfy the Bézout's identity, (30*(-13)) + (56*7) = 2.

Rewrite Bézout's identity so that it looks more like the original equation. Do this by
multiplying by 4. Use == to verify that both sides of the equation are equal.

isAlways((30*C*4) + (56*D*4) == G*4)

ans =

 1

Calculate the values of x and y that solve the problem.

x = C*4

y = D*4

x =

-52

y =

 gcd

4-563

28

Input Arguments

A — Input value
number | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector | symbolic matrix

Input value, specified as a number, symbolic number, variable, expression, function, or a
vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

B — Input value
number | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector | symbolic matrix

Input value, specified as a number, symbolic number, variable, expression, function, or a
vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

X — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments

G — Greatest common divisor
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Greatest common divisor, returned as a symbolic number, variable, expression, function,
or a vector or matrix of symbolic numbers, variables, expressions, or functions.

C,D — Bézout coefficients
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Bézout coefficients, returned as symbolic numbers, variables, expressions, functions, or
vectors or matrices of symbolic numbers, variables, expressions, or functions.

4 Functions — Alphabetical List

4-564

More About

Tips

• Calling gcd for numbers that are not symbolic objects invokes the MATLAB gcd
function.

• The MATLAB gcd function does not accept rational or complex arguments. To find
the greatest common divisor of rational or complex numbers, convert these numbers
to symbolic objects by using sym, and then use gcd.

• Nonscalar arguments must be the same size. If one input argument is nonscalar,
then gcd expands the scalar into a vector or matrix of the same size as the nonscalar
argument, with all elements equal to the corresponding scalar.

See Also
lcm

Introduced in R2014b

 ge

4-565

ge

Define greater than or equal to relation

Compatibility

In previous releases, ge in some cases evaluated inequalities involving only symbolic
numbers and returned logical 1 or 0. To obtain the same results as in previous releases,
wrap inequalities in isAlways. For example, use isAlways(A >= B).

Syntax

A >= B

ge(A,B)

Description

A >= B creates a greater than or equal to relation.

ge(A,B) is equivalent to A >= B.

Input Arguments

A

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

B

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

4 Functions — Alphabetical List

4-566

Examples
Use assume and the relational operator >= to set the assumption that x is greater than
or equal to 3:

syms x

assume(x >= 3)

Solve this equation. The solver takes into account the assumption on variable x, and
therefore returns these two solutions.

solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)

ans =

 3

 4

Use the relational operator >= to set this condition on variable x:

syms x

cond = (abs(sin(x)) >= 1/2);

for i = 0:sym(pi/12):sym(pi)

 if subs(cond, x, i)

 disp(i)

 end

end

Use the for loop with step π/24 to find angles from 0 to π that satisfy that condition:

pi/6

pi/4

pi/3

(5*pi)/12

pi/2

(7*pi)/12

(2*pi)/3

(3*pi)/4

(5*pi)/6

Alternatives
You can also define this relation by combining an equation and a greater than relation.
Thus, A >= B is equivalent to (A > B) | (A == B).

 ge

4-567

More About

Tips

• Calling >= or ge for non-symbolic A and B invokes the MATLAB ge function. This
function returns a logical array with elements set to logical 1 (true) where A is
greater than or equal to B; otherwise, it returns logical 0 (false).

• If both A and B are arrays, then these arrays must have the same dimensions. A >= B
returns an array of relations A(i,j,...) >= B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is expanded into
an array of the same dimensions as the other array. In other words, if A is a variable
(for example, x), and B is an m-by-n matrix, then A is expanded into m-by-n matrix of
elements, each set to x.

• The field of complex numbers is not an ordered field. MATLAB projects complex
numbers in relations to a real axis. For example, x >= i becomes x >= 0, and x >=
3 + 2*i becomes x >= 3.

See Also
eq | gt | isAlways | le | lt | ne

Introduced in R2012a

4 Functions — Alphabetical List

4-568

gegenbauerC

Gegenbauer polynomials

Syntax

gegenbauerC(n,a,x)

Description

gegenbauerC(n,a,x) represents the nth-degree Gegenbauer (ultraspherical)
polynomial with parameter a at the point x.

Examples

First Four Gegenbauer Polynomials

Find the first four Gegenbauer polynomials for the parameter a and variable x.

syms a x

gegenbauerC([0, 1, 2, 3], a, x)

ans =

[1, 2*a*x, (2*a^2 + 2*a)*x^2 - a,...

((4*a^3)/3 + 4*a^2 + (8*a)/3)*x^3 + (- 2*a^2 - 2*a)*x]

Gegenbauer Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, gegenbauerC returns floating-point or exact symbolic
results.

Find the value of the fifth-degree Gegenbauer polynomial for the parameter a = 1/3
at these points. Because these numbers are not symbolic objects, gegenbauerC returns
floating-point results.

 gegenbauerC

4-569

gegenbauerC(5, 1/3, [1/6, 1/4, 1/3, 1/2, 2/3, 3/4])

ans =

 0.1520 0.1911 0.1914 0.0672 -0.1483 -0.2188

Find the value of the fifth-degree Gegenbauer polynomial for the same numbers
converted to symbolic objects. For symbolic numbers, gegenbauerC returns exact
symbolic results.

gegenbauerC(5, 1/3, sym([1/6, 1/4, 1/3, 1/2, 2/3, 3/4]))

ans =

[26929/177147, 4459/23328, 33908/177147, 49/729, -26264/177147, -7/32]

Evaluate Chebyshev Polynomials with Floating-Point Numbers

Floating-point evaluation of Gegenbauer polynomials by direct calls of gegenbauerC is
numerically stable. However, first computing the polynomial using a symbolic variable,
and then substituting variable-precision values into this expression can be numerically
unstable.

Find the value of the 500th-degree Gegenbauer polynomial for the parameter 4 at 1/3
and vpa(1/3). Floating-point evaluation is numerically stable.

gegenbauerC(500, 4, 1/3)

gegenbauerC(500, 4, vpa(1/3))

ans =

 -1.9161e+05

ans =

-191609.10250897532784888518393655

Now, find the symbolic polynomial C500 = gegenbauerC(500, 4, x), and substitute
x = vpa(1/3) into the result. This approach is numerically unstable.

syms x

C500 = gegenbauerC(500, 4, x);

subs(C500, x, vpa(1/3))

ans =

-8.0178726380235741521208852037291e35

4 Functions — Alphabetical List

4-570

Approximate the polynomial coefficients by using vpa, and then substitute x =
sym(1/3) into the result. This approach is also numerically unstable.

subs(vpa(C500), x, sym(1/3))

ans =

-8.1125412405858470246887213923167e36

Plot Gegenbauer Polynomials

Plot the first five Gegenbauer polynomials for the parameter a = 3.

syms x y

for n = [0, 1, 2, 3, 4]

 ezplot(gegenbauerC(n,3,x))

 hold on

end

hold off

axis([-1, 1, -10, 10])

grid on

ylabel('G_n^3(x)')

legend('G_0^3(x)', 'G_1^3(x)', 'G_2^3(x)', 'G_3^3(x)', 'G_4^3(x)',...

 'Location', 'Best');

title('Gegenbauer polynomials')

 gegenbauerC

4-571

Input Arguments

n — Degree of polynomial
nonnegative integer | symbolic variable | symbolic expression | symbolic function |
vector | matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable,
expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

4 Functions — Alphabetical List

4-572

a — Parameter
number | symbolic number | symbolic variable | symbolic expression | symbolic
function | vector | matrix

Parameter, specified as a nonnegative integer, symbolic variable, expression, or function,
or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or
functions.

x — Evaluation point
number | symbolic number | symbolic variable | symbolic expression | symbolic
function | vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or
function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions,
or functions.

More About

Gegenbauer Polynomials

Gegenbauer polynomials are defined by this recursion formula.

G a x G a x ax G n a x
x n a

n
G n a x

n a
0 1 1 2

2 1
1

2
, , , , , , , , , ,() = () = () =

+ -()
-() -

+ --
-()

2
2

n
G n a x, ,

For all real a > -1/2, Gegenbauer polynomials are orthogonal on the interval -1 ≤ x ≤ 1
with respect to the weight function

w x x

a

() = -()
-

1
2

1

2

Chebyshev polynomials of the first and second kinds are a special case of the Gegenbauer
polynomials.

T n x
n

G n x, , ,() = ()
2

0

U n x G n x, , ,() = ()1

 gegenbauerC

4-573

Legendre polynomials are also a special case of the Gegenbauer polynomials.

P n x G n x, , ,() = Ê
ËÁ

ˆ
¯̃

1

2

Tips

• gegenbauerC returns floating-point results for numeric arguments that are not
symbolic objects.

• gegenbauerC acts element-wise on nonscalar inputs.
• All nonscalar arguments must have the same size. If one or two input arguments are

nonscalar, then gegenbauerC expands the scalars into vectors or matrices of the
same size as the nonscalar arguments, with all elements equal to the corresponding
scalar.

References

[1] Hochstrasser,U.W. “Orthogonal Polynomials.” Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

See Also
chebyshevT | chebyshevU | hermiteH | jacobiP | laguerreL | legendreP

Introduced in R2014b

4 Functions — Alphabetical List

4-574

getVar
Get variable from MuPAD notebook

Syntax

MATLABvar = getVar(nb,'MuPADvar')

Description

MATLABvar = getVar(nb,'MuPADvar') assigns the variable MuPADvar in the
MuPAD notebook nb to a symbolic variable MATLABvar in the MATLAB workspace.

Examples

Copy Variable from MuPAD to MATLAB

Copy a variable with a value assigned to it from a MuPAD notebook to the MATLAB
workspace.

Create a new MuPAD notebook and specify a handle mpnb to that notebook:

mpnb = mupad;

In the MuPAD notebook, enter the following command. This command creates the
variable f and assigns the value x^2 to this variable. At this point, the variable and its
value exist only in MuPAD.

f := x^2

Return to the MATLAB Command Window and use the getVar function:

f = getVar(mpnb,'f')

f =

x^2

After you call getVar, the variable f appears in the MATLAB workspace. The value of
the variable f in the MATLAB workspace is x^2.

 getVar

4-575

Now, use getVar to copy variables a and b from the same notebook. Although you do not
specify these variables explicitly, and they do not have any values assigned to them, they
exist in MuPAD.

a = getVar(mpnb,'a')

b = getVar(mpnb,'b')

a =

a

b =

b

• “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25

Input Arguments

nb — Pointer to MuPAD notebook
handle to notebook

Pointer to a MuPAD notebook, specified as a MuPAD notebook handle. You create the
notebook handle when opening a notebook with the mupad or openmn function.

MuPADvar — Variable in MuPAD notebook
variable

Variable in a MuPAD notebook, specified as a variable. A variable exists in MuPAD even
if it has no value assigned to it.

Output Arguments

MATLABvar — Variable in MATLAB workspace
symbolic variable

Variable in the MATLAB workspace, returned as a symbolic variable.

See Also
mupad | openmu | setVar

4 Functions — Alphabetical List

4-576

Introduced in R2008b

 gradient

4-577

gradient

Gradient vector of scalar function

Syntax

gradient(f,v)

Description

gradient(f,v) finds the gradient vector of the scalar function f with respect to vector
v in Cartesian coordinates.

If you do not specify v, then gradient(f) finds the gradient vector of the scalar function
f with respect to a vector constructed from all symbolic variables found in f. The order of
variables in this vector is defined by symvar.

Examples

Find Gradient of Function

The gradient of a function f with respect to the vector v is the vector of the first partial
derivatives of f with respect to each element of v.

Find the gradient vector of f(x, y, z) with respect to vector [x, y, z]. The gradient
is a vector with these components.

syms x y z

f = 2*y*z*sin(x) + 3*x*sin(z)*cos(y);

gradient(f, [x, y, z])

ans =

 3*cos(y)*sin(z) + 2*y*z*cos(x)

 2*z*sin(x) - 3*x*sin(y)*sin(z)

 2*y*sin(x) + 3*x*cos(y)*cos(z)

4 Functions — Alphabetical List

4-578

Plot Gradient of Function

Find the gradient of a function f(x, y), and plot it as a quiver (velocity) plot.

Find the gradient vector of f(x, y) with respect to vector [x, y]. The gradient is
vector g with these components.

syms x y

f = -(sin(x) + sin(y))^2;

g = gradient(f, [x, y])

g =

 -2*cos(x)*(sin(x) + sin(y))

 -2*cos(y)*(sin(x) + sin(y))

Now plot the vector field defined by these components. MATLAB provides the quiver
plotting function for this task. The function does not accept symbolic arguments. First,
replace symbolic variables in expressions for components of g with numeric values. Then
use quiver:

[X, Y] = meshgrid(-1:.1:1,-1:.1:1);

G1 = subs(g(1), [x y], {X,Y});

G2 = subs(g(2), [x y], {X,Y});

quiver(X, Y, G1, G2)

 gradient

4-579

Input Arguments

f — Scalar function
symbolic expression | symbolic function

Scalar function, specified as symbolic expression or symbolic function.

v — Vector with respect to which you find gradient vector
symbolic vector

4 Functions — Alphabetical List

4-580

Vector with respect to which you find gradient vector, specified as a symbolic vector. By
default, v is a vector constructed from all symbolic variables found in f. The order of
variables in this vector is defined by symvar.

If v is a scalar, gradient(f,v) = diff(f,v). If v is an empty symbolic object, such as
sym([]), then gradient returns an empty symbolic object.

More About

Gradient Vector

The gradient vector of f(x) with respect to the vector x is the vector of the first partial
derivatives of f.

— = ∂
∂

∂
∂

∂
∂

Ê

Ë
Á

ˆ

¯
˜f

f

x

f

x

f

xn1 2

, , ,…

See Also
curl | diff | divergence | hessian | jacobian | laplacian | potential |
quiver | vectorPotential

Introduced in R2011b

 gt

4-581

gt
Define greater than relation

Compatibility
In previous releases, gt in some cases evaluated inequalities involving only symbolic
numbers and returned logical 1 or 0. To obtain the same results as in previous releases,
wrap inequalities in isAlways. For example, use isAlways(A > B).

Syntax
A > B

gt(A,B)

Description
A > B creates a greater than relation.

gt(A,B) is equivalent to A > B.

Input Arguments
A

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

B

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

Examples
Use assume and the relational operator > to set the assumption that x is greater than 3:

4 Functions — Alphabetical List

4-582

syms x

assume(x > 3)

Solve this equation. The solver takes into account the assumption on variable x, and
therefore returns this solution.

solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)

ans =

4

Use the relational operator > to set this condition on variable x:

syms x

cond = abs(sin(x)) + abs(cos(x)) > 7/5;

for i = 0:sym(pi/24):sym(pi)

 if subs(cond, x, i)

 disp(i)

 end

end

Use the for loop with step π/24 to find angles from 0 to π that satisfy that condition:

(5*pi)/24

pi/4

(7*pi)/24

(17*pi)/24

(3*pi)/4

(19*pi)/24

More About

Tips

• Calling > or gt for non-symbolic A and B invokes the MATLAB gt function. This
function returns a logical array with elements set to logical 1 (true) where A is
greater than B; otherwise, it returns logical 0 (false).

• If both A and B are arrays, then these arrays must have the same dimensions. A > B
returns an array of relations A(i,j,...) > B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is expanded into
an array of the same dimensions as the other array. In other words, if A is a variable

 gt

4-583

(for example, x), and B is an m-by-n matrix, then A is expanded into m-by-n matrix of
elements, each set to x.

• The field of complex numbers is not an ordered field. MATLAB projects complex
numbers in relations to a real axis. For example, x > i becomes x > 0, and x > 3
+ 2*i becomes x > 3.

See Also
eq | ge | isAlways | le | lt | ne

Introduced in R2012a

4 Functions — Alphabetical List

4-584

harmonic

Harmonic function (harmonic number)

Syntax

harmonic(x)

Description

harmonic(x) returns the harmonic function of x. For integer values of x, harmonic(x)
generates harmonic numbers.

Examples

Generate Harmonic Numbers

Generate the first 10 harmonic numbers.

harmonic(sym(1:10))

ans =

[1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, 7381/2520]

Harmonic Function for Numeric and Symbolic Arguments

Find the harmonic function for these numbers. Since these are not symbolic objects, you
get floating-point results.

harmonic([2 i 13/3])

ans =

 1.5000 + 0.0000i 0.6719 + 1.0767i 2.1545 + 0.0000i

Find the harmonic function symbolically by converting the numbers to symbolic objects.

 harmonic

4-585

y = harmonic(sym([2 i 13/3]))

y =

[3/2, harmonic(1i), 8571/1820 - (pi*3^(1/2))/6 - (3*log(3))/2]

If the denominator of x is 2, 3, 4, or 6, and |x| < 500, then the result is expressed in
terms of pi and log.

Use vpa to approximate the results obtained.

vpa(y)

ans =

[1.5, 0.67186598552400983787839057280431...

 + 1.07667404746858117413405079475i,...

 2.1545225442213858782694336751358]

For |x| > 1000, harmonic returns the function call as it is. Use vpa to force harmonic
to evaluate the function call.

harmonic(sym(1001))

vpa(harmonic(sym(1001)))

ans =

harmonic(1001)

ans =

7.4864698615493459116575172053329

Harmonic Function for Special Values

Find the harmonic function for special values.

harmonic([0 1 -1 Inf -Inf])

ans =

 0 1 Inf Inf NaN

Harmonic Function for Symbolic Functions

Find the harmonic function for the symbolic function f.

syms f(x)

f(x) = exp(x) + tan(x);

4 Functions — Alphabetical List

4-586

y = harmonic(f)

y(x) =

harmonic(exp(x) + tan(x))

Harmonic Function for Symbolic Vectors and Matrices

Find the harmonic function for elements of vector V and matrix M.

syms x

V = [x sin(x) 3*i];

M = [exp(i*x) 2; -6 Inf];

harmonic(V)

harmonic(M)

ans =

[harmonic(x), harmonic(sin(x)), harmonic(3i)]

ans =

[harmonic(exp(x*1i)), 3/2]

[Inf, Inf]

Plot Harmonic Function

Plot the harmonic function from x = -5 to x = 5.

syms x

ezplot(harmonic(x),[-5,5]), grid on

 harmonic

4-587

Differentiate and Find Limit of Harmonic Function

The functions diff and limit handle expressions containing harmonic.

Find the second derivative of harmonic(x^2+1).

syms x

diff(harmonic(x^2+1),x,2)

ans =

2*psi(1, x^2 + 2) + 4*x^2*psi(2, x^2 + 2)

Find the limit of harmonic(x) as x tends to ∞ and of (x+1)*harmonic(x) as x tends to
-1.

4 Functions — Alphabetical List

4-588

syms x

limit(harmonic(x),Inf)

limit((x+1)*harmonic(x),-1)

ans =

Inf

ans =

-1

Taylor Series Expansion of Harmonic Function

Use taylor to expand the harmonic function in terms of the Taylor series.

syms x

taylor(harmonic(x))

ans =

(pi^6*x^5)/945 - zeta(5)*x^4 + (pi^4*x^3)/90...

 - zeta(3)*x^2 + (pi^2*x)/6

Expand Harmonic Function

Use expand to expand the harmonic function.

syms x

expand(harmonic(2*x+3))

ans =

harmonic(x + 1/2)/2 + log(2) + harmonic(x)/2 - 1/(2*(x + 1/2))...

 + 1/(2*x + 1) + 1/(2*x + 2) + 1/(2*x + 3)

Input Arguments

x — Input
number | vector | matrix | multidimensional array | symbolic variable | symbolic
expression | symbolic function | symbolic vector | symbolic matrix | symbolic N-D array

Input, specified as number, vector, matrix, or as a multidimensional array or symbolic
variable, expression, function, vector, matrix, or multidimensional array.

 harmonic

4-589

More About

Harmonic Function

The harmonic function for x is defined as

harmonic x
kk

x

() =
=
S

1

1

It is also defined as

harmonic x x() = () +Y g

where Ψ(x) is the polygamma function and γ is the Euler-Mascheroni constant.

Algorithms

The harmonic function is defined for all complex arguments z except for negative integers
-1, -2,... where a singularity occurs.

If x has denominator 1, 2, 3, 4, or 6, then an explicit result is computed and
returned. For other rational numbers, harmonic uses the functional equation

harmonic harmonicx x

x

+() = () +1
1 to obtain a result with an argument x from the

interval [0, 1].

expand expands harmonic using the equations harmonic harmonicx x

x

+() = () +1
1 ,

harmonic harmonic cot-() = () - + ()x x

x

x
1

p p , and the Gauss multiplication formula for

harmonic(kx), where k is an integer.

harmonic implements the following explicit formulae:

harmonic ln
-Ê

Ë
Á

ˆ
¯
˜ = - ()1

2
2 2

4 Functions — Alphabetical List

4-590

harmonic ln-Ê
ËÁ

ˆ
¯̃

= - () -2

3

3

2
3

3

6
p

harmonic ln-Ê
ËÁ

ˆ
¯̃

= - () +1

3

3

2
3

3

6
p

harmonic ln
-Ê

Ë
Á

ˆ
¯
˜ = - () -3

4
3 2

2

p

harmonic ln
-Ê

Ë
Á

ˆ
¯
˜ = - () +1

4
3 2

2

p

harmonic ln ln
-Ê

ËÁ
ˆ
¯̃

= - () - () -5

6
2 2

3

2
3

3

2
p

harmonic ln ln
-Ê

ËÁ
ˆ
¯̃

= - () - () +1

6
2 2

3

2
3

3

2
p

harmonic 0 0() =

harmonic ln
1

2
2 2 2

Ê
Ë
Á

ˆ
¯
˜ = - ()

harmonic ln
1

3
3

3

2
3

3

6

Ê
ËÁ

ˆ
¯̃

= - () - p

harmonic ln
2

3

3

2

3

2
3

3

6

Ê
ËÁ

ˆ
¯̃

= - () + p

harmonic ln
1

4
4 3 2

2

Ê
Ë
Á

ˆ
¯
˜ = - () - p

 harmonic

4-591

harmonic ln
3

4

4

3
3 2

2

Ê
Ë
Á

ˆ
¯
˜ = - () + p

harmonic ln ln
1

6
6 2 2

3

2
3

3

2

Ê
ËÁ

ˆ
¯̃

= - () - () - p

harmonic ln ln
5

6

6

5
2 2

3

2
3

3

2

Ê
ËÁ

ˆ
¯̃

= - () - () + p

harmonic 1 1() =

harmonic •() = •

harmonic -•() = NaN

See Also
beta | factorial | gamma | gammaln | nchoosek | zeta

Introduced in R2014a

4 Functions — Alphabetical List

4-592

has

Check if expression contains particular subexpression

Syntax

has(expr,subexpr)

Description

has(expr,subexpr) returns logical 1 (true) if expr contains subexpr. Otherwise, it
returns logical 0 (false).

• If expr is an array, has(expr,subexpr) returns an array of the same size as expr.
The returned array contains logical 1s (true) where the elements of expr contain
subexpr, and logical 0s (false) where they do not.

• If subexpr is an array, has(expr,subexpr) checks if expr contains any element of
subexpr.

Examples

Check If Expression Contains Particular Subexpression

Use the has function to check if an expression contains a particular variable or
subexpression.

Check if these expressions contain variable z.

syms x y z

has(x + y + z, z)

ans =

 1

has(x + y, z)

 has

4-593

ans =

 0

Check if x + y + z contains the following subexpressions. Note that has finds the
subexpression x + z even though the terms x and z do not appear next to each other in
the expression.

has(x + y + z, x + y)

has(x + y + z, y + z)

has(x + y + z, x + z)

ans =

 1

ans =

 1

ans =

 1

Check if the expression (x + 1)^2 contains x^2. Although (x + 1)^2 is
mathematically equivalent to the expression x^2 + 2*x + 1, the result is a logical 0
because has typically does not transform expressions to different forms when testing for
subexpressions.

has((x + 1)^2, x^2)

ans =

 0

Expand the expression and then call has to check if the result contains x^2. Because
expand((x + 1)^2) transforms the original expression to x^2 + 2*x + 1, the has
function finds the subexpression x^2 and returns logical 1.

has(expand((x + 1)^2), x^2)

ans =

 1

Check If Expression Contains Any of Specified Subexpressions

Check if a symbolic expression contains any of subexpressions specified as elements of a
vector.

4 Functions — Alphabetical List

4-594

If an expression contains one or more of the specified subexpressions, has returns logical
1.

syms x

has(sin(x) + cos(x) + x^2, [tan(x), cot(x), sin(x), exp(x)])

ans =

 1

If an expression does not contain any of the specified subexpressions, has returns logical
0.

syms x

has(sin(x) + cos(x) + x^2, [tan(x), cot(x), exp(x)])

ans =

 0

Find Matrix Elements Containing Particular Subexpression

Using has, find those elements of a symbolic matrix that contain a particular
subexpression.

First, create a matrix.

syms x y

M = [sin(x)*sin(y), cos(x*y) + 1; cos(x)*tan(x), 2*sin(x)^2]

M =

[sin(x)*sin(y), cos(x*y) + 1]

[cos(x)*tan(x), 2*sin(x)^2]

Use has to check which elements of M contain sin(x). The result is a matrix of the
same size as M, with 1s and 0s as its elements. For the elements of M containing the
specified expression, has returns logical 1s. For the elements that do not contain that
subexpression, has returns logical 0s.

T = has(M, sin(x))

T =

 1 0

 0 1

Return only the elements that contain sin(x) and replace all other elements with 0 by
multiplying M by T elementwise.

 has

4-595

M.*T

ans =

[sin(x)*sin(y), 0]

[0, 2*sin(x)^2]

To check if any of matrix elements contain a particular subexpression, use any.

any(has(M(:), sin(x)))

ans =

 1

any(has(M(:), cos(y)))

ans =

 0

Find Vector Elements Containing Any of Specified Subexpressions

Using has, find those elements of a symbolic vector that contain any of the specified
subexpressions.

syms x y z

T = has([x + 1, cos(y) + 1, y + z, 2*x*cos(y)], [x, cos(y)])

T =

 1 1 0 1

Return only the elements of the original vector that contain x or cos(y) or both, and
replace all other elements with 0 by multiplying the original vector by T elementwise.

[x + 1, cos(y) + 1, y + z, 2*x*cos(y)].*T

ans =

[x + 1, cos(y) + 1, 0, 2*x*cos(y)]

Use has for Symbolic Functions

If expr or subexpr is a symbolic function, has uses formula(expr) or
formula(subexpr). This approach lets the has function check if an expression defining
the symbolic function expr contains an expression defining the symbolic function
subexpr.

4 Functions — Alphabetical List

4-596

Create a symbolic function.

syms x

f(x) = sin(x) + cos(x);

Here, sin(x) + cos(x) is an expression defining the symbolic function f.

formula(f)

ans =

cos(x) + sin(x)

Check if f and f(x) contain sin(x). In both cases has checks if the expression sin(x)
+ cos(x) contains sin(x).

has(f, sin(x))

has(f(x), sin(x))

ans =

 1

ans =

 1

Check if f(x^2) contains f. For these arguments, has returns logical 0 (false) because
it does not check if the expression f(x^2) contains the letter f. This call is equivalent to
has(f(x^2), formula(f)), which, in turn, resolves to has(cos(x^2) + sin(x^2),
cos(x) + sin(x)).

has(f(x^2), f)

ans =

 0

Input Arguments

expr — Expression to test
symbolic expression | symbolic function | symbolic equation | symbolic inequality |
symbolic vector | symbolic matrix | symbolic array

Expression to test, specified as a symbolic expression, function, equation, or inequality.
Also it can be a vector, matrix, or array of symbolic expressions, functions, equations, and
inequalities.

 has

4-597

subexpr — Subexpression to test for
symbolic variable | symbolic expression | symbolic function | symbolic equation |
symbolic inequality | symbolic vector | symbolic matrix | symbolic array

Subexpression to test for, specified as a symbolic variable, expression, function, equation,
or inequality. Also it can be a vector, matrix, or array of symbolic variables, expressions,
functions, equations, and inequalities.

More About

Tips

• has does not transform or simplify expressions. This is why it does not find
subexpressions like x^2 in expressions like (x + 1)^2. However, in some cases has
might find that an expression or subexpression can be represented in a form other
than its original form. For example, has finds that the expression -x - 1 can be
represented as -(x + 1). Thus, the call has(-x - 1, x + 1) returns 1.

• If expr is an empty symbolic array, has returns an empty logical array of the same
size as expr.

See Also
subexpr | subs | times

Introduced in R2015b

4 Functions — Alphabetical List

4-598

heaviside

Heaviside step function

Syntax

heaviside(x)

Description

heaviside(x) returns the value 0 for x < 0, 1 for x > 0, and 1/2 for x = 0.

Examples

Evaluate Heaviside Function for Numeric and Symbolic Arguments

Depending on the argument value, heaviside returns one of these values: 0, 1, or 1/2.
If the argument is a floating-point number (not a symbolic object), then heaviside
returns floating-point results.

For x < 0, the function heaviside(x) returns 0:

heaviside(sym(-3))

ans =

0

For x > 0, the function heaviside(x) returns 1:

heaviside(sym(3))

ans =

1

For x = 0, the function heaviside(x) returns 1/2:

 heaviside

4-599

heaviside(sym(0))

ans =

1/2

For numeric x = 0, the function heaviside(x) returns the numeric result:

heaviside(0)

ans =

 0.5000

Use Assumptions on Variables

heaviside takes into account assumptions on variables.

syms x

assume(x < 0)

heaviside(x)

ans =

0

For further computations, clear the assumptions:

syms x clear

Plot Heaviside Function

Plot the Heaviside step function for x and x - 1 .

syms x

ezplot(heaviside(x), [-2, 2])

4 Functions — Alphabetical List

4-600

ezplot(heaviside(x - 1), [-2, 2])

 heaviside

4-601

Evaluate Heaviside Function for Symbolic Matrix

Call heaviside for this symbolic matrix. When the input argument is a matrix,
heaviside computes the Heaviside function for each element.

syms x

heaviside(sym([-1 0; 1/2 x]))

ans =

[0, 1/2]

[1, heaviside(x)]

4 Functions — Alphabetical List

4-602

Differentiate and Integrate Expressions Involving Heaviside Function

Compute derivatives and integrals of expressions involving the Heaviside function.

Find the first derivative of the Heaviside function. The first derivative of the Heaviside
function is the Dirac delta function.

syms x

diff(heaviside(x), x)

ans =

dirac(x)

Find the integral of the expression involving the Heaviside function:

syms x

int(exp(-x)*heaviside(x), x, -Inf, Inf)

ans =

1

Change Value of Heaviside Function at Origin

heaviside assumes that the value of the Heaviside function at the origin is 1/2.

heaviside(sym(0))

ans =

1/2

Other common values for the Heaviside function at the origin are 0 and 1. To change
the value of heaviside at the origin, use the 'HeavisideAtOrigin' preference of
sympref. Store the previous parameter value returned by sympref, so that you can
restore it later.

oldparam = sympref('HeavisideAtOrigin',1);

Check the new value of heaviside at 0.

heaviside(sym(0))

ans =

1

 heaviside

4-603

The preferences set by sympref persist throughout your current and future MATLAB
sessions. To restore the previous value of heaviside at the origin, use the value stored
in oldparam.

sympref('HeavisideAtOrigin',oldparam);

Alternatively, you can restore the default value of 'HeavisideAtOrigin' by using the
'default' setting.

sympref('HeavisideAtOrigin','default');

Input Arguments

x — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, function, vector, or matrix.

See Also
dirac | sympref

Introduced before R2006a

4 Functions — Alphabetical List

4-604

hermiteForm
Hermite form of matrix

Syntax

H = hermiteForm(A)

[U,H] = hermiteForm(A)

___ = hermiteForm(A,var)

Description

H = hermiteForm(A) returns the Hermite normal form of a matrix A. The elements
of A must be integers or polynomials in a variable determined by symvar(A,1). The
Hermite form H is an upper triangular matrix.

[U,H] = hermiteForm(A) returns the Hermite normal form of A and a unimodular
transformation matrix U, such that H = U*A.

___ = hermiteForm(A,var) assumes that the elements of A are univariate
polynomials in the specified variable var. If A contains other variables, hermiteForm
treats those variables as symbolic parameters.

You can use the input argument var in any of the previous syntaxes.

If A does not contain var, then hermiteForm(A) and hermiteForm(A,var) return
different results.

Examples

Hermite Form for Matrix of Integers

Find the Hermite form of an inverse Hilbert matrix.

A = sym(invhilb(5))

 hermiteForm

4-605

H = hermiteForm(A)

A =

[25, -300, 1050, -1400, 630]

[-300, 4800, -18900, 26880, -12600]

[1050, -18900, 79380, -117600, 56700]

[-1400, 26880, -117600, 179200, -88200]

[630, -12600, 56700, -88200, 44100]

H =

[5, 0, -210, -280, 630]

[0, 60, 0, 0, 0]

[0, 0, 420, 0, 0]

[0, 0, 0, 840, 0]

[0, 0, 0, 0, 2520]

Hermite Form for Matrix of Univariate Polynomials

Create a 2-by-2 matrix, the elements of which are polynomials in the variable x.

syms x

A = [x^2 + 3, (2*x - 1)^2; (x + 2)^2, 3*x^2 + 5]

A =

[x^2 + 3, (2*x - 1)^2]

[(x + 2)^2, 3*x^2 + 5]

Find the Hermite form of this matrix.

H = hermiteForm(A)

H =

[1, (4*x^3)/49 + (47*x^2)/49 - (76*x)/49 + 20/49]

[0, x^4 + 12*x^3 - 13*x^2 - 12*x - 11]

Hermite Form for Matrix of Multivariate Polynomials

Create a 2-by-2 matrix that contains two variables: x and y.

syms x y

A = [2/x + y, x^2 - y^2; 3*sin(x) + y, x]

A =

[y + 2/x, x^2 - y^2]

4 Functions — Alphabetical List

4-606

[y + 3*sin(x), x]

Find the Hermite form of this matrix. If you do not specify the polynomial variable,
hermiteForm uses symvar(A,1) and thus determines that the polynomial variable is x.
Because 3*sin(x) + y is not a polynomial in x, hermiteForm throws an error.

H = hermiteForm(A)

Error using mupadengine/feval (line 163)

Cannot convert the matrix entries to integers or univariate polynomials.

Find the Hermite form of A specifying that all elements of A are polynomials in the
variable y.

H = hermiteForm(A,y)

H =

[1, (x*y^2)/(3*x*sin(x) - 2) + (x*(x - x^2))/(3*x*sin(x) - 2)]

[0, 3*y^2*sin(x) - 3*x^2*sin(x) + y^3 + y*(- x^2 + x) + 2]

Hermite Form and Transformation Matrix

Find the Hermite form and the corresponding transformation matrix for an inverse
Hilbert matrix.

A = sym(invhilb(3));

[U,H] = hermiteForm(A)

U =

[13, 9, 7]

[6, 4, 3]

[20, 15, 12]

H =

[3, 0, 30]

[0, 12, 0]

[0, 0, 60]

Verify that H = U*A.

isAlways(H == U*A)

ans =

 1 1 1

 1 1 1

 hermiteForm

4-607

 1 1 1

Find the Hermite form and the corresponding transformation matrix for a matrix of
polynomials.

syms x y

A = [2*(x - y), 3*(x^2 - y^2);

 4*(x^3 - y^3), 5*(x^4 - y^4)];

[U,H] = hermiteForm(A,x)

U =

[1/2, 0]

[2*x^2 + 2*x*y + 2*y^2, -1]

H =

[x - y, (3*x^2)/2 - (3*y^2)/2]

[0, x^4 + 6*x^3*y - 6*x*y^3 - y^4]

Verify that H = U*A.

isAlways(H == U*A)

ans =

 1 1

 1 1

If You Specify Variable for Integer Matrix

If a matrix does not contain a particular variable, and you call hermiteForm specifying
that variable as the second argument, then the result differs from what you get without
specifying that variable. For example, create a matrix that does not contain any
variables.

A = [9 -36 30; -36 192 -180; 30 -180 180]

A =

 9 -36 30

 -36 192 -180

 30 -180 180

Call hermiteForm specifying variable x as the second argument. In this
case, hermiteForm assumes that the elements of A are univariate polynomials in x.

syms x

4 Functions — Alphabetical List

4-608

hermiteForm(A,x)

ans =

 1 0 0

 0 1 0

 0 0 1

Call hermiteForm without specifying variables. In this case, hermiteForm treats A as a
matrix of integers.

hermiteForm(A)

ans =

 3 0 30

 0 12 0

 0 0 60

Input Arguments

A — Input matrix
symbolic matrix

Input matrix, specified as a symbolic matrix, the elements of which are integers or
univariate polynomials. If the elements of A contain more than one variable, use the
var argument to specify a polynomial variable, and treat all other variables as symbolic
parameters. If A is multivariate, and you do not specify var, then hermiteForm uses
symvar(A,1) to determine a polynomial variable.

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments

H — Hermite normal form of input matrix
symbolic matrix

Hermite normal form of input matrix, returned as a symbolic matrix. The Hermite form
of a matrix is an upper triangular matrix.

 hermiteForm

4-609

U — Transformation matrix
unimodular symbolic matrix

Transformation matrix, returned as a unimodular symbolic matrix. If elements of A
are integers, then elements of U are also integers, and det(U) = 1 or det(U) = -1.
If elements of A are polynomials, then elements of U are univariate polynomials, and
det(U) is a constant.

More About

Hermite Normal Form

For any square n-by-n matrix A with integer coefficients, there exists an n-by-n matrix H
and an n-by-n unimodular matrix U, such that A*U = H, where H is the Hermite normal
form of A. A unimodular matrix is a real square matrix, such that its determinant equals
1 or -1. If A is a matrix of polynomials, then the determinant of U is a constant.

hermiteForm returns the Hermite normal form of a nonsingular integer square matrix

A as an upper triangular matrix H, such that H jj ≥ 0 and - < £

H
H

Hjj
ij

jj

2 2
 for j i> . If

A is not a square matrix or a singular matrix, the matrix H is simply an upper triangular
matrix.

See Also
jordan | smithForm

Introduced in R2015b

4 Functions — Alphabetical List

4-610

hermiteH

Hermite polynomials

Syntax

hermiteH(n,x)

Description

hermiteH(n,x) represents the nth-degree Hermite polynomial at the point x.

Examples

First Five Hermite Polynomials

Find the first five Hermite polynomials of the second kind for the variable x.

syms x

hermiteH([0, 1, 2, 3, 4], x)

ans =

[1, 2*x, 4*x^2 - 2, 8*x^3 - 12*x, 16*x^4 - 48*x^2 + 12]

Hermite Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, hermiteH returns floating-point or exact symbolic results.

Find the value of the fifth-degree Hermite polynomial at these points. Because these
numbers are not symbolic objects, hermiteH returns floating-point results.

hermiteH(5, [1/6, 1/3, 1/2, 2/3, 3/4])

 hermiteH

4-611

ans =

 19.2634 34.2058 41.0000 36.8066 30.0938

Find the value of the fifth-degree Hermite polynomial for the same numbers converted to
symbolic objects. For symbolic numbers, hermiteH returns exact symbolic results.

hermiteH(5, sym([1/6, 1/3, 1/2, 2/3, 3/4]))

ans =

[4681/243, 8312/243, 41, 8944/243, 963/32]

Plot Hermite Polynomials

Plot the first five Hermite polynomials.

syms x y

for n = [0, 1, 2, 3, 4]

 ezplot(hermiteH(n,x))

 hold on

end

hold off

axis([-2, 2, -30, 30])

grid on

ylabel('H_n(x)')

legend('H_0(x)', 'H_1(x)', 'H_2(x)', 'H_3(x)', 'H_4(x)', 'Location', 'Best')

title('Hermite polynomials')

4 Functions — Alphabetical List

4-612

Input Arguments

n — Degree of polynomial
nonnegative integer | symbolic variable | symbolic expression | symbolic function |
vector | matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable,
expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

 hermiteH

4-613

x — Evaluation point
number | symbolic number | symbolic variable | symbolic expression | symbolic
function | vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or
function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions,
or functions.

More About

Hermite Polynomials

Hermite polynomials are defined by this recursion formula:

H x H x x H n x xH n x n H n x0 1 1 2 2 1 2 1 2, , , , , , ,() = () = () = -() - -() -()

Hermite polynomials are orthogonal on the real line with respect to the weight function

w x e
x() =

-
2

Tips

• hermiteH returns floating-point results for numeric arguments that are not symbolic
objects.

• hermiteH acts element-wise on nonscalar inputs.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then hermiteH expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References

[1] Hochstrasser,U.W. “Orthogonal Polynomials.” Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

See Also
chebyshevT | chebyshevU | gegenbauerC | jacobiP | laguerreL | legendreP

4 Functions — Alphabetical List

4-614

Introduced in R2014b

 hessian

4-615

hessian
Hessian matrix of scalar function

Syntax

hessian(f,v)

Description

hessian(f,v) finds the Hessian matrix of the scalar function f with respect to vector v
in Cartesian coordinates.

If you do not specify v, then hessian(f) finds the Hessian matrix of the scalar function
f with respect to a vector constructed from all symbolic variables found in f. The order of
variables in this vector is defined by symvar.

Examples

Find Hessian Matrix of Scalar Function

Find the Hessian matrix of a function by using hessian. Then find the Hessian matrix
of the same function as the Jacobian of the gradient of the function.

Find the Hessian matrix of this function of three variables:

syms x y z

f = x*y + 2*z*x;

hessian(f,[x,y,z])

ans =

[0, 1, 2]

[1, 0, 0]

[2, 0, 0]

Alternatively, compute the Hessian matrix of this function as the Jacobian of the
gradient of that function:

4 Functions — Alphabetical List

4-616

jacobian(gradient(f))

ans =

[0, 1, 2]

[1, 0, 0]

[2, 0, 0]

Input Arguments

f — Scalar function
symbolic expression | symbolic function

Scalar function, specified as symbolic expression or symbolic function.

v — Vector with respect to which you find Hessian matrix
symbolic vector

Vector with respect to which you find Hessian matrix, specified as a symbolic vector.
By default, v is a vector constructed from all symbolic variables found in f. The order of
variables in this vector is defined by symvar.

If v is an empty symbolic object, such as sym([]), then hessian returns an empty
symbolic object.

More About

Hessian Matrix

The Hessian matrix of f(x) is the square matrix of the second partial derivatives of f(x).

H f

f

x

f

x x

f

x x

f

x x

f

x

f

x x

n

n() =

∂

∂

∂

∂ ∂

∂

∂ ∂

∂

∂ ∂

∂

∂

∂

∂ ∂

2

1
2

2

1 2

2

1

2

2 1

2

2
2

2

2

L

L

M MM O M

L
∂

∂ ∂

∂

∂ ∂

∂

∂

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

2

1

2

2

2

2

f

x x

f

x x

f

xn n n

 hessian

4-617

See Also
curl | diff | divergence | gradient | jacobian | laplacian | potential |
vectorPotential

Introduced in R2011b

4 Functions — Alphabetical List

4-618

horner
Horner nested polynomial representation

Syntax

horner(P)

Description

Suppose P is a matrix of symbolic polynomials. horner(P) transforms each element of P
into its Horner, or nested, representation.

Examples

Find nested polynomial representation of the polynomial:

syms x

horner(x^3 - 6*x^2 + 11*x - 6)

ans =

x*(x*(x - 6) + 11) - 6

Find nested polynomial representation for the polynomials that form a vector:

syms x y

horner([x^2 + x; y^3 - 2*y])

ans =

 x*(x + 1)

 y*(y^2 - 2)

See Also
collect | combine | expand | factor | numden | rewrite | simplify |
simplifyFraction

Introduced before R2006a

 horzcat

4-619

horzcat
Concatenate symbolic arrays horizontally

Syntax

horzcat(A1,...,AN)

[A1 ... AN]

Description

horzcat(A1,...,AN) horizontally concatenates the symbolic arrays A1,...,AN.
For vectors and matrices, all inputs must have the same number of rows. For
multidimensional arrays, horzcat concatenates inputs along the second dimension. The
remaining dimensions must match.

[A1 ... AN] is a shortcut for horzcat(A1,...,AN).

Examples

Concatenate Two Symbolic Matrices Horizontally

Create matrices A and B.

A = sym('a%d%d',[2 2])

B = sym('b%d%d',[2 2])

A =

[a11, a12]

[a21, a22]

B =

[b11, b12]

[b21, b22]

Concatenate A and B.

horzcat(A,B)

4 Functions — Alphabetical List

4-620

ans =

[a11, a12, b11, b12]

[a21, a22, b21, b22]

Alternatively, use the shortcut [A B].

[A B]

ans =

[a11, a12, b11, b12]

[a21, a22, b21, b22]

Concatenate Multiple Symbolic Arrays Horizontally

A = sym('a%d',[3 1]);

B = sym('b%d%d',[3 3]);

C = sym('c%d%d',[3 2]);

horzcat(C,A,B)

ans =

[c11, c12, a1, b11, b12, b13]

[c21, c22, a2, b21, b22, b23]

[c31, c32, a3, b31, b32, b33]

Alternatively, use the shortcut [C A B].

[C A B]

ans =

[c11, c12, a1, b11, b12, b13]

[c21, c22, a2, b21, b22, b23]

[c31, c32, a3, b31, b32, b33]

Concatenate Multidimensional Arrays Horizontally

Create the 3-D symbolic arrays A and B.

A = sym('a%d%d',[2 3]);

A(:,:,2) = -A

B = sym('b%d%d', [2 2]);

B(:,:,2) = -B

A(:,:,1) =

[a11, a12, a13]

[a21, a22, a23]

 horzcat

4-621

A(:,:,2) =

[-a11, -a12, -a13]

[-a21, -a22, -a23]

B(:,:,1) =

[b11, b12]

[b21, b22]

B(:,:,2) =

[-b11, -b12]

[-b21, -b22]

Use horzcat to concatenate A and B.

horzcat(A,B)

ans(:,:,1) =

[a11, a12, a13, b11, b12]

[a21, a22, a23, b21, b22]

ans(:,:,2) =

[-a11, -a12, -a13, -b11, -b12]

[-a21, -a22, -a23, -b21, -b22]

Alternatively, use the shortcut [A B].

[A B]

ans(:,:,1) =

[a11, a12, a13, b11, b12]

[a21, a22, a23, b21, b22]

ans(:,:,2) =

[-a11, -a12, -a13, -b11, -b12]

[-a21, -a22, -a23, -b21, -b22]

Input Arguments

A1,...,AN — Input arrays
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array

Input arrays, specified as symbolic variables, vectors, matrices, or multidimensional
arrays.

See Also
cat | vertcat

4 Functions — Alphabetical List

4-622

Introduced before R2006a

 hypergeom

4-623

hypergeom
Hypergeometric function

Syntax

hypergeom(a,b,z)

Description

hypergeom(a,b,z) represents the generalized hypergeometric function.

Examples

Hypergeometric Function for Numeric and Symbolic Arguments

Depending on its arguments, hypergeom can return floating-point or exact symbolic
results.

Compute the hypergeometric function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

A = [hypergeom([1, 2], 2.5, 2),

hypergeom(1/3, [2, 3], pi),

hypergeom([1, 1/2], 1/3, 3*i)]

A =

 -1.2174 - 0.8330i

 1.2091 + 0.0000i

 -0.2028 + 0.2405i

Compute the hypergeometric function for the numbers converted to symbolic objects. For
most symbolic (exact) numbers, hypergeom returns unresolved symbolic calls.

symA = [hypergeom([1, 2], 2.5, sym(2)),

hypergeom(1/3, [2, 3], sym(pi)),

4 Functions — Alphabetical List

4-624

hypergeom([1, 1/2], sym(1/3), 3*i)]

symA =

 hypergeom([1, 2], 5/2, 2)

 hypergeom(1/3, [2, 3], pi)

 hypergeom([1/2, 1], 1/3, 3i)

Use vpa to approximate symbolic results with the required number of digits:

vpa(symA,10)

ans =

 - 1.21741893 - 0.8330405509i

 1.209063189

 - 0.2027516975 + 0.2405013423i

Special Values

The hypergeometric function has special values for some parameters:

syms a b c d x

hypergeom([], [], x)

hypergeom([a, b, c, d], [a, b, c, d], x)

hypergeom(a, [], x)

ans =

exp(x)

ans =

exp(x)

ans =

1/(1 - x)^a

Any hypergeometric function, evaluated at 0, has the value 1:

syms a b c d

hypergeom([a, b], [c, d], 0)

ans =

1

If, after canceling identical parameters, the list of upper parameters contains 0, the
resulting hypergeometric function is constant with the value 1:

 hypergeom

4-625

hypergeom([0, 0, 2, 3], [a, 0, 4], x)

ans =

1

If, after canceling identical parameters, the upper parameters contain a negative integer
larger than the largest negative integer in the lower parameters, the hypergeometric
function is a polynomial. If all parameters as well as the argument x are numeric, a
corresponding explicit value is returned:

hypergeom([(-4), -2 , 3], [-3, 1, 4], x*pi*sqrt(2))

ans =

(6*pi^2*x^2)/5 - 2*2^(1/2)*pi*x + 1

Hypergeometric functions also reduce to other special functions for some parameters:

hypergeom([1], [a], x)

hypergeom([a], [a, b], x)

ans =

(exp(x/2)*whittakerM(1 - a/2, a/2 - 1/2, -x))/(-x)^(a/2)

ans =

 x^(1/2 - b/2)*gamma(b)*besseli(b - 1, 2*x^(1/2))

Handling Expressions That Contain Hypergeometric Functions

Many functions, such as diff and taylor, can handle expressions containing
hypergeom.

Differentiate this expression containing hypergeometric function:

syms a b c d x

diff(1/x*hypergeom([a, b], [c, d], x), x)

ans =

(a*b*hypergeom([a + 1, b + 1], [c + 1, d + 1], x))/(c*d*x)...

 - hypergeom([a, b], [c, d], x)/x^2

Compute the Taylor series of this hypergeometric function:

taylor(hypergeom([1, 2], [3], x), x)

ans =

4 Functions — Alphabetical List

4-626

(2*x^5)/7 + x^4/3 + (2*x^3)/5 + x^2/2 + (2*x)/3 + 1

Input Arguments

a — Upper parameters of hypergeometric function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector

Upper parameters of hypergeometric function, specified as a number, variable, symbolic
expression, symbolic function, or vector.

b — Lower parameters of hypergeometric function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector

Lower parameters of hypergeometric function, specified as a number, variable, symbolic
expression, symbolic function, or vector.

z — Argument of hypergeometric function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector

Argument of hypergeometric function, specified as a number, variable, symbolic
expression, symbolic function, or vector. If z is a vector, hypergeom(a,b,z) is evaluated
element-wise.

More About

Generalized Hypergeometric Function

The generalized hypergeometric function of order p, q is defined as follows:

p q
k k p k

k k q kk

k

F a b z
a a a

b b b

z
; ;() =

() () ()
() () ()

Ê

Ë
Á
Á

ˆ

¯
˜
˜

=

•

Â 1 2

1 20

…

… kk!

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Here a = [a1,a2,...,ap] and b = [b1,b2,...,bq] are vectors of lengths p and q, respectively.

(a)k and (b)k are Pochhammer symbols.

 hypergeom

4-627

For empty vectors a and b, hypergeom is defined as follows:

0
1 20

0 1

1
F b z

b b b

z

k

F a z a a

q

k k q kk

k

p k

; ;
!

; ;

() =
() () ()

Ê

Ë
Á

ˆ

¯
˜

() = ()

=

•

Â
…

22

0

0 0

0

() () Ê

Ë
Á

ˆ

¯
˜

() = Ê

Ë
Á

ˆ

¯
˜ =

=

•

=

•

Â

Â

k p k
k

k

k

k

z

a z

k

F z z

k
e

…

!

;;
!

Pochhammer Symbol

The Pochhammer symbol is defined as follows:

x
x n

x
n

() =
+()

()

G

G

If n is a positive integer, then (x)n = x(x + 1)...(x + n - 1).

Tips

• For most exact arguments, the hypergeometric function returns a symbolic function
call. If an upper parameter coincides with a lower parameter, these values cancel and
are removed from the parameter lists.

• If, after cancellation of identical parameters, the upper parameters contain a negative
integer larger than the largest negative integer in the lower parameters, then
pFq(a;b;z) is a polynomial in z.

• The following special values are implemented:

• pFp(a;a;z) = 0F0(;;z) = ez.
• pFq(a;b;z) = 1 if the list of upper parameters a contains more 0s than the list of

lower parameters b.
• pFq(a;b;0) = 1.

Algorithms

The series

4 Functions — Alphabetical List

4-628

p q
k k p k

k k q kk

k

F a b z
a a a

b b b

z
; ;() =

() () ()
() () ()

Ê

Ë
Á
Á

ˆ

¯
˜
˜

=

•

Â 1 2

1 20

…

… kk!

Ê

Ë
ÁÁ

ˆ

¯
˜̃

• Converges for any |z| < ∞ if p ≤ q.
• Converges for |z| < 1 if p = q + 1. For |z| >= 1, the series diverges, and pFq is defined

by analytic continuation.
• Diverges for any z <> 0 if p > q + 1. The series defines an asymptotic expansion of

pFq(a;b;z) around z = 0. The positive real axis is the branch cut.

If one of the parameters in a is equal to 0 or a negative integer, then the series
terminates, turning into what is called a hypergeometric polynomial.

pFq(a;b;z) is symmetric with respect to the parameters, that is, it does not depend on the
order of the arrangement a1, a2, … in a or b1, b2, … in b.

If at least one upper parameter equals n = 0,-1,-2,…, the function turns into a
polynomial of degree n. If the previous condition for the lower parameters b is relaxed,
and there is some lower parameter equal to m = 0,-1,-2,…, then the function pFq(a;b;z)
also reduces to a polynomial in z provided n > m. It is undefined if m > n or if no upper
parameter is a nonpositive integer (resulting in division by 0 in one of the series
coefficients). The case m = n is handled by the following rule.

. If for r values of the upper parameters, there are r values of the lower parameters equal
to them (that is, a = [a1,…,ap - r, c1,…,cr], b = [b1,…,bq - r, c1,…,cr]), then the order (p, q) of
the function pFq(a;b;z) is reduced to (p - r, q - r):

p q p r r q r r

p r q r p

F a a c c b b c c z

F a a

1 1 1 1

1

, , , , , ; , , , , , ;

, ,

… … … …

…

- -

- - -

() =

rr q rb b z; , , ;1 … -()

This rule applies even if any of the ci is zero or a negative integer. For details, see Luke,
Y.L. "The Special Functions and Their Approximations", vol. 1, p. 42.

U z F a b zp q() = (); ; satisfies a differential equation in z:

d d d d+ -() - +ÈÎ ˘̊ () = =
∂

∂
b z a U z z

z
1 0() , ,

 hypergeom

4-629

where (δ + a) and (δ + b) stand for

d +()
=
’ ai
i

p

1

and

d +()
=

’ b j

j

q

1

,

respectively. Thus, the order of this differential equation is max(p, q + 1) and the
hypergeometric function is only one of its solutions. If p < q + 1, this differential equation
has a regular singularity at z = 0 and an irregular singularity at z = ∞. If p = q + 1, the
points z = 0, z = 1, and z = ∞ are regular singularities, thus explaining the convergence
properties of the hypergeometric series.

References

[1] Oberhettinger, F. “Hypergeometric Functions.” Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

[2] Luke, Y.L. "The Special Functions and Their Approximations", Vol. 1, Academic
Press, New York, 1969.

[3] Prudnikov, A.P., Yu.A. Brychkov, and O.I. Marichev, "Integrals and Series", Vol. 3:
More Special Functions, Gordon and Breach, 1990.

See Also
kummerU | whittakerM | whittakerW

Introduced before R2006a

4 Functions — Alphabetical List

4-630

ifourier
Inverse Fourier transform

Syntax

ifourier(F,trans_var,eval_point)

Description

ifourier(F,trans_var,eval_point) computes the inverse Fourier transform of F
with respect to the transformation variable trans_var at the point eval_point.

Examples

Inverse Fourier Transform of Symbolic Expression

Compute the inverse Fourier transform of this expression with respect to the variable y
at the evaluation point x.

syms x y

F = sqrt(sym(pi))*exp(-y^2/4);

ifourier(F, y, x)

ans =

exp(-x^2)

Default Transformation Variable and Evaluation Point

Compute the inverse Fourier transform of this expression calling the ifourier function
with one argument. If you do not specify the transformation variable, ifourier uses the
variable w.

syms a w t real

F = exp(-w^2/(4*a^2));

ifourier(F, t)

 ifourier

4-631

ans =

exp(-a^2*t^2)/(2*pi^(1/2)*(1/(4*a^2))^(1/2))

If you also do not specify the evaluation point, ifourier uses the variable x:

ifourier(F)

ans =

exp(-a^2*x^2)/(2*pi^(1/2)*(1/(4*a^2))^(1/2))

For further computations, remove the assumptions:

syms a w t clear

Inverse Fourier Transforms Involving Dirac and Heaviside Functions

Compute the following inverse Fourier transforms that involve the Dirac and Heaviside
functions.

syms t w

ifourier(dirac(w), w, t)

ans =

1/(2*pi)

ifourier(2*exp(-abs(w)) - 1, w, t)

ans =

-(2*pi*dirac(t) - 4/(t^2 + 1))/(2*pi)

ifourier(exp(-w)*heaviside(w), w, t)

ans =

-1/(2*pi*(- 1 + t*1i))

Parameters of Inverse Fourier Transform

Specify parameters of the inverse Fourier transform.

Compute the inverse Fourier transform of this expression using the default values c =
1, s = -1 of the Fourier parameters. (For details, see “Inverse Fourier Transform” on
page 4-634.)

syms t w

ifourier(-(sqrt(sym(pi))*w*exp(-w^2/4)*i)/2, w, t)

4 Functions — Alphabetical List

4-632

ans =

t*exp(-t^2)

Change the values of the Fourier parameters to c = 1, s = 1 by using sympref. Then
compute the inverse Fourier transform of the same expression again.

sympref('FourierParameters', [1, 1]);

ifourier(-(sqrt(sym(pi))*w*exp(-w^2/4)*i)/2, w, t)

ans =

-t*exp(-t^2)

Change the values of the Fourier parameters to c = 1/2π, s = 1 by using sympref.
Compute the inverse Fourier transform using these values.

sympref('FourierParameters', [1/(2*sym(pi)), 1]);

ifourier(-(sqrt(sym(pi))*w*exp(-w^2/4)*i)/2, w, t)

ans =

-2*t*pi*exp(-t^2)

The preferences set by sympref persist through your current and future MATLAB
sessions. To restore the default values of c and s, set sympref to 'default'.

sympref('FourierParameters','default');

Inverse Fourier Transform of Matrix

Find the inverse Fourier transform of this matrix. Use matrices of the same size to
specify the transformation variable and evaluation point.

syms a b c d w x y z

ifourier([exp(x), 1; sin(y), i*z],[w, x; y, z],[a, b; c, d])

ans =

[exp(x)*dirac(a), dirac(b)]

[(dirac(c - 1)*1i)/2 - (dirac(c + 1)*1i)/2, dirac(1, d)]

When the input arguments are nonscalars, ifourier acts on them element-wise. If
ifourier is called with both scalar and nonscalar arguments, then ifourier expands
the scalar arguments into arrays of the same size as the nonscalar arguments with all
elements of the array equal to the scalar.

syms w x y z a b c d

 ifourier

4-633

ifourier(x,[x, w; y, z],[a, b; c, d])

ans =

[-dirac(1, a)*1i, x*dirac(b)]

[x*dirac(c), x*dirac(d)]

Note that nonscalar input arguments must have the same size.

Inverse Fourier Transform of Vector of Symbolic Functions

When the first argument is a symbolic function, the second argument must be a scalar.

syms f1(x) f2(x) a b

f1(x) = exp(x);

f2(x) = x;

ifourier([f1, f2],x,[a, b])

ans =

[fourier(exp(x), x, -a)/(2*pi), -dirac(1, b)*1i]

If Inverse Fourier Transform Cannot be Found

If ifourier cannot find an explicit representation of the transform, it returns results in
terms of the direct Fourier transform.

syms F(w) t

f = ifourier(F, w, t)

f =

fourier(F(w), w, -t)/(2*pi)

Input Arguments

F — Input function
symbolic expression | symbolic function | vector of symbolic expressions or functions |
matrix of symbolic expressions or functions

Input function, specified as a symbolic expression or function or a vector or matrix of
symbolic expressions or functions.

trans_var — Transformation variable
w (default) | symbolic variable

4 Functions — Alphabetical List

4-634

Transformation variable, specified as a symbolic variable. This variable is often called
the “frequency variable”.

If you do not specify the transformation variable, ifourier uses the variable w by
default. If F does not contain w, then the default variable is determined by symvar.

eval_point — Evaluation point
x (default) | t | symbolic variable | symbolic expression | vector of symbolic variables or
expressions | matrix of symbolic variables or expressions

Evaluation point, specified as a symbolic variable, expression, or vector or matrix of
symbolic variables or expressions. This is often called the “time variable” or the “space
variable”.

If you do not specify the evaluation point, ifourier uses the variable x by default. If x is
the transformation variable of F, then the default evaluation point is the variable t.

More About

Inverse Fourier Transform

The inverse Fourier transform of the expression F = F(w) with respect to the variable w
at the point x is defined as follows:

f x
s

c
F w e dwiswx() = () -

-•

•

Ú
2p

.

Here, c and s are parameters of the inverse Fourier transform. The ifourier function
uses c = 1, s = –1.

Tips

• If you call ifourier with two arguments, it assumes that the second argument is the
evaluation point eval_point.

• If F is a matrix, ifourier acts element-wise on all components of the matrix.
• If eval_point is a matrix, ifourier acts element-wise on all components of the

matrix.
• The toolbox computes the inverse Fourier transform via the direct Fourier transform:

 ifourier

4-635

ifourier F w t fourier F w t, , , ,() = -()
1

2p

If ifourier cannot find an explicit representation of the inverse Fourier transform,
it returns results in terms of the direct Fourier transform.

• To compute the direct Fourier transform, use fourier.

• “Compute Fourier and Inverse Fourier Transforms” on page 2-193

References

[1] Oberhettinger, F. “Tables of Fourier Transforms and Fourier Transforms of
Distributions”, Springer, 1990.

See Also
fourier | ilaplace | iztrans | laplace | sympref | ztrans

Introduced before R2006a

4 Functions — Alphabetical List

4-636

igamma

Incomplete gamma function

Syntax

igamma(nu,z)

Description

igamma(nu,z) returns the incomplete gamma function.

igamma uses the definition of the upper incomplete gamma function. The MATLAB
gammainc function uses the definition of the lower incomplete gamma function,
gammainc(z, nu) = 1 - igamma(nu, z)/gamma(nu). The order of input arguments
differs between these functions.

Examples

Compute Incomplete Gamma Function for Numeric and Symbolic
Arguments

Depending on its arguments, igamma returns floating-point or exact symbolic results.

Compute the incomplete gamma function for these numbers. Because these numbers are
not symbolic objects, you get floating-point results.

A = [igamma(0, 1), igamma(3, sqrt(2)), igamma(pi, exp(1)), igamma(3, Inf)]

A =

 0.2194 1.6601 1.1979 0

Compute the incomplete gamma function for the numbers converted to symbolic objects:

symA = [igamma(sym(0), 1), igamma(3, sqrt(sym(2))),...

 igamma

4-637

igamma(sym(pi), exp(sym(1))), igamma(3, sym(Inf))]

symA =

[-ei(-1), exp(-2^(1/2))*(2*2^(1/2) + 4), igamma(pi, exp(1)), 0]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =

[0.21938393439552027367716377546012,...

1.6601049038903044104826564373576,...

1.1979302081330828196865548471769,...

0]

Compute Lower Incomplete Gamma Function

igamma is implemented according to the definition of the upper incomplete gamma
function. If you want to compute the lower incomplete gamma function, convert results
returned by igamma as follows.

Compute the lower incomplete gamma function for these arguments using the MATLAB
gammainc function:

A = [-5/3, -1/2, 0, 1/3];

gammainc(A, 1/3)

ans =

 1.1456 + 1.9842i 0.5089 + 0.8815i 0.0000 + 0.0000i 0.7175 + 0.0000i

Compute the lower incomplete gamma function for the same arguments using igamma:

1 - igamma(1/3, A)/gamma(1/3)

ans =

 1.1456 + 1.9842i 0.5089 + 0.8815i 0.0000 + 0.0000i 0.7175 + 0.0000i

If one or both arguments are complex numbers, use igamma to compute the lower
incomplete gamma function. gammainc does not accept complex arguments.

1 - igamma(1/2, i)/gamma(1/2)

ans =

 0.9693 + 0.4741i

4 Functions — Alphabetical List

4-638

Input Arguments

nu — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

z — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Upper Incomplete Gamma Function

The following integral defines the upper incomplete gamma function:

G h h
, z t e dt

t

z

() = - -
•

Ú 1

Lower Incomplete Gamma Function

The following integral defines the lower incomplete gamma function:

g h h
,z t e dt

t

z

() = - -Ú 1

0

Tips

• The MATLAB gammainc function does not accept complex arguments. For complex
arguments, use igamma.

 igamma

4-639

• gammainc(z, nu) = 1 - igamma(nu, z)/gamma(nu) represents the lower
incomplete gamma function in terms of the upper incomplete gamma function.

• igamma(nu,z) = gamma(nu)(1 - gammainc(z, nu)) represents the upper
incomplete gamma function in terms of the lower incomplete gamma function.

• gammainc(z, nu, 'upper') = igamma(nu, z)/gamma(nu).

See Also
ei | erfc | factorial | gamma | gammainc | int

Introduced in R2014a

4 Functions — Alphabetical List

4-640

ilaplace

Inverse Laplace transform

Syntax

ilaplace(F,trans_var,eval_point)

Description

ilaplace(F,trans_var,eval_point) computes the inverse Laplace transform of F
with respect to the transformation variable trans_var at the point eval_point.

Input Arguments

F

Symbolic expression or function, vector or matrix of symbolic expressions or functions.

trans_var

Symbolic variable representing the transformation variable. This variable is often called
the “complex frequency variable”.

Default: The variable s. If F does not contain s, then the default variable is determined
by symvar.

eval_point

Symbolic variable or expression representing the evaluation point. This variable is often
called the “time variable”.

Default: The variable t. If t is the transformation variable of F, then the default
evaluation point is the variable x.

 ilaplace

4-641

Examples

Compute the inverse Laplace transform of this expression with respect to the variable y
at the evaluation point x:

syms x y

F = 1/y^2;

ilaplace(F, y, x)

ans =

x

Compute the inverse Laplace transform of this expression calling the ilaplace function
with one argument. If you do not specify the transformation variable, ilaplace uses the
variable s.

syms a s x

F = 1/(s - a)^2;

ilaplace(F, x)

ans =

x*exp(a*x)

If you also do not specify the evaluation point, ilaplace uses the variable t:

ilaplace(F)

ans =

t*exp(a*t)

Compute the following inverse Laplace transforms that involve the Dirac and Heaviside
functions:

syms s t

ilaplace(1, s, t)

ans =

dirac(t)

ilaplace(exp(-2*s)/(s^2 + 1) + s/(s^3 + 1), s, t)

ans =

heaviside(t - 2)*sin(t - 2) - exp(-t)/3 +...

(exp(t/2)*(cos((3^(1/2)*t)/2) + 3^(1/2)*sin((3^(1/2)*t)/2)))/3

4 Functions — Alphabetical List

4-642

If ilaplace cannot find an explicit representation of the transform, it returns an
unevaluated call:

syms F(s) t

f = ilaplace(F, s, t)

f =

ilaplace(F(s), s, t)

laplace returns the original expression:

laplace(f, t, s)

ans =

F(s)

Find the inverse Laplace transform of this matrix. Use matrices of the same size to
specify the transformation variable and evaluation point.

syms a b c d w x y z

ilaplace([exp(x), 1; sin(y), i*z],[w, x; y, z],[a, b; c, d])

ans =

[exp(x)*dirac(a), dirac(b)]

[ilaplace(sin(y), y, c), dirac(1, d)*1i]

When the input arguments are nonscalars, ilaplace acts on them element-wise. If
ilaplace is called with both scalar and nonscalar arguments, then ilaplace expands
the scalar arguments into arrays of the same size as the nonscalar arguments with all
elements of the array equal to the scalar.

syms w x y z a b c d

ilaplace(x,[x, w; y, z],[a, b; c, d])

ans =

[dirac(1, a), x*dirac(b)]

[x*dirac(c), x*dirac(d)]

Note that nonscalar input arguments must have the same size.

When the first argument is a symbolic function, the second argument must be a scalar.

syms f1(x) f2(x) a b

f1(x) = exp(x);

f2(x) = x;

 ilaplace

4-643

ilaplace([f1, f2],x,[a, b])

ans =

[ilaplace(exp(x), x, a), dirac(1, b)]

More About

Inverse Laplace Transform

The inverse Laplace transform is defined by a contour integral in the complex plane:

f t
i

F s e dsst

c i

c i

() = ()

- •

+ •

Ú
1

2p
.

Here, c is a suitable complex number.

Tips

• If you call ilaplace with two arguments, it assumes that the second argument is the
evaluation point eval_point.

• If F is a matrix, ilaplace acts element-wise on all components of the matrix.
• If eval_point is a matrix, ilaplace acts element-wise on all components of the

matrix.
• To compute the direct Laplace transform, use laplace.

• “Compute Laplace and Inverse Laplace Transforms” on page 2-199

See Also
fourier | ifourier | iztrans | laplace | ztrans

Introduced before R2006a

4 Functions — Alphabetical List

4-644

imag
Imaginary part of complex number

Syntax

imag(z)

imag(A)

Description

imag(z) returns the imaginary part of z.

imag(A) returns the imaginary part of each element of A.

Input Arguments

z

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Examples

Find the imaginary parts of these numbers. Because these numbers are not symbolic
objects, you get floating-point results.

[imag(2 + 3/2*i), imag(sin(5*i)), imag(2*exp(1 + i))]

ans =

 1.5000 74.2032 4.5747

 imag

4-645

Compute the imaginary parts of the numbers converted to symbolic objects:

[imag(sym(2) + 3/2*i), imag(4/(sym(1) + 3*i)), imag(sin(sym(5)*i))]

ans =

[3/2, -6/5, sinh(5)]

Compute the imaginary part of this symbolic expression:

imag(2*exp(1 + sym(i)))

ans =

2*exp(1)*sin(1)

In general, imag cannot extract the entire imaginary parts from symbolic expressions
containing variables. However, imag can rewrite and sometimes simplify the input
expression:

syms a x y

imag(a + 2)

imag(x + y*i)

ans =

imag(a)

ans =

imag(x) + real(y)

If you assign numeric values to these variables or if you specify that these variables are
real, imag can extract the imaginary part of the expression:

syms a

 a = 5 + 3*i;

imag(a + 2)

ans =

 3

syms x y real

imag(x + y*i)

ans =

y

Clear the assumption that x and y are real:

4 Functions — Alphabetical List

4-646

syms x y clear

Find the imaginary parts of the elements of matrix A:

syms x

A = [-1 + sym(i), sinh(x); exp(10 + sym(7)*i), exp(sym(pi)*i)];

imag(A)

ans =

[1, imag(sinh(x))]

[exp(10)*sin(7), 0]

Alternatives

You can compute the imaginary part of z via the conjugate: imag(z)= (z -
conj(z))/2i.

More About

Tips

• Calling imag for a number that is not a symbolic object invokes the MATLAB imag
function.

See Also
conj | in | real | sign | signIm

Introduced before R2006a

 in

4-647

in
Numeric type of symbolic input

Compatibility

In previous releases, in(x,type) returned logical 1 if x belonged to type and 0
otherwise. To obtain the same results as in previous releases, wrap such expressions in
isAlways. For example, use isAlways(in(sym(5),'integer')).

Syntax

in(x,type)

Description

in(x,type) expresses the logical condition that x is of the specified type.

Examples

Express Condition on Symbolic Variable or Expression

The syntax in(x,type) expresses the condition that x is of the specified type. Express
the condition that x is of type Real.

syms x

cond = in(x,'real')

cond =

in(x, 'real')

Evaluate the condition using isAlways. Because isAlways cannot determine the
condition, it issues a warning and returns logical 0 (false).

isAlways(cond)

4 Functions — Alphabetical List

4-648

Warning: Cannot prove 'in(x, 'real')'.

ans =

 0

Assume the condition cond is true using assume, and evaluate the condition again. The
isAlways function returns logical 1 (true) indicating that the condition is true.

assume(cond)

isAlways(cond)

ans =

 1

Clear the assumption on x to use it in further computations.

syms x clear

Express Conditions in Output

Functions such as solve use in in output to express conditions.

Solve the equation sin(x) == 0 using solve. Set the option ReturnConditions to
true to return conditions on the solution. The solve function uses in to express the
conditions.

syms x

[solx, params, conds] = solve(sin(x) == 0,'ReturnConditions',true)

solx =

pi*k

params =

k

conds =

in(k, 'integer')

The solution is pi*k with parameter k under the condition in(k,'integer'). You can
use this condition to set an assumption for further computations. Under the assumption,
solve returns only integer values of k.

assume(conds)

k = solve(solx > 0, solx < 5*pi, params)

 in

4-649

k =

 1

 2

 3

 4

To find the solutions corresponding to these values of k, use subs to substitute
for k in solx.

subs(solx,k)

ans =

 pi

 2*pi

 3*pi

 4*pi

Clear the assumption on k to use it in further computations.

assume(params, 'clear')

Test if Elements of Symbolic Matrix Are Rational

Create symbolic matrix M.

syms x y z

M = sym([1.22 i x; sin(y) 3*x 0; Inf sqrt(3) sym(22/7)])

M =

[61/50, 1i, x]

[sin(y), 3*x, 0]

[Inf, 3^(1/2), 22/7]

Use isAlways to test if the elements of M are rational numbers. The in function acts on
M element-by-element. Note that isAlways returns logical 0 (false) for statements that
cannot be decided and issues a warning for those statements.

in(M,'rational')

ans =

[in(61/50, 'rational'), in(1i, 'rational'), in(x, 'rational')]

[in(sin(y), 'rational'), in(3*x, 'rational'), in(0, 'rational')]

[in(Inf, 'rational'), in(3^(1/2), 'rational'), in(22/7, 'rational')]

isAlways(in(M,'rational'))

4 Functions — Alphabetical List

4-650

Warning: Cannot prove 'in(sin(y), 'rational')'.

Warning: Cannot prove 'in(3*x, 'rational')'.

Warning: Cannot prove 'in(x, 'rational')'.

ans =

 1 0 0

 0 0 1

 0 0 1

Input Arguments

x — Input
symbolic number | symbolic vector | symbolic matrix | symbolic multidimensional array
| symbolic expression | symbolic function

Input, specified as a symbolic number, vector, matrix, multidimensional array,
expression, or function.

type — Type of input
'real' | 'positive' | 'integer' | 'rational'

Type of input, specified as 'real', 'positive', 'integer', or 'rational'.

See Also
assume | assumeAlso | false | imag | isalways | isequaln | isfinite | isinf
| real | true

Introduced in R2014b

 incidenceMatrix

4-651

incidenceMatrix
Find incidence matrix of system of equations

Syntax

A = incidenceMatrix(eqs,vars)

Description

A = incidenceMatrix(eqs,vars) for m equations eqs and n variables vars returns
an m-by-n matrix A. Here, A(i,j) = 1 if eqs(i) contains vars(j) or any derivative of
vars(j). All other elements of A are 0s.

Examples

Incidence Matrix

Find the incidence matrix of a system of five equations in five variables.

Create the following symbolic vector eqs containing five symbolic differential equations.

syms y1(t) y2(t) y3(t) y4(t) y5(t) c1 c3

eqs = [diff(y1(t),t) == y2(t),...

 diff(y2(t),t) == c1*y1(t) + c3*y3(t),...

 diff(y3(t),t) == y2(t) + y4(t),...

 diff(y4(t),t) == y3(t) + y5(t),...

 diff(y5(t),t) == y4(t)];

Create the vector of variables. Here, c1 and c3 are symbolic parameters (not variables)
of the system.

vars = [y1(t), y2(t), y3(t), y4(t), y5(t)];

Find the incidence matrix A for the equations eqs and with respect to the variables vars.

A = incidenceMatrix(eqs, vars)

4 Functions — Alphabetical List

4-652

A =

 1 1 0 0 0

 1 1 1 0 0

 0 1 1 1 0

 0 0 1 1 1

 0 0 0 1 1

Input Arguments

eqs — Equations
vector of symbolic equations | vector of symbolic expressions

Equations, specified as a vector of symbolic equations or expressions.

vars — Variables
vector of symbolic variables | vector of symbolic functions | vector of symbolic function
calls

Variables, specified as a vector of symbolic variables, symbolic functions, or function
calls, such as x(t).

Output Arguments

A — Incidence matrix
matrix of double-precision values

Incidence matrix, returned as a matrix of double-precision values.

See Also
daeFunction | decic | findDecoupledBlocks | isLowIndexDAE |
massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE |
reduceDifferentialOrder | reduceRedundancies | spy

Introduced in R2014b

 int

4-653

int
Definite and indefinite integrals

Syntax

int(expr,var)

int(expr,var,a,b)

int(___ ,Name,Value)

Description

int(expr,var) computes the indefinite integral of expr with respect to the symbolic
scalar variable var. Specifying the variable var is optional. If you do not specify it, int
uses the default variable determined by symvar. If expr is a constant, then the default
variable is x.

int(expr,var,a,b) computes the definite integral of expr with respect to var from a
to b. If you do not specify it, int uses the default variable determined by symvar. If expr
is a constant, then the default variable is x.

int(expr,var,[a,b]), int(expr,var,[a b]), and int(expr,var,[a;b]) are
equivalent to int(expr,var,a,b).

int(___ ,Name,Value) uses additional options specified by one or more Name,Value
pair arguments.

Examples

Indefinite Integral of Univariate Expression

Find an indefinite integral of this univariate expression:

syms x

int(-2*x/(1 + x^2)^2)

4 Functions — Alphabetical List

4-654

ans =

1/(x^2 + 1)

Indefinite Integrals of Multivariate Expression

Find indefinite integrals of this multivariate expression with respect to the variables x
and z:

syms x z

int(x/(1 + z^2), x)

int(x/(1 + z^2), z)

ans =

x^2/(2*(z^2 + 1))

ans =

x*atan(z)

If you do not specify the integration variable, int uses the variable returned by symvar.
For this expression, symvar returns x:

symvar(x/(1 + z^2), 1)

ans =

x

Definite Integrals of Univariate Expressions

Integrate this expression from 0 to 1:

syms x

int(x*log(1 + x), 0, 1)

ans =

1/4

Integrate this expression from sin(t) to 1 specifying the integration range as a vector:

syms x t

int(2*x, [sin(t), 1])

ans =

cos(t)^2

 int

4-655

Integrals of Matrix Elements

Find indefinite integrals for the expressions listed as the elements of a matrix:

syms a x t z

int([exp(t), exp(a*t); sin(t), cos(t)])

ans =

[exp(t), exp(a*t)/a]

[-cos(t), sin(t)]

Apply IgnoreAnalyticConstraints

Compute this indefinite integral. By default, int uses strict mathematical rules. These
rules do not let int rewrite asin(sin(x)) and acos(cos(x)) as x.

syms x

int(acos(sin(x)), x)

ans =

x*acos(sin(x)) + (x^2*sign(cos(x)))/2

If you want a simple practical solution, try IgnoreAnalyticConstraints:

int(acos(sin(x)), x, 'IgnoreAnalyticConstraints', true)

ans =

-(x*(x - pi))/2

Ignore Special Cases

Compute this integral with respect to the variable x:

syms x t

int(x^t, x)

By default, int returns the integral as a piecewise object where every branch
corresponds to a particular value (or a range of values) of the symbolic parameter t:

ans =

piecewise([t == -1, log(x)], [t ~= -1, x^(t + 1)/(t + 1)])

To ignore special cases of parameter values, use IgnoreSpecialCases:

4 Functions — Alphabetical List

4-656

int(x^t, x, 'IgnoreSpecialCases', true)

With this option, int ignores the special case t=-1 and returns only the branch where
t<>–1:

ans =

x^(t + 1)/(t + 1)

Find Cauchy Principal Value

Compute this definite integral, where the integrand has a pole in the interior of the
interval of integration. Mathematically, this integral is not defined.

syms x

int(1/(x - 1), x, 0, 2)

ans =

NaN

However, the Cauchy principal value of the integral exists. Use PrincipalValue to
compute the Cauchy principal value of the integral:

int(1/(x - 1), x, 0, 2, 'PrincipalValue', true)

ans =

0

Approximate Indefinite Integrals

If int cannot compute a closed form of an integral, it returns an unresolved integral:

syms x

F = sin(sinh(x));

int(F, x)

ans =

int(sin(sinh(x)), x)

If int cannot compute a closed form of an indefinite integral, try to approximate the
expression around some point using taylor, and then compute the integral. For
example, approximate the expression around x = 0:

int(taylor(F, x, 'ExpansionPoint', 0, 'Order', 10), x)

ans =

 int

4-657

x^10/56700 - x^8/720 - x^6/90 + x^2/2

Approximate Definite Integrals

Compute this definite integral:

syms x

F = int(cos(x)/sqrt(1 + x^2), x, 0, 10)

F =

int(cos(x)/(x^2 + 1)^(1/2), x, 0, 10)

If int cannot compute a closed form of a definite integral, try approximating that
integral numerically using vpa. For example, approximate F with five significant digits:

vpa(F, 5)

ans =

0.37571

Input Arguments

expr — Integrand
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic
number

Integrand, specified as a symbolic expression or function, a constant, or a vector or
matrix of symbolic expressions, functions, or constants.

var — Integration variable
symbolic variable

Integration variable, specified as a symbolic variable. If you do not specify this variable,
int uses the default variable determined by symvar(expr,1). If expr is a constant,
then the default variable is x.

a — Lower bound
number | symbolic number | symbolic variable | symbolic expression | symbolic
function

Lower bound, specified as a number, symbolic number, variable, expression or function
(including expressions and functions with infinities).

4 Functions — Alphabetical List

4-658

b — Upper bound
number | symbolic number | symbolic variable | symbolic expression | symbolic
function

Upper bound, specified as a number, symbolic number, variable, expression or function
(including expressions and functions with infinities).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'IgnoreAnalyticConstraints',true specifies that int applies purely
algebraic simplifications to the integrand.

'IgnoreAnalyticConstraints' — Indicator for applying purely algebraic simplifications
to integrand
false (default) | true

Indicator for applying purely algebraic simplifications to integrand, specified as true
or false. If the value is true, apply purely algebraic simplifications to the integrand.
This option can provide simpler results for expressions, for which the direct use of the
integrator returns complicated results. In some cases, it also enables int to compute
integrals that cannot be computed otherwise.

Note that using this option can lead to wrong or incomplete results.

'IgnoreSpecialCases' — Indicator for ignoring special cases
false (default) | true

Indicator for ignoring special cases, specified as true or false. If the value is true and
integration requires case analysis, ignore cases that require one or more parameters to
be elements of a comparatively small set, such as a fixed finite set or a set of integers.

'PrincipalValue' — Indicator for returning principal value
false (default) | true

Indicator for returning principal value, specified as true or false. If the value is true,
compute the Cauchy principal value of the integral.

 int

4-659

More About

Tips

• In contrast to differentiation, symbolic integration is a more complicated task. If int
cannot compute an integral of an expression, one of these reasons might apply:

• The antiderivative does not exist in a closed form.
• The antiderivative exists, but int cannot find it.

If int cannot compute a closed form of an integral, it returns an unresolved integral.

Try approximating such integrals by using one of these methods:

• For indefinite integrals, use series expansions. Use this method to approximate an
integral around a particular value of the variable.

• For definite integrals, use numeric approximations.
• Results returned by int do not include integration constants.
• For indefinite integrals, int implicitly assumes that the integration variable var is

real. For definite integrals, int restricts the integration variable var to the specified
integration interval. If one or both integration bounds a and b are not numeric, int
assumes that a <= b unless you explicitly specify otherwise.

Algorithms

When you use IgnoreAnalyticConstraints, int applies these rules:

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the following equality
is valid for all values of a, b, and c:

 (a·b)c = ac·bc.
• log(ab) = b·log(a) for all values of a and b. In particular, the following equality is valid

for all values of a, b, and c:

 (ab)c = ab·c.
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, then f(g(x)) = x is assumed to be valid for all complex values x. In particular:

• log(ex) = x

4 Functions — Alphabetical List

4-660

• asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x
• asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x
• Wk(x·ex) = x for all values of k

• “Integration” on page 2-23

See Also
diff | functionalDerivative | symprod | symsum | symvar

Introduced before R2006a

 int8int16int32int64

4-661

int8int16int32int64
Convert symbolic matrix to signed integers

Syntax

int8(S)

int16(S)

int32(S)

int64(S)

Description

int8(S) converts a symbolic matrix S to a matrix of signed 8-bit integers.

int16(S) converts S to a matrix of signed 16-bit integers.

int32(S) converts S to a matrix of signed 32-bit integers.

int64(S) converts S to a matrix of signed 64-bit integers.

Note The output of int8, int16, int32, and int64 does not have data type symbolic.

The following table summarizes the output of these four functions.

Function Output Range Output Type Bytes per
Element

Output Class

int8 -128 to 127 Signed 8-bit
integer

1 int8

int16 -32,768 to 32,767 Signed 16-bit
integer

2 int16

int32 -2,147,483,648 to 2,147,483,647 Signed 32-bit
integer

4 int32

int64 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Signed 64-bit
integer

8 int64

4 Functions — Alphabetical List

4-662

See Also
sym | vpa | single | uint8 | double | uint16 | uint32 | uint64

Introduced before R2006a

 inv

4-663

inv
Compute symbolic matrix inverse

Syntax

R = inv(A)

Description

R = inv(A) returns inverse of the symbolic matrix A.

Examples

Compute the inverse of the following matrix of symbolic numbers:

A = sym([2,-1,0;-1,2,-1;0,-1,2]);

inv(A)

ans =

[3/4, 1/2, 1/4]

[1/2, 1, 1/2]

[1/4, 1/2, 3/4]

Compute the inverse of the following symbolic matrix:

syms a b c d

A = [a b; c d];

inv(A)

ans =

[d/(a*d - b*c), -b/(a*d - b*c)]

[-c/(a*d - b*c), a/(a*d - b*c)]

Compute the inverse of the symbolic Hilbert matrix:

inv(sym(hilb(4)))

ans =

4 Functions — Alphabetical List

4-664

[16, -120, 240, -140]

[-120, 1200, -2700, 1680]

[240, -2700, 6480, -4200]

[-140, 1680, -4200, 2800]

See Also
eig | det | rank

Introduced before R2006a

 isAlways

4-665

isAlways

Check whether equation or inequality holds for all values of its variables

Compatibility

isAlways issues a warning when returning false for undecidable inputs. To suppress the
warning, set the Unknown option to false as isAlways(cond,'Unknown','false').
For details, see “Handle Output for Undecidable Conditions” on page 4-666.

Syntax

isAlways(cond)

isAlways(cond,Name,Value)

Description

isAlways(cond) checks if the condition cond is valid for all possible values of the
symbolic variables in cond. When verifying cond, the isAlways function considers all
assumptions on the variables in cond. If the condition holds, isAlways returns logical 1
(true). Otherwise it returns logical 0 (false).

isAlways(cond,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Examples

Test Conditions

Check if this inequality is valid for all values of x.

syms x

isAlways(abs(x) >= 0)

4 Functions — Alphabetical List

4-666

ans =

 1

isAlways returns logical 1 (true) indicating that the inequality abs(x) >= 0 is valid
for all values of x.

Check if this equation is valid for all values of x.

isAlways(sin(x)^2 + cos(x)^2 == 1)

ans =

 1

isAlways returns logical 1 (true) indicating that the inequality is valid for all values of
x.

Test if One of Several Conditions Is Valid

Check if at least one of these two conditions is valid. To check if at least one of several
conditions is valid, combine them using the logical operator or or its shortcut |.

syms x

isAlways(sin(x)^2 + cos(x)^2 == 1 | x^2 > 0)

ans =

 1

Check if both conditions are valid. To check if several conditions are valid, combine them
using the logical operator and or its shortcut &.

isAlways(sin(x)^2 + cos(x)^2 == 1 & abs(x) > 2*abs(x))

ans =

 0

Handle Output for Undecidable Conditions

Test this condition. When isAlways cannot determine if the condition is valid, it returns
logical 0 (false) and issues a warning by default.

syms x

isAlways(2*x >= x)

 isAlways

4-667

Warning: Cannot prove 'x <= 2*x'.

ans =

 0

To change this default behavior, use Unknown. For example, specify Unknown as false
to suppress the warning and make isAlways return logical 0 (false) if it cannot
determine the validity of the condition.

isAlways(2*x >= x,'Unknown','false')

ans =

 0

Instead of false, you can also specify error to return an error, and true to return
logical 1 (true).

Test Conditions with Assumptions

Check this inequality under the assumption that x is positive. When isAlways tests an
equation or inequality, it takes into account assumptions on variables in that equation or
inequality.

syms x

assume(x < 0)

isAlways(2*x < x)

ans =

 1

For further computations, clear the assumption on x.

syms x clear

Input Arguments

cond — Condition to check
symbolic condition | vector of symbolic conditions | matrix of symbolic conditions |
multidimensional array of symbolic conditions

Condition to check, specified as a symbolic condition, or a vector, matrix, or
multidimensional array of symbolic conditions.

4 Functions — Alphabetical List

4-668

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: isAlways(cond,'Unknown',true) makes isAlways return logical 1 (true)
when the specified condition cannot be decided.

'Unknown' — Return value for undecidable condition
falseWithWarning (default) | false | true | error

Return value for an undecidable condition, specified as the comma-separated pair of
'Unknown' and one of these values.

falseWithWarning (default) On undecidable inputs, return logical 0
(false) and a warning that the condition
cannot be proven.

false On undecidable inputs, return logical 0
(false).

true On undecidable inputs, return logical 1
(true).

error On undecidable inputs, return an error.

More About
• “Use Assumptions on Symbolic Variables” on page 1-27
• “Clear Assumptions and Reset the Symbolic Engine” on page 3-43

See Also
assume | assumeAlso | assumptions | in | isequaln | isfinite | isinf | isnan
| sym | syms

Introduced in R2012a

 isequaln

4-669

isequaln
Test symbolic objects for equality, treating NaN values as equal

Syntax

isequaln(A,B)

isequaln(A1,A2,...,An)

Description

isequaln(A,B) returns logical 1 (true) if A and B are the same size and their contents
are of equal value. Otherwise, isequaln returns logical 0 (false). All NaN (not a number)
values are considered to be equal to each other. isequaln recursively compares the
contents of symbolic data structures and the properties of objects. If all contents in the
respective locations are equal, isequaln returns logical 1 (true).

isequaln(A1,A2,...,An) returns logical 1 (true) if all the inputs are equal.

Examples

Compare Two Expressions

Use isequaln to compare these two expressions:

syms x

isequaln(abs(x), x)

ans =

 0

For positive x, these expressions are identical:

assume(x > 0)

isequaln(abs(x), x)

ans =

 1

4 Functions — Alphabetical List

4-670

For further computations, remove the assumption:

syms x clear

Compare Two Matrices

Use isequaln to compare these two matrices:

A = hilb(3);

B = sym(A);

isequaln(A, B)

ans =

 1

Compare Vectors Containing NaN Values

Use isequaln to compare these vectors:

syms x

A1 = [x NaN NaN];

A2 = [x NaN NaN];

A3 = [x NaN NaN];

isequaln(A1, A2, A3)

ans =

 1

Input Arguments

A,B — Inputs to compare
symbolic numbers | symbolic variables | symbolic expressions | symbolic functions |
symbolic vectors | symbolic matrices

Inputs to compare, specified as symbolic numbers, variables, expressions, functions,
vectors, or matrices. If one of the arguments is a symbolic object and the other one is
numeric, the toolbox converts the numeric object to symbolic before comparing them.

A1,A2,...,An — Series of inputs to compare
symbolic numbers | symbolic variables | symbolic expressions | symbolic functions |
symbolic vectors | symbolic matrices

 isequaln

4-671

Series of inputs to compare, specified as symbolic numbers, variables, expressions,
functions, vectors, or matrices. If at least one of the arguments is a symbolic object, the
toolbox converts all other arguments to symbolic objects before comparing them.

More About

Tips

• Calling isequaln for arguments that are not symbolic objects invokes the MATLAB
isequaln function. If one of the arguments is symbolic, then all other arguments are
converted to symbolic objects before comparison.

See Also
in | isAlways | isequaln | isfinite | isinf | isnan

Introduced in R2013a

4 Functions — Alphabetical List

4-672

isfinite
Check whether symbolic array elements are finite

Syntax

isfinite(A)

Description

isfinite(A) returns an array of the same size as A containing logical 1s (true) where
the elements of A are finite, and logical 0s (false) where they are not. For a complex
number, isfinite returns 1 if both the real and imaginary parts of that number are
finite. Otherwise, it returns 0.

Examples

Determine Which Elements of Symbolic Array Are Finite Values

Using isfinite, determine which elements of this symbolic matrix are finite values:

isfinite(sym([pi NaN Inf; 1 + i Inf + i NaN + i]))

ans =

 1 0 0

 1 0 0

Determine if Exact and Approximated Values Are Finite

Approximate these symbolic values with the 50-digit accuracy:

V = sym([pi, 2*pi, 3*pi, 4*pi]);

V_approx = vpa(V, 50);

The cotangents of the exact values are not finite:

cot(V)

 isfinite

4-673

isfinite(cot(V))

ans =

[Inf, Inf, Inf, Inf]

ans =

 0 0 0 0

Nevertheless, the cotangents of the approximated values are finite due to the round-off
errors:

isfinite(cot(V_approx))

ans =

 1 1 1 1

Input Arguments

A — Input value
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic array | symbolic vector | symbolic matrix

Input value, specified as a symbolic number, variable, expression, or function, or as an
array, vector, or matrix of symbolic numbers, variables, expressions, functions.

More About

Tips

• For any A, exactly one of the three quantities isfinite(A), isinf(A), or isnan(A)
is 1 for each element.

• Elements of A are recognized as finite if they are

• Not symbolic NaN
• Not symbolic Inf or -Inf
• Not sums or products containing symbolic infinities Inf or -Inf

See Also
in | isAlways | isequaln | isinf | isnan

4 Functions — Alphabetical List

4-674

Introduced in R2013b

 isinf

4-675

isinf
Check whether symbolic array elements are infinite

Syntax

isinf(A)

Description

isinf(A) returns an array of the same size as A containing logical 1s (true) where
the elements of A are infinite, and logical 0s (false) where they are not. For a complex
number, isinf returns 1 if the real or imaginary part of that number is infinite or both
real and imaginary parts are infinite. Otherwise, it returns 0.

Examples

Determine Which Elements of Symbolic Array Are Infinite

Using isinf, determine which elements of this symbolic matrix are infinities:

isinf(sym([pi NaN Inf; 1 + i Inf + i NaN + i]))

ans =

 0 0 1

 0 1 0

Determine if Exact and Approximated Values Are Infinite

Approximate these symbolic values with the 50-digit accuracy:

V = sym([pi, 2*pi, 3*pi, 4*pi]);

V_approx = vpa(V, 50);

The cotangents of the exact values are infinite:

cot(V)

4 Functions — Alphabetical List

4-676

isinf(cot(V))

ans =

[Inf, Inf, Inf, Inf]

ans =

 1 1 1 1

Nevertheless, the cotangents of the approximated values are not infinite due to the
round-off errors:

isinf(cot(V_approx))

ans =

 0 0 0 0

Input Arguments

A — Input value
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic array | symbolic vector | symbolic matrix

Input value, specified as a symbolic number, variable, expression, or function, or as an
array, vector, or matrix of symbolic numbers, variables, expressions, functions.

More About

Tips

• For any A, exactly one of the three quantities isfinite(A), isinf(A), or isnan(A)
is 1 for each element.

• The elements of A are recognized as infinite if they are

• Symbolic Inf or -Inf
• Sums or products containing symbolic Inf or -Inf and not containing the value

NaN.

See Also
in | isAlways | isequaln | isfinite | isnan

 isinf

4-677

Introduced in R2013b

4 Functions — Alphabetical List

4-678

isLowIndexDAE
Check if differential index of system of equations is lower than 2

Syntax

isLowIndexDAE(eqs,vars)

Description

isLowIndexDAE(eqs,vars) checks if the system eqs of first-order semilinear
differential algebraic equations (DAEs) has a low differential index. If the differential
index of the system is 0 or 1, then isLowIndexDAE returns logical 1 (true). If the
differential index of eqs is higher than 1, then isLowIndexDAE returns logical 0 (false).

The number of equations eqs must match the number of variables vars.

Examples

Check Differential Index of DAE System

Check if a system of first-order semilinear DAEs has a low differential index (0 or 1).

Create the following system of two differential algebraic equations. Here, x(t) and y(t)
are the state variables of the system. Specify the equations and variables as two symbolic
vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic
function calls.

syms x(t) y(t)

eqs = [diff(x(t),t) == x(t) + y(t), x(t)^2 + y(t)^2 == 1];

vars = [x(t), y(t)];

Use isLowIndexDAE to check the differential order of the system. The differential order
of this system is 1. For systems of index 0 and 1, isLowIndexDAE returns 1 (true).

isLowIndexDAE(eqs, vars)

 isLowIndexDAE

4-679

ans =

 1

Reduce Differential Index of DAE System

Check if the following DAE system has a low or high differential index. If the index is
higher than 1, then use reduceDAEIndex to reduce it.

Create the following system of two differential algebraic equations. Here, x(t), y(t),
and z(t) are the state variables of the system. Specify the equations and variables as
two symbolic vectors: equations as a vector of symbolic equations, and variables as a
vector of symbolic function calls.

syms x(t) y(t) z(t) f(t)

eqs = [diff(x(t),t) == x(t) + z(t),...

 diff(y(t),t) == f(t), x(t) == y(t)];

vars = [x(t), y(t), z(t)];

Use isLowIndexDAE to check the differential index of the system. For this system
isLowIndexDAE returns 0 (false). This means that the differential index of the system
is 2 or higher.

isLowIndexDAE(eqs, vars)

ans =

 0

Use reduceDAEIndex to rewrite the system so that the differential index is 1. Calling
this function with four output arguments also shows the differential index of the original
system. The new system has one additional state variable, Dyt(t).

[newEqs, newVars, ~, oldIndex] = reduceDAEIndex(eqs, vars)

newEqs =

 diff(x(t), t) - z(t) - x(t)

 Dyt(t) - f(t)

 x(t) - y(t)

 diff(x(t), t) - Dyt(t)

newVars =

 x(t)

 y(t)

 z(t)

4 Functions — Alphabetical List

4-680

 Dyt(t)

oldIndex =

 2

Check if the differential order of the new system is lower than 2.

isLowIndexDAE(newEqs, newVars)

ans =

 1

Input Arguments

eqs — System of first-order semilinear differential algebraic equations
vector of symbolic equations | vector of symbolic expressions

System of first-order semilinear differential algebraic equations, specified as a vector of
symbolic equations or expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).

Example: [x(t),y(t)]

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE |
reduceDifferentialOrder | reduceRedundancies

Introduced in R2014b

 isnan

4-681

isnan

Check whether symbolic array elements are NaNs

Syntax

isnan(A)

Description

isnan(A) returns an array of the same size as A containing logical 1s (true) where the
elements of A are symbolic NaNs, and logical 0s (false) where they are not.

Examples

Determine Which Elements of Symbolic Array Are NaNs

Using isnan, determine which elements of this symbolic matrix are NaNs:

isnan(sym([pi NaN Inf; 1 + i Inf + i NaN + i]))

ans =

 0 1 0

 0 0 1

Input Arguments

A — Input value
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic array | symbolic vector | symbolic matrix

Input value, specified as a symbolic number, variable, expression, or function, or as an
array, vector, or matrix of symbolic numbers, variables, expressions, functions.

4 Functions — Alphabetical List

4-682

More About

Tips

• For any A, exactly one of the three quantities isfinite(A), isinf(A), or isnan(A)
is 1 for each element.

• Symbolic expressions and functions containing NaN evaluate to NaN. For example,
sym(NaN + i) returns symbolic NaN.

See Also
isAlways | isequaln | isfinite | isinf

Introduced in R2013b

 iztrans

4-683

iztrans

Inverse Z-transform

Syntax

iztrans(F,trans_index,eval_point)

Description

iztrans(F,trans_index,eval_point) computes the inverse Z-transform of F with
respect to the transformation index trans_index at the point eval_point.

Input Arguments

F

Symbolic expression, symbolic function, or vector or matrix of symbolic expressions or
functions.

trans_index

Symbolic variable representing the transformation index. This variable is often called the
“complex frequency variable”.

Default: The variable z. If F does not contain z, then the default variable is determined
by symvar.

eval_point

Symbolic variable or expression representing the evaluation point. This variable is often
called the “discrete time variable”.

Default: The variable n. If n is the transformation index of F, then the default evaluation
point is the variable k.

4 Functions — Alphabetical List

4-684

Examples

Compute the inverse Z-transform of this expression with respect to the transformation
index x at the evaluation point k:

syms k x

F = 2*x/(x - 2)^2;

iztrans(F, x, k)

ans =

2^k + 2^k*(k - 1)

Compute the inverse Z-transform of this expression calling the iztrans function with
one argument. If you do not specify the transformation index, iztrans uses the variable
z.

syms z a k

F = exp(a/z);

iztrans(F, k)

ans =

a^k/factorial(k)

If you also do not specify the evaluation point, iztrans uses the variable n:

iztrans(F)

ans =

a^n/factorial(n)

Compute the inverse Z-transforms of these expressions. The results involve the
Kronecker’s delta function.

syms n z

iztrans(1/z, z, n)

ans =

kroneckerDelta(n - 1, 0)

iztrans((z^3 + 3*z^2 + 6*z + 5)/z^5, z, n)

ans =

kroneckerDelta(n - 2, 0) + 3*kroneckerDelta(n - 3, 0) +...

6*kroneckerDelta(n - 4, 0) + 5*kroneckerDelta(n - 5, 0)

 iztrans

4-685

If iztrans cannot find an explicit representation of the transform, it returns an
unevaluated call:

syms F(z) n

f = iztrans(F, z, n)

f =

iztrans(F(z), z, n)

ztrans returns the original expression:

ztrans(f, n, z)

ans =

F(z)

Find the inverse Z-transform of this matrix. Use matrices of the same size to specify the
transformation variable and evaluation point.

syms a b c d w x y z

iztrans([exp(x), 1; sin(y), i*z],[w, x; y, z],[a, b; c, d])

ans =

[exp(x)*kroneckerDelta(a, 0), kroneckerDelta(b, 0)]

[iztrans(sin(y), y, c), iztrans(z, z, d)*1i]

When the input arguments are nonscalars, iztrans acts on them element-wise. If
iztrans is called with both scalar and nonscalar arguments, then iztrans expands
the scalar arguments into arrays of the same size as the nonscalar arguments with all
elements of the array equal to the scalar.

syms w x y z a b c d

iztrans(x,[x, w; y, z],[a, b; c, d])

ans =

[iztrans(x, x, a), x*kroneckerDelta(b, 0)]

[x*kroneckerDelta(c, 0), x*kroneckerDelta(d, 0)]

Note that nonscalar input arguments must have the same size.

When the first argument is a symbolic function, the second argument must be a scalar.

syms f1(x) f2(x) a b

f1(x) = exp(x);

f2(x) = x;

4 Functions — Alphabetical List

4-686

iztrans([f1, f2],x,[a, b])

ans =

[iztrans(exp(x), x, a), iztrans(x, x, b)]

More About

Inverse Z-Transform

If R is a positive number, such that the function F(z) is analytic on and outside the circle
|z| = R, then the inverse Z-transform is defined as follows:

f n
i

F z z dz nn

z R

() = () =-

=
Ú

1

2
0 1 2

1

p Ñ
, , , ...

Tips

• If you call iztrans with two arguments, it assumes that the second argument is the
evaluation point eval_point.

• If F is a matrix, iztrans acts element-wise on all components of the matrix.
• If eval_point is a matrix, iztrans acts element-wise on all components of the

matrix.
• To compute the direct Z-transform, use ztrans.

• “Compute Z-Transforms and Inverse Z-Transforms” on page 2-206

See Also
fourier | ifourier | ilaplace | kroneckerDelta | laplace | ztrans

Introduced before R2006a

 jacobian

4-687

jacobian
Jacobian matrix

Syntax

jacobian(f,v)

Description

jacobian(f,v) computes the Jacobian matrix of f with respect to v. The (i,j) element of

the result is ∂ ()

∂ ()
f i

jv

.

Examples

Jacobian of Vector Function

The Jacobian of a vector function is a matrix of the partial derivatives of that function.

Compute the Jacobian matrix of [x*y*z, y^2, x + z] with respect to [x, y, z].

syms x y z

jacobian([x*y*z, y^2, x + z], [x, y, z])

ans =

[y*z, x*z, x*y]

[0, 2*y, 0]

[1, 0, 1]

Now, compute the Jacobian of [x*y*z, y^2, x + z] with respect to [x; y; z].

jacobian([x*y*z, y^2, x + z], [x; y; z])

Jacobian of Scalar Function

The Jacobian of a scalar function is the transpose of its gradient.

4 Functions — Alphabetical List

4-688

Compute the Jacobian of 2*x + 3*y + 4*z with respect to [x, y, z].

syms x y z

jacobian(2*x + 3*y + 4*z, [x, y, z])

ans =

[2, 3, 4]

Now, compute the gradient of the same expression.

gradient(2*x + 3*y + 4*z, [x, y, z])

ans =

 2

 3

 4

Jacobian with Respect to Scalar

The Jacobian of a function with respect to a scalar is the first derivative of that function.
For a vector function, the Jacobian with respect to a scalar is a vector of the first
derivatives.

Compute the Jacobian of [x^2*y, x*sin(y)] with respect to x.

syms x y

jacobian([x^2*y, x*sin(y)], x)

ans =

 2*x*y

 sin(y)

Now, compute the derivatives.

diff([x^2*y, x*sin(y)], x)

ans =

[2*x*y, sin(y)]

Input Arguments

f — Scalar or vector function
symbolic expression | symbolic function | symbolic vector

 jacobian

4-689

Scalar or vector function, specified as a symbolic expression, function, or vector. If f is a
scalar, then the Jacobian matrix of f is the transposed gradient of f.

v — Vector of variables with respect to which you compute Jacobian
symbolic variable | symbolic vector

Vector of variables with respect to which you compute Jacobian, specified as a symbolic
variable or vector of symbolic variables. If v is a scalar, then the result is equal to
the transpose of diff(f,v). If v is an empty symbolic object, such as sym([]), then
jacobian returns an empty symbolic object.

More About

Jacobian Matrix

The Jacobian matrix of the vector function f = (f1(x1,...,xn),...,fn(x1,...,xn)) is the matrix of
the derivatives of f:

J x x

f

x

f

x

f

x

f

x

n

n

n n

n

1

1

1

1

1

,…

L

M O M

L

() =

∂

∂

∂

∂

∂

∂

∂

∂

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

See Also
curl | diff | divergence | gradient | hessian | laplacian | potential |
vectorPotential

Introduced before R2006a

4 Functions — Alphabetical List

4-690

jacobiP
Jacobi polynomials

Syntax

jacobiP(n,a,b,x)

Description

jacobiP(n,a,b,x) returns the nth degree Jacobi polynomial with parameters a and b
at x.

Examples

Find Jacobi Polynomials for Numeric and Symbolic Inputs

Find the Jacobi polynomial of degree 2 for numeric inputs.

jacobiP(2,0.5,-3,6)

ans =

 7.3438

Find the Jacobi polynomial for symbolic inputs.

syms n a b x

jacobiP(n,a,b,x)

ans =

jacobiP(n, a, b, x)

If the degree of the Jacobi polynomial is not specified, jacobiP cannot find the
polynomial and returns the function call.

Specify the degree of the Jacobi polynomial as 1 to return the form of the polynomial.

 jacobiP

4-691

J = jacobiP(1,a,b,x)

J =

a/2 - b/2 + x*(a/2 + b/2 + 1)

To find the numeric value of a Jacobi polynomial, call jacobiP with the numeric values
directly. Do not substitute into the symbolic polynomial because the result can be
inaccurate due to round-off. Test this by using subs to substitute into the symbolic
polynomial, and compare the result with a numeric call.

J = jacobiP(300, -1/2, -1/2, x);

subs(J,x,vpa(1/2))

jacobiP(300, -1/2, -1/2, vpa(1/2))

ans =

101573673381249394050.64541318209

ans =

0.032559931334979678350422392588404

When subs is used to substitute into the symbolic polynomial, the numeric result is
subject to round-off error. The direct numerical call to jacobiP is accurate.

Find Jacobi Polynomial with Vector and Matrix Inputs

Find the Jacobi polynomials of degrees 1 and 2 by setting n = [1 2] for a = 3 and b =
1.

syms x

jacobiP([1 2],3,1,x)

ans =

[3*x + 1, 7*x^2 + (7*x)/2 - 1/2]

jacobiP acts on n element-wise to return a vector with two entries.

If multiple inputs are specified as a vector, matrix, or multidimensional array, these
inputs must be the same size. Find the Jacobi polynomials for a = [1 2;3 1], b = [2
2;1 3], n = 1 and x.

a = [1 2;3 1];

b = [2 2;1 3];

J = jacobiP(1,a,b,x)

4 Functions — Alphabetical List

4-692

J =

[(5*x)/2 - 1/2, 3*x]

[3*x + 1, 3*x - 1]

jacobiP acts element-wise on a and b to return a matrix of the same size as a and b.

Visualize Zeros of Jacobi Polynomials

Plot Jacobi polynomials of degree 1, 2, and 3 for a = 3, b = 3, and -1<x<1. To better
view the plot, set y-axis limits to -2<y<2 using ylim.

syms x

hold on

grid on

for n = 1:3

 ezplot(jacobiP(n,3,3,x),[-1 1])

end

ylim([-2 2]);

ylabel('P_n^{(\alpha,\beta)}(x)')

title('Zeros of Jacobi polynomials of degree=1,2,3 with a=3 and b=3');

legend('1','2','3','Location','best');

 jacobiP

4-693

Prove Orthogonality of Jacobi Polynomials with Respect to Weight
Function

The Jacobi polynomials P(n,a,b,x) are orthogonal with respect to the weight function

1 1-() -()x x
a b

 on the interval [-1,1].

Prove P(3,a,b,x) and P(5,a,b,x) are orthogonal with respect to the weight function

1 1-() -()x x
a b by integrating their product over the interval [-1,1], where a = 3.5

and b = 7.2.

syms x

4 Functions — Alphabetical List

4-694

a = 3.5;

b = 7.2;

P3 = jacobiP(3, a, b, x);

P5 = jacobiP(5, a, b, x);

w = (1-x)^a*(1+x)^b;

int(P3*P5*w, x, -1, 1)

ans =

0

Input Arguments

n — Degree of Jacobi polynomial
nonnegative integer | vector of nonnegative integers | matrix of nonnegative integers
| multidimensional array of nonnegative integers | symbolic nonnegative integer |
symbolic variable | symbolic vector | symbolic matrix | symbolic function | symbolic
expression | symbolic multidimensional array

Degree of Jacobi polynomial, specified as a nonnegative integer, or a vector, matrix,
or multidimensional array of nonnegative integers, or a symbolic nonnegative integer,
variable, vector, matrix, function, expression, or multidimensional array.

a — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic
vector | symbolic matrix | symbolic function | symbolic expression | symbolic
multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, expression, or multidimensional array.

b — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic
vector | symbolic matrix | symbolic function | symbolic expression | symbolic
multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, expression, or multidimensional array.

x — Evaluation point
number | vector | matrix | multidimensional array | symbolic number | symbolic
vector | symbolic matrix | symbolic function | symbolic expression | symbolic
multidimensional array

 jacobiP

4-695

Evaluation point, specified as a number, vector, matrix, multidimensional array, or a
symbolic number, vector, matrix, function, expression, or multidimensional array.

More About

Jacobi Polynomials

The Jacobi polynomials are given by the recursion formula

2 1

2

2 2 2 1 2 2 2
2 2

nc c P n a b x c c c x a b P n a b x

n

n n n n n- - -() = + -() -()
- -

, , , , , ,

11 1 2

0 1

1

2+() - +() -()

= + +

() =

a n b c P n a b x

c n a b

P a b x

P a

n

n

, , , ,

, , ,

,

where

,, , .b x
a b a b

x() = - + + +Ê
ËÁ

ˆ
¯̃2

1
2

For fixed real a > -1 and b > -1, the Jacobi polynomials are orthogonal on the interval

[-1,1] with respect to the weight function w x x x
a b

() = -() +()1 1 .

For a = 0 and b = 0, the Jacobi polynomials P(n,0,0,x) reduce to the Legendre polynomials
P(n, x).

The relation between Jacobi polynomials P(n,a,b,x) and Chebyshev polynomials of the
first kind T(n,x) is

T n x
n

n
P n x

n

,
!

!
, , , .() =

()
()

- -Ê
Ë
Á

ˆ
¯
˜

2

2

1

2

1

2

2 2

The relation between Jacobi polynomials P(n,a,b,x) and Chebyshev polynomials of the
second kind U(n,x) is

U n x
n n

n
P n x

n

,
! !

!
, , , .() =

+()
+()

Ê
Ë
Á

ˆ
¯
˜

2 1

2 1

1

2

1

2

2

4 Functions — Alphabetical List

4-696

The relation between Jacobi poynomials P(n,a,b,x) and Gegenbauer polynomials G(n,a,x)
is

G n a x

a n a

a n a

P n a a, , , , ,() =
+Ê

ËÁ
ˆ
¯̃

+()

() + +Ê
Ë
Á

ˆ
¯
˜

- -
G G

G G

1

2
2

2
1

2

1

2

1

2
xx

Ê
Ë
Á

ˆ
¯
˜.

See Also
chebyshevT | chebyshevU | gegenbauerC | hermiteH | hypergeom | laguerreL |
legendreP

Introduced in R2014b

 jordan

4-697

jordan
Jordan form of matrix

Syntax

J = jordan(A)

[V,J] = jordan(A)

Description

J = jordan(A) computes the Jordan canonical form (also called Jordan normal form)
of a symbolic or numeric matrix A. The Jordan form of a numeric matrix is extremely
sensitive to numerical errors. To compute Jordan form of a matrix, represent the
elements of the matrix by integers or ratios of small integers, if possible.

[V,J] = jordan(A) computes the Jordan form J and the similarity transform V. The
matrix V contains the generalized eigenvectors of A as columns, and V\A*V = J.

Examples

Compute the Jordan form and the similarity transform for this numeric matrix. Verify
that the resulting matrix V satisfies the condition V\A*V = J:

A = [1 -3 -2; -1 1 -1; 2 4 5]

[V, J] = jordan(A)

V\A*V

A =

 1 -3 -2

 -1 1 -1

 2 4 5

V =

 -1 1 -1

 -1 0 0

 2 0 1

4 Functions — Alphabetical List

4-698

J =

 2 1 0

 0 2 0

 0 0 3

ans =

 2 1 0

 0 2 0

 0 0 3

See Also
charpoly | inv | eig | hermiteForm | smithForm

Introduced before R2006a

 kroneckerDelta

4-699

kroneckerDelta
Kronecker delta function

Syntax

kroneckerDelta(m)

kroneckerDelta(m,n)

Description

kroneckerDelta(m) returns 1 if m == 0 and 0 if m ~= 0.

kroneckerDelta(m,n) returns 1 if m == n and 0 if m ~= n.

Examples

Compare Two Symbolic Variables

Set symbolic variable m equal to symbolic variable n and test their equality using
kroneckerDelta.

syms m n

m = n;

kroneckerDelta(m, n)

ans =

1

kroneckerDelta returns 1 indicating that the inputs are equal.

Compare symbolic variables p and q.

syms p q

kroneckerDelta(p, q)

ans =

4 Functions — Alphabetical List

4-700

kroneckerDelta(p - q, 0)

kroneckerDelta cannot decide if p == q and returns the function call with the
undecidable input. Note that kroneckerDelta(p, q) is equal to kroneckerDelta(p
- q, 0).

To force a logical result for undecidable inputs, use isAlways. The isAlways function
issues a warning and returns logical 0 (false) for undecidable inputs. Set the Unknown
option to false to suppress the warning.

isAlways(kroneckerDelta(p, q), 'Unknown', 'false')

ans =

 0

Compare Symbolic Variable with Zero

Set symbolic variable m to 0 and test m for equality with 0. The kroneckerDelta
function errors because it does not accept numeric inputs of type double.

m = 0;

kroneckerDelta(m)

Undefined function 'kroneckerDelta' for input arguments of type 'double'.

Use sym to convert 0 to a symbolic object before assigning it to m. This is because
kroneckerDelta only accepts symbolic inputs.

syms m

m = sym(0);

kroneckerDelta(m)

ans =

1

kroneckerDelta returns 1 indicating that m is equal to 0. Note that
kroneckerDelta(m) is equal to kroneckerDelta(m, 0).

Compare Vector of Numbers with Symbolic Variable

Compare a vector of numbers [1 2 3 4] with symbolic variable m. Set m to 3.

V = 1:4

 kroneckerDelta

4-701

syms m

m = sym(3)

sol = kroneckerDelta(V, m)

V =

 1 2 3 4

m =

3

sol =

[0, 0, 1, 0]

kroneckerDelta acts on V element-wise to return a vector, sol, which is the same size
as V. The third element of sol is 1 indicating that the third element of V equals m.

Compare Two Matrices

Compare matrices A and B.

Declare matrices A and B.

syms m

A = [m m+1 m+2;m-2 m-1 m]

B = [m m+3 m+2;m-1 m-1 m+1]

A =

[m, m + 1, m + 2]

[m - 2, m - 1, m]

B =

[m, m + 3, m + 2]

[m - 1, m - 1, m + 1]

Compare A and B using kroneckerDelta.

sol = kroneckerDelta(A, B)

sol =

[1, 0, 1]

[0, 1, 0]

kroneckerDelta acts on A and B element-wise to return the matrix sol which is the
same size as A and B. The elements of sol that are 1 indicate that the corresponding
elements of A and B are equal. The elements of sol that are 0 indicate that the
corresponding elements of A and B are not equal.

4 Functions — Alphabetical List

4-702

Use kroneckerDelta in Inputs to Other Functions

kroneckerDelta appears in the output of iztrans.

syms z n

sol = iztrans(1/(z-1), z, n)

sol =

1 - kroneckerDelta(n, 0)

Use this output as input to ztrans to return the initial input expression.

ztrans(sol, n, z)

ans =

z/(z - 1) - 1

Filter Response to Kronecker Delta Input

Use filter to find the response of a filter when the input is the Kronecker Delta
function. Convert k to a symbolic vector using sym because kroneckerDelta only
accepts symbolic inputs, and convert it back to double using double. Provide arbitrary
filter coefficients a and b for simplicity.

b = [0 1 1];

a = [1 -0.5 0.3];

k = -20:20;

x = double(kroneckerDelta(sym(k)));

y = filter(b,a,x);

plot(k,y)

 kroneckerDelta

4-703

Input Arguments

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic vector
| symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, or multidimensional array. At least one of the inputs, m
or n, must be symbolic.

4 Functions — Alphabetical List

4-704

n — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic vector
| symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, or multidimensional array. At least one of the inputs, m
or n, must be symbolic.

More About

Kronecker Delta Function

The Kronecker delta function is defined as

d m n

n

n

,() =
π

=

Ï
Ì
Ó

0

1

if m

if m

Tips

• When m or n is NaN, the kroneckerDelta function returns NaN.

See Also
iztrans | ztrans

Introduced in R2014b

 kummerU

4-705

kummerU

Confluent hypergeometric Kummer U function

Syntax

kummerU(a,b,z)

Description

kummerU(a,b,z) computes the value of confluent hypergeometric function, U(a,b,z).
If the real parts of z and a are positive values, then the integral representations of the
Kummer U function is as follows:

U a b z
a

e t t dt
zt a b a

, ,() =
()

+()- - - -
•

Ú
1

1
1 1

0
G

Examples

Equation Returning the Kummer U Function as Its Solution

dsolve can return solutions of second-order ordinary differential equations in terms of
the Kummer U function.

Solve this equation. The solver returns the results in terms of the Kummer U function
and another hypergeometric function.

syms t z y(z)

dsolve(z^3*diff(y,2) + (z^2 + t)*diff(y) + z*y)

ans =

(C4*hypergeom(1i/2, 1 + 1i, t/(2*z^2)))/z^1i +...

(C3*kummerU(1i/2, 1 + 1i, t/(2*z^2)))/z^1i

4 Functions — Alphabetical List

4-706

Kummer U Function for Numeric and Symbolic Arguments

Depending on its arguments, kummerU can return floating-point or exact symbolic
results.

Compute the Kummer U function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

A = [kummerU(-1/3, 2.5, 2)

kummerU(1/3, 2, pi)

kummerU(1/2, 1/3, 3*i)]

A =

 0.8234 + 0.0000i

 0.7284 + 0.0000i

 0.4434 - 0.3204i

Compute the Kummer U function for the numbers converted to symbolic objects. For
most symbolic (exact) numbers, kummerU returns unresolved symbolic calls.

symA = [kummerU(-1/3, 2.5, sym(2))

kummerU(1/3, 2, sym(pi))

kummerU(1/2, sym(1/3), 3*i)]

symA =

 kummerU(-1/3, 5/2, 2)

 kummerU(1/3, 2, pi)

 kummerU(1/2, 1/3, 3i)

Use vpa to approximate symbolic results with the required number of digits.

vpa(symA,10)

ans =

 0.8233667846

 0.7284037305

 0.4434362538 - 0.3204327531i

Some Special Values of Kummer U

The Kummer U function has special values for some parameters.

If a is a negative integer, the Kummer U function reduces to a polynomial.

 kummerU

4-707

syms a b z

[kummerU(-1, b, z)

kummerU(-2, b, z)

kummerU(-3, b, z)]

ans =

 z - b

 b - 2*z*(b + 1) + b^2 + z^2

 6*z*(b^2/2 + (3*b)/2 + 1) - 2*b - 6*z^2*(b/2 + 1) - 3*b^2 - b^3 + z^3

If b = 2*a, the Kummer U function reduces to an expression involving the modified
Bessel function of the second kind.

kummerU(a, 2*a, z)

ans =

(z^(1/2 - a)*exp(z/2)*besselk(a - 1/2, z/2))/pi^(1/2)

If a = 1 or a = b, the Kummer U function reduces to an expression involving the
incomplete gamma function.

kummerU(1, b, z)

ans =

z^(1 - b)*exp(z)*igamma(b - 1, z)

kummerU(a, a, z)

ans =

exp(z)*igamma(1 - a, z)

If a = 0, the Kummer U function is 1.

kummerU(0, a, z)

ans =

1

Handle Expressions Containing the Kummer U Function

Many functions, such as diff, int, and limit, can handle expressions containing
kummerU.

Find the first derivative of the Kummer U function with respect to z.

syms a b z

4 Functions — Alphabetical List

4-708

diff(kummerU(a, b, z), z)

ans =

(a*kummerU(a + 1, b, z)*(a - b + 1))/z - (a*kummerU(a, b, z))/z

Find the indefinite integral of the Kummer U function with respect to z.

int(kummerU(a, b, z), z)

ans =

((b - 2)/(a - 1) - 1)*kummerU(a, b, z) +...

(kummerU(a + 1, b, z)*(a - a*b + a^2))/(a - 1) -...

(z*kummerU(a, b, z))/(a - 1)

Find the limit of this Kummer U function.

limit(kummerU(1/2, -1, z), z, 0)

ans =

4/(3*pi^(1/2))

Input Arguments

a — Parameter of Kummer U function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector

Parameter of Kummer U function, specified as a number, variable, symbolic expression,
symbolic function, or vector.

b — Parameter of Kummer U function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector

Parameter of Kummer U function, specified as a number, variable, symbolic expression,
symbolic function, or vector.

z — Argument of Kummer U function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector

Argument of Kummer U function, specified as a number, variable, symbolic expression,
symbolic function, or vector. If z is a vector, kummerU(a,b,z) is evaluated element-wise.

 kummerU

4-709

More About

Confluent Hypergeometric Function (Kummer U Function)

The confluent hypergeometric function (Kummer U function) is one of the solutions of the
differential equation

z
z

y b z
z

y ay
∂

∂
+ -()

∂

∂
- =

2

2
0

The other solution is the hypergeometric function 1F1(a,b,z).

The Whittaker W function can be expressed in terms of the Kummer U function:

W z e z U b a b za b
z b

, , ,() = - + +Ê
ËÁ

ˆ
¯̃

- +2 1 2 1

2
2 1

Tips

• kummerU returns floating-point results for numeric arguments that are not symbolic
objects.

• kummerU acts element-wise on nonscalar inputs.
• All nonscalar arguments must have the same size. If one or two input arguments are

nonscalar, then kummerU expands the scalars into vectors or matrices of the same size
as the nonscalar arguments, with all elements equal to the corresponding scalar.

References

[1] Slater,L.J. “Confluent Hypergeometric Functions.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz
and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
hypergeom | whittakerM | whittakerW

Introduced in R2014b

4 Functions — Alphabetical List

4-710

laguerreL

Generalized Laguerre Function and Laguerre Polynomials

Syntax

laguerreL(n,x)

laguerreL(n,a,x)

Description

laguerreL(n,x) returns the Laguerre polynomial of degree n if n is a nonnegative
integer. When n is not a nonnegative integer, laguerreL returns the Laguerre function.
For details, see “Generalized Laguerre Function” on page 4-715.

laguerreL(n,a,x) returns the generalized Laguerre polynomial of degree n if n is
a nonnegative integer. When n is not a nonnegative integer, laguerreL returns the
generalized Laguerre function.

Examples

Find Laguerre Polynomials for Numeric and Symbolic Inputs

Find the Laguerre polynomial of degree 3 for input 4.3.

laguerreL(3,4.3)

ans =

 2.5838

Find the Laguerre polynomial for symbolic inputs. Specify degree n as 3 to return the
explicit form of the polynomial.

syms x

 laguerreL

4-711

laguerreL(3,x)

ans =

- x^3/6 + (3*x^2)/2 - 3*x + 1

If the degree of the Laguerre polynomial n is not specified, laguerreL cannot find the
polynomial. When laguerreL cannot find the polynomial, it returns the function call.

syms n x

laguerreL(n,x)

ans =

laguerreL(n, x)

Find Generalized Laguerre Polynomial

Find the explicit form of the generalized Laguerre polynomial L(n,a,x) of degree n =
2.

syms a x

laguerreL(2,a,x)

ans =

(3*a)/2 - x*(a + 2) + a^2/2 + x^2/2 + 1

Return Generalized Laguerre Function

When n is not a nonnegative integer, laguerreL(n,a,x) returns the generalized
Laguerre function.

laguerreL(-2.7,3,2)

ans =

 0.2488

laguerreL is not defined for certain inputs and returns an error.

syms x

laguerreL(-5/2, -3/2, x)

Error using mupadmex

Error in MuPAD command: The function 'laguerreL' is not

4 Functions — Alphabetical List

4-712

defined for parameter values '-5/2' and '-3/2'.

[lasterror]

 Evaluating: trapfcn

Find Laguerre Polynomial with Vector and Matrix Inputs

Find the Laguerre polynomials of degrees 1 and 2 by setting n = [1 2].

syms x

laguerreL([1 2],x)

ans =

[1 - x, x^2/2 - 2*x + 1]

laguerreL acts element-wise on n to return a vector with two elements.

If multiple inputs are specified as a vector, matrix, or multidimensional array, the
inputs must be the same size. Find the generalized Laguerre polynomials where input
arguments n and x are matrices.

syms a

n = [2 3; 1 2];

xM = [x^2 11/7; -3.2 -x];

laguerreL(n,a,xM)

ans =

[a^2/2 - a*x^2 + (3*a)/2 + x^4/2 - 2*x^2 + 1,...

 a^3/6 + (3*a^2)/14 - (253*a)/294 - 676/1029]

[a + 21/5,...

 a^2/2 + a*x + (3*a)/2 + x^2/2 + 2*x + 1]

laguerreL acts element-wise on n and x to return a matrix of the same size as n and x.

Differentiate and Find Limits of Laguerre Polynomials

Use limit to find the limit of a generalized Laguerre polynomial of degree 3 as x tends
to ∞.

syms x

expr = laguerreL(3,2,x);

limit(expr,x,Inf)

 laguerreL

4-713

ans =

-Inf

Use diff to find the third derivative of the generalized Laguerre polynomial
laguerreL(n,a,x).

syms n a

expr = laguerreL(n,a,x);

diff(expr,x,3)

ans =

-laguerreL(n - 3, a + 3, x)

Find Taylor Series Expansion of Laguerre Polynomials

Use taylor to find the Taylor series expansion of the generalized Laguerre polynomial
of degree 2 at x = 0.

syms a x

expr = laguerreL(2,a,x);

taylor(expr,x)

ans =

(3*a)/2 - x*(a + 2) + a^2/2 + x^2/2 + 1

Plot Laguerre Polynomials

Plot the Laguerre polynomials of orders 1 through 4 for -2<x<10. To better view the plot,
use ylim to set the y-axis limits.

syms x

hold on

grid on

for n = 1:4

 ezplot(laguerreL(n,x),[-2 10])

end

ylim([-10, 10])

ylabel('L_n(x)')

title('Laguerre polynomials of orders 1 through 4')

legend('1','2','3','4','Location','best');

4 Functions — Alphabetical List

4-714

Input Arguments

n — Degree of polynomial
number | vector | matrix | multidimensional array | symbolic number | symbolic vector
| symbolic matrix | symbolic function | symbolic multidimensional array

Degree of polynomial, specified as a number, vector, matrix, multidimensional array, or a
symbolic number, vector, matrix, function, or multidimensional array.

x — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic vector
| symbolic matrix | symbolic function | symbolic multidimensional array

 laguerreL

4-715

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, or multidimensional array.

a — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic vector
| symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, or multidimensional array.

More About

Generalized Laguerre Function

The generalized Laguerre function is defined in terms of the hypergeometric function as

laguerreL n a x
n a

a
F n a x, , ; ; .() =

+Ê

Ë
Á

ˆ

¯
˜ - +()1 1 1

For nonnegative integer values of n, the function returns the generalized Laguerre
polynomials that are orthogonal with respect to the scalar product

f f e x f x f x dxx a
1 2 1 2

0

, .= () ()-
•

Ú

In particular,

laguerreL , , , laguerreL , ,

!
.

n a x m a x

n m

a n

n

n m

() () =

π

+ +()
=

0

1

if

if
G

ÏÏ

Ì
Ô

Ó
Ô

Algorithms

• The generalized Laguerre function is not defined for all values of parameters n
and a because certain restrictions on the parameters exist in the definition of the
hypergeometric functions. If the generalized Laguerre function is not defined for a

4 Functions — Alphabetical List

4-716

particular pair of n and a, the laguerreL function returns an error message. See
“Return Generalized Laguerre Function” on page 4-711.

• The calls laguerreL(n,x) and laguerreL(n,0,x) are equivalent.
• If n is a nonnegative integer, the laguerreL function returns the explicit form of the

corresponding Laguerre polynomial.
•

The special values laguerreL , ,n a

n a

a

0() =
+Ê

Ë
Á

ˆ

¯
˜ are implemented for arbitrary values of

n and a.
• If n is a negative integer and a is a numerical noninteger value satisfying a ≥ -n, then

laguerreL returns 0.
• If n is a negative integer and a is an integer satisfying a < -n, the function returns an

explicit expression defined by the reflection rule

laguerreL , , laguerreL , ,n a x e n a a x
a x() = -() - - - -()1 1

• If all arguments are numerical and at least one argument is a floating-point number,
then laguerreL(x) returns a floating-point number. For all other arguments,
laguerreL(n,a,x) returns a symbolic function call.

See Also
chebyshevT | chebyshevU | gegenbauerC | hermiteH | hypergeom | jacobiP |
legendreP

Introduced in R2014b

 lambertw

4-717

lambertw

Lambert W function

Syntax

lambertw(x)

lambertw(k,x)

Description

lambertw(x) is the Lambert W function of x, which returns the principal branch of the
Lambert W function. Therefore, the syntax is equivalent to lambertw(0,x).

lambertw(k,x) is the kth branch of the Lambert W function.

Examples

Equation Returning Lambert W Function as Its Solution

The Lambert W function W(x) is a set of solutions of the equation x = W(x)eW(x).

Solve this equation. The solutions is the Lambert W function.

syms x W

solve(x == W*exp(W), W)

ans =

lambertw(0, x)

Verify that various branches of the Lambert W function are valid solutions of the
equation x = W*eW:

k = -2:2

4 Functions — Alphabetical List

4-718

syms x

isAlways(x - subs(W*exp(W), W, lambertw(k,x)) == 0)

k =

 -2 -1 0 1 2

ans =

 1 1 1 1 1

Lambert W Function for Numeric and Symbolic Arguments

Depending on its arguments, lambertw can return floating-point or exact symbolic
results.

Compute the Lambert W functions for these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

A = [0 -1/exp(1); pi i];

lambertw(A)

lambertw(-1, A)

ans =

 0.0000 + 0.0000i -1.0000 + 0.0000i

 1.0737 + 0.0000i 0.3747 + 0.5764i

ans =

 -Inf + 0.0000i -1.0000 + 0.0000i

 -0.3910 - 4.6281i -1.0896 - 2.7664i

Compute the Lambert W functions for the numbers converted to symbolic objects. For
most symbolic (exact) numbers, lambertw returns unresolved symbolic calls.

A = [0 -1/exp(sym(1)); pi i];

W0 = lambertw(A)

Wmin1 = lambertw(-1, A)

W0 =

[0, -1]

[lambertw(0, pi), lambertw(0, 1i)]

Wmin1 =

[-Inf, -1]

[lambertw(-1, pi), lambertw(-1, 1i)]

 lambertw

4-719

Use vpa to approximate symbolic results with the required number of digits:

vpa(W0, 10)

vpa(Wmin1, 5)

ans =

[0, -1.0]

[1.073658195, 0.3746990207 + 0.576412723i]

ans =

[-Inf, -1.0]

[- 0.39097 - 4.6281i, - 1.0896 - 2.7664i]

Lambert W Function Plot on Complex Plane

Plot the principal branch of the Lambert W function on the complex plane.

Create the combined mesh and contour plot of the real value of the Lambert W function
on the complex plane.

syms x y real

ezmeshc(real(lambertw(x + i*y)), [-100, 100, -100, 100])

4 Functions — Alphabetical List

4-720

Now, plot the imaginary value of the Lambert W function on the complex plane. This
function has a branch cut along the negative real axis. For better perspective, create the
mesh and contour plots separately.

ezmesh(imag(lambertw(x + i*y)), [-100, 100, -100, 100])

 lambertw

4-721

ezcontourf(imag(lambertw(x + i*y)), [-100, 100, -100, 100])

4 Functions — Alphabetical List

4-722

Plot the absolute value of the Lambert W function on the complex plane.

ezmeshc(abs(lambertw(x + i*y)), [-100, 100, -100, 100])

 lambertw

4-723

For further computations, clear the assumptions on x and y:

syms x y clear

Plot Two Main Branches

Plot the two main branches, and , of the Lambert W function.

Plot the principal branch :

syms x

ezplot(lambertw(x))

4 Functions — Alphabetical List

4-724

Add the branch :

hold on

ezplot(lambertw(-1, x))

 lambertw

4-725

Adjust the axes limits and add the title:

axis([-0.5, 4, -4, 2])

title('Lambert W function, two main branches')

4 Functions — Alphabetical List

4-726

Input Arguments

x — Argument of Lambert W function
number | symbolic number | symbolic variable | symbolic expression | symbolic
function | vector | matrix

Argument of Lambert W function, specified as a number, symbolic number, variable,
expression, function, or vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions. If x is a vector or matrix, lambertW returns the Lambert W
function for each element of x.

 lambertw

4-727

k — Branch of Lambert W function
integer | vector | matrix

Branch of Lambert W function, specified as an integer or a vector or matrix of integers. If
k is a vector or matrix, lambertW returns the Lambert W function for each element of k.

More About

Lambert W Function

The Lambert W function W(x) represents the solutions y of the equation ye x
y

= for any
complex number x.

• For complex x, the equation has an infinite number of solutions y = lambertW(k,x)
where k ranges over all integers.

• For real x where x ≥ 0, the equation has exactly one real solution y = lambertW(x) =
lambertW(0,x).

• For real x where - < <
-

e x
1

0 , the equation has exactly two real solutions. The
larger solution is represented by y = lambertW(x) and the smaller solution by y =
lambertW(-1,x).

• For x e= -
-1 , the equation has exactly one real solution y = -1 = lambertW(0, -exp(-1))

= lambertW(-1, -exp(-1)).

Algorithms

• The equation x = w(x)ew(x) has infinitely many solutions on the complex plane.
These solutions are represented by w = lambertw(k,x) with the branch index k
ranging over the integers.

• For all real x ≥ 0, the equation x = w(x)ew(x) has exactly one real solution. It is
represented by w = lambertw(x) or, equivalently, w = lambertw(0,x).

• For all real x in the range -1/e < x < 0, there are exactly two distinct real
solutions. The larger one is represented by w = lambertw(x), and the smaller one is
represented by w = lambertw(-1,x).

• For w = -1/e, there is exactly one real solution lambertw(0, -exp(-1)) =
lambertw(-1, -exp(-1)) = -1.

4 Functions — Alphabetical List

4-728

• lambertw(k,x) returns real values only if k = 0 or k = -1. For k <> {0, -1},
lambertw(k,x) is always complex.

• At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, lambertw expands the scalar into a vector or matrix of the same
size as the other argument with all elements equal to that scalar.

References

[1] Corless, R.M, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth “On the
Lambert W Function” Advances in Computational Mathematics, vol.5, pp. 329–
359, 1996.

[2] Corless, R.M, G.H. Gonnet, D.E.G. Hare, and D.J. Jeffrey “Lambert’s W Function in
Maple” The Maple Technical Newsletter (MapleTech), vol.9, pp. 12–22, 1993.

See Also

Functions
wrightOmega

Introduced before R2006a

 laplace

4-729

laplace

Laplace transform

Syntax

laplace(f,trans_var,eval_point)

Description

laplace(f,trans_var,eval_point) computes the Laplace transform of f with
respect to the transformation variable trans_var at the point eval_point.

Input Arguments

f

Symbolic expression, symbolic function, or vector or matrix of symbolic expressions or
functions.

trans_var

Symbolic variable representing the transformation variable. This variable is often called
the “time variable”.

Default: The variable t. If f does not contain t, then the default variable is determined
by symvar.

eval_point

Symbolic variable or expression representing the evaluation point. This variable is often
called the “complex frequency variable”.

Default: The variable s. If s is the transformation variable of f, then the default
evaluation point is the variable z.

4 Functions — Alphabetical List

4-730

Examples

Compute the Laplace transform of this expression with respect to the variable x at the
evaluation point y:

syms x y

f = 1/sqrt(x);

laplace(f, x, y)

ans =

pi^(1/2)/y^(1/2)

Compute the Laplace transform of this expression calling the laplace function with one
argument. If you do not specify the transformation variable, laplace uses the variable
t.

syms a t y

f = exp(-a*t);

laplace(f, y)

ans =

1/(a + y)

If you also do not specify the evaluation point, laplace uses the variable s:

laplace(f)

ans =

1/(a + s)

Compute the following Laplace transforms that involve the Dirac and Heaviside
functions:

syms t s

laplace(dirac(t - 3), t, s)

ans =

exp(-3*s)

laplace(heaviside(t - pi), t, s)

ans =

exp(-pi*s)/s

If laplace cannot find an explicit representation of the transform, it returns an
unevaluated call:

 laplace

4-731

syms f(t) s

F = laplace(f, t, s)

F =

laplace(f(t), t, s)

ilaplace returns the original expression:

ilaplace(F, s, t)

ans =

f(t)

The Laplace transform of a function is related to the Laplace transform of its derivative:

syms f(t) s

laplace(diff(f(t), t), t, s)

ans =

s*laplace(f(t), t, s) - f(0)

Find the Laplace transform of this matrix. Use matrices of the same size to specify the
transformation variable and evaluation point.

syms a b c d w x y z

laplace([exp(x), 1; sin(y), i*z],[w, x; y, z],[a, b; c, d])

ans =

[exp(x)/a, 1/b]

[1/(c^2 + 1), 1i/d^2]

When the input arguments are nonscalars, laplace acts on them element-wise. If
laplace is called with both scalar and nonscalar arguments, then laplace expands
the scalar arguments into arrays of the same size as the nonscalar arguments with all
elements of the array equal to the scalar.

syms w x y z a b c d

laplace(x,[x, w; y, z],[a, b; c, d])

ans =

[1/a^2, x/b]

[x/c, x/d]

Note that nonscalar input arguments must have the same size.

When the first argument is a symbolic function, the second argument must be a scalar.

4 Functions — Alphabetical List

4-732

syms f1(x) f2(x) a b

f1(x) = exp(x);

f2(x) = x;

laplace([f1, f2],x,[a, b])

ans =

[1/(a - 1), 1/b^2]

More About

Laplace Transform

The Laplace transform is defined as follows:

F s f t e dtst() = ()
•

-Ú
0

.

Tips

• If you call laplace with two arguments, it assumes that the second argument is the
evaluation point eval_point.

• If f is a matrix, laplace acts element-wise on all components of the matrix.
• If eval_point is a matrix, laplace acts element-wise on all components of the

matrix.
• To compute the inverse Laplace transform, use ilaplace.

• “Compute Laplace and Inverse Laplace Transforms” on page 2-199

See Also
fourier | ifourier | ilaplace | iztrans | ztrans

Introduced before R2006a

 laplacian

4-733

laplacian
Laplacian of scalar function

Syntax

laplacian(f,x)

laplacian(f)

Description

laplacian(f,x) computes the Laplacian of the scalar function or functional expression
f with respect to the vector x in Cartesian coordinates.

laplacian(f) computes the gradient vector of the scalar function or functional
expression f with respect to a vector constructed from all symbolic variables found in f.
The order of variables in this vector is defined by symvar.

Input Arguments

f

Symbolic expression or symbolic function.

x

Vector with respect to which you compute the Laplacian.

Default: Vector constructed from all symbolic variables found in f. The order of
variables in this vector is defined by symvar.

Examples

Compute the Laplacian of this symbolic expression. By default, laplacian computes
the Laplacian of an expression with respect to a vector of all variables found in that
expression. The order of variables is defined by symvar.

4 Functions — Alphabetical List

4-734

syms x y t

laplacian(1/x^3 + y^2 - log(t))

ans =

1/t^2 + 12/x^5 + 2

Create this symbolic function:

syms x y z

f(x, y, z) = 1/x + y^2 + z^3;

Compute the Laplacian of this function with respect to the vector [x, y, z]:

L = laplacian(f, [x y z])

L(x, y, z) =

6*z + 2/x^3 + 2

Alternatives

The Laplacian of a scalar function or functional expression is the divergence of the
gradient of that function or expression:

D = — ◊ —()f f

Therefore, you can compute the Laplacian using the divergence and gradient
functions:

syms f(x, y)

divergence(gradient(f(x, y)), [x y])

More About

Laplacian of Scalar Function

The Laplacian of the scalar function or functional expression f with respect to the vector
X = (X1,...,Xn) is the sum of the second derivatives of f with respect to X1,...,Xn:

D =
∂

∂=

Âf
f

x

i

ii

n 2

2
1

 laplacian

4-735

Tips

• If x is a scalar, gradient(f, x) = diff(f, 2, x).

See Also
curl | diff | divergence | gradient | hessian | jacobian | potential |
vectorPotential

Introduced in R2012a

4 Functions — Alphabetical List

4-736

latex
LaTeX representation of symbolic expression

Syntax

latex(S)

Description

latex(S) returns the LaTeX representation of the symbolic expression S.

Examples

The statements

syms x

f = taylor(log(1+x));

latex(f)

return
ans =

\frac{x^5}{5} - \frac{x^4}{4} + \frac{x^3}{3} - \frac{x^2}{2} + x

The statements

H = sym(hilb(3));

latex(H)

return

ans =

\left(\begin{array}{ccc} 1 & \frac{1}{2} & \frac{1}{3}\\...

\frac{1}{2} & \frac{1}{3} & \frac{1}{4}\\...

\frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{array}\right)

The statements

syms t

 latex

4-737

alpha = sym('alpha');

A = [alpha t alpha*t];

latex(A)

return
ans =

\left(\begin{array}{ccc} \mathrm{alpha} & t & \mathrm{alpha}\, t...

\end{array}\right)

You can use the latex command to annotate graphs:

syms x

f = taylor(log(1+x));

ezplot(f)

hold on

title(['$' latex(f) '$'],'interpreter','latex')

hold off

See Also
ccode | fortran | pretty | texlabel

Introduced before R2006a

4 Functions — Alphabetical List

4-738

lcm
Least common multiple

Syntax

lcm(A)

lcm(A,B)

Description

lcm(A) finds the least common multiple of all elements of A.

lcm(A,B) finds the least common multiple of A and B.

Examples

Least Common Multiple of Four Integers

To find the least common multiple of three or more values, specify those values as a
symbolic vector or matrix.

Find the least common multiple of these four integers, specified as elements of a symbolic
vector.

A = sym([4420, -128, 8984, -488])

lcm(A)

A =

[4420, -128, 8984, -488]

ans =

9689064320

Alternatively, specify these values as elements of a symbolic matrix.

A = sym([4420, -128; 8984, -488])

 lcm

4-739

lcm(A)

A =

[4420, -128]

[8984, -488]

ans =

9689064320

Least Common Multiple of Rational Numbers

lcm lets you find the least common multiple of symbolic rational numbers.

Find the least common multiple of these rational numbers, specified as elements of a
symbolic vector.

lcm(sym([3/4, 7/3, 11/2, 12/3, 33/4]))

ans =

924

Least Common Multiple of Complex Numbers

lcm lets you find the least common multiple of symbolic complex numbers.

Find the least common multiple of these complex numbers, specified as elements of a
symbolic vector.

lcm(sym([10 - 5*i, 20 - 10*i, 30 - 15*i]))

ans =

- 60 + 30i

Least Common Multiple of Elements of Matrices

For vectors and matrices, lcm finds the least common multiples element-wise. Nonscalar
arguments must be the same size.

Find the least common multiples for the elements of these two matrices.

A = sym([309, 186; 486, 224]);

B = sym([558, 444; 1024, 1984]);

lcm(A,B)

4 Functions — Alphabetical List

4-740

ans =

[57474, 13764]

[248832, 13888]

Find the least common multiples for the elements of matrix A and the value 99. Here,
lcm expands 99 into the 2-by-2 matrix with all elements equal to 99.

lcm(A,99)

ans =

[10197, 6138]

[5346, 22176]

Least Common Multiple of Polynomials

Find the least common multiple of univariate and multivariate polynomials.

Find the least common multiple of these univariate polynomials.

syms x

lcm(x^3 - 3*x^2 + 3*x - 1, x^2 - 5*x + 4)

ans =

(x - 4)*(x^3 - 3*x^2 + 3*x - 1)

Find the least common multiple of these multivariate polynomials. Because there are
more than two polynomials, specify them as elements of a symbolic vector.

syms x y

lcm([x^2*y + x^3, (x + y)^2, x^2 + x*y^2 + x*y + x + y^3 + y])

ans =

(x^3 + y*x^2)*(x^2 + x*y^2 + x*y + x + y^3 + y)

Input Arguments

A — Input value
number | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector | symbolic matrix

Input value, specified as a number, symbolic number, variable, expression, function, or a
vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

 lcm

4-741

B — Input value
number | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector | symbolic matrix

Input value, specified as a number, symbolic number, variable, expression, function, or a
vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

More About

Tips

• Calling lcm for numbers that are not symbolic objects invokes the MATLAB lcm
function.

• The MATLAB lcm function does not accept rational or complex arguments. To find
the least common multiple of rational or complex numbers, convert these numbers to
symbolic objects by using sym, and then use lcm.

• Nonscalar arguments must have the same size. If one input arguments is nonscalar,
then lcm expands the scalar into a vector or matrix of the same size as the nonscalar
argument, with all elements equal to the corresponding scalar.

See Also
gcd

Introduced in R2014b

4 Functions — Alphabetical List

4-742

ldivide, .\

Symbolic array left division

Syntax

B.\A

ldivide(B,A)

Description

B.\A divides A by B.

ldivide(B,A) is equivalent to B.\A.

Examples

Divide Scalar by Matrix

Create a 2-by-3 matrix.

B = sym('b', [2 3])

B =

[b1_1, b1_2, b1_3]

[b2_1, b2_2, b2_3]

Divide the symbolic expression sin(a) by each element of the matrix B.

syms a

B.\sin(a)

ans =

[sin(a)/b1_1, sin(a)/b1_2, sin(a)/b1_3]

[sin(a)/b2_1, sin(a)/b2_2, sin(a)/b2_3]

 ldivide, .\

4-743

Divide Matrix by Matrix

Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

H = sym(hilb(3))

d = diag(sym([1 2 3]))

H =

[1, 1/2, 1/3]

[1/2, 1/3, 1/4]

[1/3, 1/4, 1/5]

d =

[1, 0, 0]

[0, 2, 0]

[0, 0, 3]

Divide d by H by using the elementwise left division operator .\. This operator divides
each element of the first matrix by the corresponding element of the second matrix. The
dimensions of the matrices must be the same.

H.\d

ans =

[1, 0, 0]

[0, 6, 0]

[0, 0, 15]

Divide Expression by Symbolic Function

Divide a symbolic expression by a symbolic function. The result is a symbolic function.

syms f(x)

f(x) = x^2;

f1 = f.\(x^2 + 5*x + 6)

f1(x) =

(x^2 + 5*x + 6)/x^2

Input Arguments
A — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array
| symbolic function | symbolic expression

4 Functions — Alphabetical List

4-744

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function,
or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value
expands into an array of the same size as the other input.

B — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array
| symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function,
or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value
expands into an array of the same size as the other input.

See Also
ctranspose | minus | mldivide | mpower | mrdivide | mtimes | plus | power |
rdivide | times | transpose

Introduced before R2006a

 le

4-745

le

Define less than or equal to relation

Compatibility

In previous releases, le in some cases evaluated inequalities involving only symbolic
numbers and returned logical 1 or 0. To obtain the same results as in previous releases,
wrap inequalities in isAlways. For example, use isAlways(A <= B).

Syntax

A <= B

le(A,B)

Description

A <= B creates a less than or equal to relation.

le(A,B) is equivalent to A <= B.

Input Arguments

A

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

B

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

4 Functions — Alphabetical List

4-746

Examples

Use assume and the relational operator <= to set the assumption that x is less than or
equal to 3:

syms x

assume(x <= 3)

Solve this equation. The solver takes into account the assumption on variable x, and
therefore returns these three solutions.

solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)

ans =

 1

 2

 3

Use the relational operator <= to set this condition on variable x:

syms x

cond = (abs(sin(x)) <= 1/2);

for i = 0:sym(pi/12):sym(pi)

 if subs(cond, x, i)

 disp(i)

 end

end

Use the for loop with step π/24 to find angles from 0 to π that satisfy that condition:

0

pi/12

pi/6

(5*pi)/6

(11*pi)/12

pi

Alternatives

You can also define this relation by combining an equation and a less than relation.
Thus, A <= B is equivalent to (A < B) | (A == B).

 le

4-747

More About

Tips

• Calling <= or le for non-symbolic A and B invokes the MATLAB le function. This
function returns a logical array with elements set to logical 1 (true) where A is less
than or equal to B; otherwise, it returns logical 0 (false).

• If both A and B are arrays, then these arrays must have the same dimensions. A <= B
returns an array of relations A(i,j,...) <= B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is expanded into
an array of the same dimensions as the other array. In other words, if A is a variable
(for example, x), and B is an m-by-n matrix, then A is expanded into m-by-n matrix of
elements, each set to x.

• The field of complex numbers is not an ordered field. MATLAB projects complex
numbers in relations to a real axis. For example, x <= i becomes x <= 0, and x <=
3 + 2*i becomes x <= 3.

See Also
eq | ge | gt | isAlways | lt | ne

Introduced in R2012a

4 Functions — Alphabetical List

4-748

legendreP

Legendre polynomials

Syntax

legendreP(n,x)

Description

legendreP(n,x) returns the nth degree Legendre polynomial at x.

Examples

Find Legendre Polynomials for Numeric and Symbolic Inputs

Find the Legendre polynomial of degree 3 at 5.6.

legendreP(3,5.6)

ans =

 430.6400

Find the Legendre polynomial of degree 2 at x.

syms x

legendreP(2,x)

ans =

(3*x^2)/2 - 1/2

If you do not specify a numerical value for the degree n, the legendreP function cannot
find the explicit form of the polynomial and returns the function call.

syms n

 legendreP

4-749

legendreP(n,x)

ans =

legendreP(n, x)

Find Legendre Polynomial with Vector and Matrix Inputs

Find the Legendre polynomials of degrees 1 and 2 by setting n = [1 2].

syms x

legendreP([1 2],x)

ans =

[x, (3*x^2)/2 - 1/2]

legendreP acts element-wise on n to return a vector with two elements.

If multiple inputs are specified as a vector, matrix, or multidimensional array, the inputs
must be the same size. Find the Legendre polynomials where input arguments n and x
are matrices.

n = [2 3; 1 2];

xM = [x^2 11/7; -3.2 -x];

legendreP(n,xM)

ans =

[(3*x^4)/2 - 1/2, 2519/343]

[-16/5, (3*x^2)/2 - 1/2]

legendreP acts element-wise on n and x to return a matrix of the same size as n and x.

Differentiate and Find Limits of Legendre Polynomials

Use limit to find the limit of a Legendre polynomial of degree 3 as x tends to -∞.

syms x

expr = legendreP(4,x);

limit(expr,x,-Inf)

ans =

Inf

Use diff to find the third derivative of the Legendre polynomial of degree 5.

4 Functions — Alphabetical List

4-750

syms n

expr = legendreP(5,x);

diff(expr,x,3)

ans =

(945*x^2)/2 - 105/2

Find Taylor Series Expansion of Legendre Polynomial

Use taylor to find the Taylor series expansion of the Legendre polynomial of degree 2 at
x = 0.

syms x

expr = legendreP(2,x);

taylor(expr,x)

ans =

(3*x^2)/2 - 1/2

Plot Legendre Polynomials

Plot Legendre polynomials of orders 1 through 4. To better view the plot, better set the
axes limits using axis.

syms x y

hold on

for n=1:4

 ezplot(legendreP(n,x))

end

axis([-1.5,1.5,-1,1])

grid on

ylabel('P_n(x)')

title('Legendre polynomials of degrees 1 through 4')

legend('1','2','3','4','Location','best');

 legendreP

4-751

Find Roots of Legendre Polynomial

Use vpasolve to find the roots of the Legendre polynomial of degree 7.

syms x

roots = vpasolve(legendreP(7,x) == 0)

roots =

 -0.94910791234275852452618968404785

 -0.74153118559939443986386477328079

 -0.40584515137739716690660641207696

 0

 0.40584515137739716690660641207696

4 Functions — Alphabetical List

4-752

 0.74153118559939443986386477328079

 0.94910791234275852452618968404785

Input Arguments

n — Degree of polynomial
nonnegative number | vector | matrix | multidimensional array | symbolic number |
symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array

Degree of polynomial, specified as a nonnegative number, vector, matrix,
multidimensional array, or a symbolic number, vector, matrix, function, or
multidimensional array. All elements of nonscalar inputs should be nonnegative integers
or symbols.

x — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic vector
| symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, or multidimensional array.

More About

Legendre Polynomial

The Legendre polynomials are defined as

P n x

n

d

dx

x
n

n

n

n

,
!

.() = -()1

2
12

They satisfy the recursion formula

P n x
n

n
xP n x

n

n
P n x

P x

P x x

, , , ,

,

, .

() =
-

-() -
-

-()

() =

() =

2 1
1

1
2

0 1

1

where

 legendreP

4-753

The Legendre polynomials are orthogonal on the interval [-1,1] with respect to the weight
function w(x) = 1.

The relation with Gegenbauer polynomials G(n,a,x) is

P n x G n x, , , .() = Ê
ËÁ

ˆ
¯̃

1

2

The relation with Jacobi polynomials P(n,a,b,x) is

P n x P n x, , , , .() = ()0 0

See Also
chebyshevT | chebyshevU | gegenbauerC | hermiteH | hypergeom | jacobiP |
laguerreL

Introduced in R2014b

4 Functions — Alphabetical List

4-754

limit
Compute limit of symbolic expression

Syntax

limit(expr,x,a)

limit(expr,a)

limit(expr)

limit(expr,x,a,'left')

limit(expr,x,a,'right')

Description

limit(expr,x,a) computes bidirectional limit of the symbolic expression expr when x
approaches a.

limit(expr,a) computes bidirectional limit of the symbolic expression expr when the
default variable approaches a.

limit(expr) computes bidirectional limit of the symbolic expression expr when the
default variable approaches 0.

limit(expr,x,a,'left') computes the limit of the symbolic expression expr when x
approaches a from the left.

limit(expr,x,a,'right') computes the limit of the symbolic expression expr when
x approaches a from the right.

Examples

Compute bidirectional limits for the following expressions:

syms x h

limit(sin(x)/x)

limit((sin(x + h) - sin(x))/h, h, 0)

 limit

4-755

ans =

1

ans =

cos(x)

Compute the limits from the left and right for the following expressions:

syms x

limit(1/x, x, 0, 'right')

limit(1/x, x, 0, 'left')

ans =

Inf

ans =

-Inf

Compute the limit for the functions presented as elements of a vector:

syms x a

v = [(1 + a/x)^x, exp(-x)];

limit(v, x, inf)

ans =

[exp(a), 0]

See Also
diff | taylor

Introduced before R2006a

4 Functions — Alphabetical List

4-756

linsolve
Solve linear system of equations given in matrix form

Syntax

X = linsolve(A,B)

[X,R] = linsolve(A,B)

Description

X = linsolve(A,B) solves the matrix equation AX = B. In particular, if B is a column
vector, linsolve solves a linear system of equations given in the matrix form.

[X,R] = linsolve(A,B) solves the matrix equation AX = B and returns the reciprocal
of the condition number of A if A is a square matrix, and the rank of A otherwise.

Input Arguments

A

Coefficient matrix.

B

Matrix or column vector containing the right sides of equations.

Output Arguments

X

Matrix or vector representing the solution.

R

Reciprocal of the condition number of A if A is a square matrix. Otherwise, the rank of A.

 linsolve

4-757

Examples

Define the matrix equation using the following matrices A and B:

syms x y z

A = [x 2*x y; x*z 2*x*z y*z+z; 1 0 1];

B = [z y; z^2 y*z; 0 0];

Use linsolve to solve this equation. Assigning the result of the linsolve call to a
single output argument, you get the matrix of solutions:

X = linsolve(A, B)

X =

[0, 0]

[z/(2*x), y/(2*x)]

[0, 0]

To return the solution and the reciprocal of the condition number of the square coefficient
matrix, assign the result of the linsolve call to a vector of two output arguments:

syms a x y z

A = [a 0 0; 0 a 0; 0 0 1];

B = [x; y; z];

[X, R] = linsolve(A, B)

X =

 x/a

 y/a

 z

R =

1/(max(abs(a), 1)*max(1/abs(a), 1))

If the coefficient matrix is rectangular, linsolve returns the rank of the coefficient
matrix as the second output argument:

syms a b x y

A = [a 0 1; 1 b 0];

B = [x; y];

[X, R] = linsolve(A, B)

Warning: The system is rank-deficient. Solution is not

unique.

 In sym.linsolve at 67

4 Functions — Alphabetical List

4-758

X =

 x/a

 -(x - a*y)/(a*b)

 0

R =

2

More About

Matrix Representation of System of Linear Equations

A system of linear equations

a x a x a x b

a x a x a x b

a x a x

n n

n n

m m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =

+ + + =

+ +

…

…

L

…++ =a x bmn n m

can be represented as the matrix equation A x b◊ =

r r

, where A is the coefficient matrix:

A

a a

a a

n

m mn

=
Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

11 1

1

…

M O M

L

and b
r

 is the vector containing the right sides of equations:

b

b

bm

r
M=

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

1

Tips

• If the solution is not unique, linsolve issues a warning, chooses one solution and
returns it.

• If the system does not have a solution, linsolve issues a warning and returns X with
all elements set to Inf.

 linsolve

4-759

• Calling linsolve for numeric matrices that are not symbolic objects invokes the
MATLAB linsolve function. This function accepts real arguments only. If your
system of equations uses complex numbers, use sym to convert at least one matrix to a
symbolic matrix, and then call linsolve.

See Also
cond | dsolve | equationsToMatrix | inv | norm | odeToVectorField | rank |
solve | symvar | vpasolve

Introduced in R2012b

4 Functions — Alphabetical List

4-760

log
Natural logarithm of entries of symbolic matrix

Syntax

Y = log(X)

Description

Y = log(X) returns the natural logarithm of X.

Input Arguments

X

Symbolic variable, expression, function, or matrix

Output Arguments

Y

Number, variable, expression, function, or matrix. If X is a matrix, Y is a matrix of the
same size, each entry of which is the logarithm of the corresponding entry of X.

Examples

Compute the natural logarithm of each entry of this symbolic matrix:

syms x

M = x*hilb(2);

log(M)

ans =

 log

4-761

[log(x), log(x/2)]

[log(x/2), log(x/3)]

Differentiate this symbolic expression:

syms x

diff(log(x^3), x)

ans =

3/x

See Also
log10 | log2

Introduced before R2006a

4 Functions — Alphabetical List

4-762

log10
Logarithm base 10 of entries of symbolic matrix

Syntax

Y = log10(X)

Description

Y = log10(X) returns the logarithm to the base 10 of X. If X is a matrix, Y is a matrix of
the same size, each entry of which is the logarithm of the corresponding entry of X.

See Also
log | log2

Introduced before R2006a

 log2

4-763

log2
Logarithm base 2 of entries of symbolic matrix

Syntax

Y = log2(X)

Description

Y = log2(X) returns the logarithm to the base 2 of X. If X is a matrix, Y is a matrix of
the same size, each entry of which is the logarithm of the corresponding entry of X.

See Also
log | log10

4 Functions — Alphabetical List

4-764

logical
Check validity of equation or inequality

Syntax

logical(cond)

Description

logical(cond) checks whether the condition cond is valid.

Input Arguments

cond

Equation, inequality, or vector or matrix of equations or inequalities. You also can
combine several conditions by using the logical operators and, or, xor, not, or their
shortcuts.

Examples

Use logical to check if 3/5 is less than 2/3:

logical(sym(3)/5 < sym(2)/3)

ans =

 1

Check if the following two conditions are both valid. To check if several conditions are
valid at the same time, combine these conditions by using the logical operator and or its
shortcut &.

syms x

logical(1 < 2 & x == x)

 logical

4-765

ans =

 1

Check this inequality. Note that logical evaluates the left side of the inequality.

logical(sym(11)/4 - sym(1)/2 > 2)

ans =

 1

logical also evaluates more complicated symbolic expressions on both sides of
equations and inequalities. For example, it evaluates the integral on the left side of this
equation:

syms x

logical(int(x, x, 0, 2) - 1 == 1)

ans =

 1

Check the validity of this equation using logical. Without an additional assumption
that x is nonnegative, this equation is invalid.

syms x

logical(x == sqrt(x^2))

ans =

 0

Use assume to set an assumption that x is nonnegative. Now the expression sqrt(x^2)
evaluates to x, and logical returns 1:

assume(x >= 0)

logical(x == sqrt(x^2))

ans =

 1

Note that logical typically ignores assumptions on variables:

syms x

assume(x == 5)

logical(x == 5)

ans =

4 Functions — Alphabetical List

4-766

 0

To compare expressions taking into account assumptions on their variables, use
isAlways:

isAlways(x == 5)

ans =

 1

For further computations, clear the assumption on x:

syms x clear

Do not use logical to check equations and inequalities that require simplification or
mathematical transformations. For such equations and inequalities, logical might
return unexpected results. For example, logical does not recognize mathematical
equivalence of these expressions:

syms x

logical(sin(x)/cos(x) == tan(x))

ans =

 0

logical also does not realize that this inequality is invalid:

logical(sin(x)/cos(x) ~= tan(x))

ans =

 1

To test the validity of equations and inequalities that require simplification or
mathematical transformations, use isAlways:

isAlways(sin(x)/cos(x) == tan(x))

ans =

 1

isAlways(sin(x)/cos(x) ~= tan(x))

Warning: Cannot prove 'sin(x)/cos(x) ~= tan(x)'.

ans =

 0

 logical

4-767

More About

Tips

• For symbolic equations, logical returns logical 1 (true) only if the left and right
sides are identical. Otherwise, it returns logical 0 (false).

• For symbolic inequalities constructed with ~=, logical returns logical 0 (false)
only if the left and right sides are identical. Otherwise, it returns logical 1 (true).

• For all other inequalities (constructed with <, <=, >, or >=), logical returns logical
1 if it can prove that the inequality is valid and logical 0 if it can prove that the
inequality is invalid. If logical cannot determine whether such inequality is valid or
not, it throws an error.

• logical evaluates expressions on both sides of an equation or inequality, but does
not simplify or mathematically transform them. To compare two expressions applying
mathematical transformations and simplifications, use isAlways.

• logical typically ignores assumptions on variables.

• “Use Assumptions on Symbolic Variables” on page 1-27
• “Clear Assumptions and Reset the Symbolic Engine” on page 3-43

See Also
assume | assumeAlso | assumptions | in | isAlways | isequaln | isfinite |
isinf | isnan | sym | syms

Introduced in R2012a

4 Functions — Alphabetical List

4-768

logint
Logarithmic integral function

Syntax

logint(X)

Description

logint(X) represents the logarithmic integral function (integral logarithm).

Examples

Integral Logarithm for Numeric and Symbolic Arguments

Depending on its arguments, logint returns floating-point or exact symbolic results.

Compute integral logarithms for these numbers. Because these numbers are not symbolic
objects, logint returns floating-point results.

A = logint([-1, 0, 1/4, 1/2, 1, 2, 10])

A =

 0.0737 + 3.4227i 0.0000 + 0.0000i -0.1187 + 0.0000i -0.3787 + 0.0000i...

 -Inf + 0.0000i 1.0452 + 0.0000i 6.1656 + 0.0000i

Compute integral logarithms for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, logint returns unresolved symbolic calls.

symA = logint(sym([-1, 0, 1/4, 1/2, 1, 2, 10]))

symA =

[logint(-1), 0, logint(1/4), logint(1/2), -Inf, logint(2), logint(10)]

Use vpa to approximate symbolic results with floating-point numbers:

 logint

4-769

vpa(symA)

ans =

[0.07366791204642548599010096523015...

 + 3.4227333787773627895923750617977i,...

0,...

-0.11866205644712310530509570647204,...

-0.37867104306108797672720718463656,...

-Inf,...

1.0451637801174927848445888891946,...

6.1655995047872979375229817526695]

Plot Integral Logarithm

Plot the integral logarithm function on the interval from 0 to 10.

syms x

ezplot(logint(x), [0, 10])

grid on

4 Functions — Alphabetical List

4-770

Handle Expressions Containing Integral Logarithm

Many functions, such as diff and limit, can handle expressions containing logint.

Find the first and second derivatives of the integral logarithm:

syms x

diff(logint(x), x)

diff(logint(x), x, x)

ans =

1/log(x)

 logint

4-771

ans =

-1/(x*log(x)^2)

Find the right and left limits of this expression involving logint:

limit(exp(1/x)/logint(x + 1), x, 0, 'right')

ans =

Inf

limit(exp(1/x)/logint(x + 1), x, 0, 'left')

ans =

0

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Logarithmic Integral Function

The logarithmic integral function, also called the integral logarithm, is defined as follows:

logint Lix x
t

dt

x

() = () =
()Ú
1

0
ln

Tips

• logint(sym(0)) returns 1.
• logint(sym(1)) returns -Inf.
• logint(z) = ei(log(z)) for all complex z.

4 Functions — Alphabetical List

4-772

References

[1] Gautschi, W., and W. F. Cahill. “Exponential Integral and Related Functions.”
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
coshint | cosint | ei | expint | int | log | sinhint | sinint | ssinint

Introduced in R2014a

 logm

4-773

logm

Matrix logarithm

Syntax

R = logm(A)

Description

R = logm(A) computes the matrix logarithm of the square matrix A.

Examples

Matrix Logarithm

Compute the matrix logarithm for the 2-by-2 matrix.

syms x

A = [x 1; 0 -x];

logm(A)

ans =

[log(x), log(x)/(2*x) - log(-x)/(2*x)]

[0, log(-x)]

Input Arguments

A — Input matrix
square matrix

Input matrix, specified as a square symbolic matrix.

4 Functions — Alphabetical List

4-774

Output Arguments

R — Resulting matrix
symbolic matrix

Resulting function, returned as a symbolic matrix.

See Also
eig | expm | funm | jordan | sqrtm

Introduced in R2014b

 lt

4-775

lt
Define less than relation

Compatibility
In previous releases, lt in some cases evaluated inequalities involving only symbolic
numbers and returned logical 1 or 0. To obtain the same results as in previous releases,
wrap inequalities in isAlways. For example, use isAlways(A < B).

Syntax
A < B

lt(A,B)

Description
A < B creates a less than relation.

lt(A,B) is equivalent to A < B.

Input Arguments
A

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

B

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

Examples
Use assume and the relational operator < to set the assumption that x is less than 3:

4 Functions — Alphabetical List

4-776

syms x

assume(x < 3)

Solve this equation. The solver takes into account the assumption on variable x, and
therefore returns these two solutions.

solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)

ans =

 1

 2

Use the relational operator < to set this condition on variable x:

syms x

cond = abs(sin(x)) + abs(cos(x)) < 6/5;

Use the for loop with step π/24 to find angles from 0 to π that satisfy that condition:

for i = 0:sym(pi/24):sym(pi)

 if subs(cond, x, i)

 disp(i)

 end

end

0

pi/24

(11*pi)/24

pi/2

(13*pi)/24

(23*pi)/24

pi

More About

Tips

• Calling < or lt for non-symbolic A and B invokes the MATLAB lt function. This
function returns a logical array with elements set to logical 1 (true) where A is less
than B; otherwise, it returns logical 0 (false).

• If both A and B are arrays, then these arrays must have the same dimensions. A < B
returns an array of relations A(i,j,...) < B(i,j,...)

 lt

4-777

• If one input is scalar and the other an array, then the scalar input is expanded into
an array of the same dimensions as the other array. In other words, if A is a variable
(for example, x), and B is an m-by-n matrix, then A is expanded into m-by-n matrix of
elements, each set to x.

• The field of complex numbers is not an ordered field. MATLAB projects complex
numbers in relations to a real axis. For example, x < i becomes x < 0, and x < 3
+ 2*i becomes x < 3.

See Also
eq | ge | gt | isAlways | le | ne

Introduced in R2012a

4 Functions — Alphabetical List

4-778

lu
LU factorization

Syntax
[L,U] = lu(A)

[L,U,P] = lu(A)

[L,U,p] = lu(A,'vector')

[L,U,p,q] = lu(A,'vector')

[L,U,P,Q,R] = lu(A)

[L,U,p,q,R] = lu(A,'vector')

lu(A)

Description
[L,U] = lu(A) returns an upper triangular matrix U and a matrix L, such that A =
L*U. Here, L is a product of the inverse of the permutation matrix and a lower triangular
matrix.

[L,U,P] = lu(A) returns an upper triangular matrix U, a lower triangular matrix L,
and a permutation matrix P, such that P*A = L*U.

[L,U,p] = lu(A,'vector') returns the permutation information as a vector p, such
that A(p,:) = L*U.

[L,U,p,q] = lu(A,'vector') returns the permutation information as two row
vectors p and q, such that A(p,q) = L*U.

[L,U,P,Q,R] = lu(A) returns an upper triangular matrix U, a lower triangular matrix
L, permutation matrices P and Q, and a scaling matrix R, such that P*(R\A)*Q = L*U.

[L,U,p,q,R] = lu(A,'vector') returns the permutation information in two row
vectors p and q, such that R(:,p)\A(:,q) = L*U.

lu(A) returns the matrix that contains the strictly lower triangular matrix L (the matrix
without its unit diagonal) and the upper triangular matrix U as submatrices. Thus,
lu(A) returns the matrix U + L - eye(size(A)), where L and U are defined as
[L,U,P] = lu(A). The matrix A must be square.

 lu

4-779

Input Arguments

A

Square or rectangular symbolic matrix.

'vector'

Flag that prompts lu to return the permutation information in row vectors.

Output Arguments

L

Lower triangular matrix or a product of the inverse of the permutation matrix and a
lower triangular matrix.

U

Upper triangular matrix.

P

Permutation matrix.

p

Row vector.

q

Row vector.

Q

Permutation matrix.

R

Diagonal scaling matrix.

4 Functions — Alphabetical List

4-780

Examples

Compute the LU factorization of this matrix. Because these numbers are not symbolic
objects, you get floating-point results.

[L, U] = lu([2 -3 -1; 1/2 1 -1; 0 1 -1])

L =

 1.0000 0 0

 0.2500 1.0000 0

 0 0.5714 1.0000

U =

 2.0000 -3.0000 -1.0000

 0 1.7500 -0.7500

 0 0 -0.5714

Now convert this matrix to a symbolic object, and compute the LU factorization:

[L, U] = lu(sym([2 -3 -1; 1/2 1 -1; 0 1 -1]))

L =

[1, 0, 0]

[1/4, 1, 0]

[0, 4/7, 1]

U =

[2, -3, -1]

[0, 7/4, -3/4]

[0, 0, -4/7]

Compute the LU factorization returning the lower and upper triangular matrices and the
permutation matrix:

syms a

[L, U, P] = lu(sym([0 0 a; a 2 3; 0 a 2]))

L =

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

U =

[a, 2, 3]

[0, a, 2]

[0, 0, a]

 lu

4-781

P =

 0 1 0

 0 0 1

 1 0 0

Use the 'vector' flag to return the permutation information as a vector:

syms a

A = [0 0 a; a 2 3; 0 a 2];

[L, U, p] = lu(A, 'vector')

L =

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

U =

[a, 2, 3]

[0, a, 2]

[0, 0, a]

p =

 2 3 1

Use isAlways to check that A(p,:) = L*U:

isAlways(A(p,:) == L*U)

ans =

 1 1 1

 1 1 1

 1 1 1

Restore the permutation matrix P from the vector p:

P = zeros(3, 3);

for i = 1:3

 P(i, p(i)) = 1;

end

P

P =

 0 1 0

 0 0 1

 1 0 0

Compute the LU factorization of this matrix returning the permutation information in
the form of two vectors p and q:

4 Functions — Alphabetical List

4-782

syms a

A = [a, 2, 3*a; 2*a, 3, 4*a; 4*a, 5, 6*a];

[L, U, p, q] = lu(A, 'vector')

L =

[1, 0, 0]

[2, 1, 0]

[4, 3, 1]

U =

[a, 2, 3*a]

[0, -1, -2*a]

[0, 0, 0]

p =

 1 2 3

q =

 1 2 3

Use isAlways to check that A(p, q) = L*U:

isAlways(A(p, q) == L*U)

ans =

 1 1 1

 1 1 1

 1 1 1

Compute the LU factorization of this matrix returning the lower and upper triangular
matrices, permutation matrices, and the scaling matrix:

syms a

A = [0, a; 1/a, 0; 0, 1/5; 0,-1];

[L, U, P, Q, R] = lu(A)

L =

[1, 0, 0, 0]

[0, 1, 0, 0]

[0, 1/(5*a), 1, 0]

[0, -1/a, 0, 1]

U =

[1/a, 0]

[0, a]

[0, 0]

[0, 0]

P =

 0 1 0 0

 lu

4-783

 1 0 0 0

 0 0 1 0

 0 0 0 1

Q =

 1 0

 0 1

R =

[1, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 1, 0]

[0, 0, 0, 1]

Use isAlways to check that P*(R\A)*Q = L*U:

isAlways(P*(R\A)*Q == L*U)

ans =

 1 1

 1 1

 1 1

 1 1

Compute the LU factorization of this matrix using the 'vector' flag to return the
permutation information as vectors p and q. Also compute the scaling matrix R:

syms a

A = [0, a; 1/a, 0; 0, 1/5; 0,-1];

[L, U, p, q, R] = lu(A, 'vector')

L =

[1, 0, 0, 0]

[0, 1, 0, 0]

[0, 1/(5*a), 1, 0]

[0, -1/a, 0, 1]

U =

[1/a, 0]

[0, a]

[0, 0]

[0, 0]

p =

 2 1 3 4

q =

 1 2

R =

[1, 0, 0, 0]

4 Functions — Alphabetical List

4-784

[0, 1, 0, 0]

[0, 0, 1, 0]

[0, 0, 0, 1]

Use isAlways to check that R(:,p)\A(:,q) = L*U:

isAlways(R(:,p)\A(:,q) == L*U)

ans =

 1 1

 1 1

 1 1

 1 1

Call the lu function for this matrix:

syms a

A = [0 0 a; a 2 3; 0 a 2];

lu(A)

ans =

[a, 2, 3]

[0, a, 2]

[0, 0, a]

Verify that the resulting matrix is equal to U + L - eye(size(A)), where L and U are
defined as [L,U,P] = lu(A):

[L,U,P] = lu(A);

U + L - eye(size(A))

ans =

[a, 2, 3]

[0, a, 2]

[0, 0, a]

More About

LU Factorization of a Matrix

LU factorization expresses an m-by-n matrix A as P* A = L *U. Here, L is an m-by-m
lower triangular matrix, U is an m-by-n upper triangular matrix, and P is a permutation
matrix.

 lu

4-785

Permutation Vector

Permutation vector p contains numbers corresponding to row exchanges in the matrix A.
For an m-by-m matrix, p represents the following permutation matrix with indices i and j
ranging from 1 to m:

P
j p

j pij p j
i

i
i

= =
=

π

Ï
Ì
Ó

d ,

1

0

 if

 if

Tips

• Calling lu for numeric arguments that are not symbolic objects invokes the MATLAB
lu function.

• The thresh option supported by the MATLAB lu function does not affect symbolic
inputs.

• If you use 'matrix' instead of 'vector', then lu returns permutation matrices, as
it does by default.

• L and U are nonsingular if and only if A is nonsingular. lu also can compute the LU
factorization of a singular matrix A. In this case, L or U is a singular matrix.

• Most algorithms for computing LU factorization are variants of Gaussian elimination.

See Also
chol | eig | isAlways | lu | qr | svd | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-786

massMatrixForm

Extract mass matrix and right side of semilinear system of differential algebraic
equations

Syntax

[M,F] = massMatrixForm(eqs,vars)

Description

[M,F] = massMatrixForm(eqs,vars) returns the mass matrix M and the right side of
equations F of a semilinear system of first-order differential algebraic equations (DAEs).
Algebraic equations in eqs that do not contain any derivatives of the variables in vars
correspond to empty rows of the mass matrix M.

The mass matrix M and the right side of equations F refer to the form

M t x t x t F t x t, ,()() () = ()()&

Examples

Convert DAE System to Mass Matrix Form

Convert a semilinear system of differential algebraic equations to mass matrix form.

Create the following system of differential algebraic equations. Here, the functions
x1(t) and x2(t) represent state variables of the system. The system also contains
symbolic parameters r and m, and the function f(t, x1, x2). Specify the equations
and variables as two symbolic vectors: equations as a vector of symbolic equations, and
variables as a vector of symbolic function calls.

syms x1(t) x2(t) f(t, x1, x2) r m;

 massMatrixForm

4-787

eqs = [m*x2(t)*diff(x1(t), t) + m*t*diff(x2(t), t) == f(t, x1(t), x2(t)),...

 x1(t)^2 + x2(t)^2 == r^2];

vars = [x1(t), x2(t)];

Find the mass matrix form of this system.

[M, F] = massMatrixForm(eqs, vars)

M =

[m*x2(t), m*t]

[0, 0]

F =

 f(t, x1(t), x2(t))

 r^2 - x2(t)^2 - x1(t)^2

Solve this system using the numerical solver ode15s. Before you use ode15s, assign
the following values to symbolic parameters of the system: m = 100, r = 1, f(t, x1,
x2) = t + x1*x2. Also, replace the state variables x1(t), x2(t) by variables Y1, Y2
acceptable by matlabFunction.

syms Y1 Y2;

M = subs(M, [vars, m, r, f], [Y1, Y2, 100, 1, @(t,x1,x2) t + x1*x2]);

F = subs(F, [vars, m, r, f], [Y1, Y2, 100, 1, @(t,x1,x2) t + x1*x2]);

Create the following function handles MM and FF. You can use these function handles
as input arguments for odeset and ode15s. Note that these functions require state
variables to be specified as column vectors.

MM = matlabFunction(M, 'vars', {t, [Y1; Y2]});

FF = matlabFunction(F, 'vars', {t, [Y1; Y2]});

Use ode15s to solve the system.

opt = odeset('Mass', MM, 'InitialSlope', [0.005;0]);

ode15s(FF, [0,1], [0.5; 0.5*sqrt(3)], opt)

4 Functions — Alphabetical List

4-788

Input Arguments

eqs — System of semilinear first-order DAEs
vector of symbolic equations | vector of symbolic expressions

System of semilinear first-order DAEs, specified as a vector of symbolic equations or
expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).

 massMatrixForm

4-789

Example: [x(t),y(t)] or [x(t);y(t)]

Output Arguments

M — Mass matrix
symbolic matrix

Mass matrix of the system, returned as a symbolic matrix. The number of rows is the
number of equations in eqs, and the number of columns is the number of variables in
vars.

F — Right sides of equations
symbolic column vector of symbolic expressions

Right sides of equations, returned as a column vector of symbolic expressions. The
number of elements in this vector coincides with the number of equations eqs.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | matlabFunction | ode15s | odeFunction | odeset
| reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder |
reduceRedundancies

Introduced in R2014b

4 Functions — Alphabetical List

4-790

matlabFunction
Convert symbolic expression to function handle or file

Syntax

g = matlabFunction(f)

g = matlabFunction(f1,...,fN)

g = matlabFunction(___ ,Name,Value)

Description

g = matlabFunction(f) converts f to a MATLAB function with the handle g. Here, f
can be a symbolic expression, function, or a vector of symbolic expressions or functions.

g = matlabFunction(f1,...,fN) converts f1,...,fN to a MATLAB function with
N outputs. The function handle is g. Each element of f1,...,fN can be a symbolic
expression, function, or a vector of symbolic expressions or functions.

g = matlabFunction(___ ,Name,Value) converts symbolic expressions, functions,
or vectors of symbolic expressions or functions to a MATLAB function using additional
options specified by one or more Name,Value pair arguments. You can specify
Name,Value after the input arguments used in the previous syntaxes.

Examples

Convert Symbolic Expression to Anonymous Function

Create the following symbolic expression r. Then convert sin(r)/r to a MATLAB
function with the handle ht.

syms x y

r = sqrt(x^2 + y^2);

ht = matlabFunction(sin(r)/r)

ht =

 matlabFunction

4-791

 @(x,y)sin(sqrt(x.^2+y.^2)).*1.0./sqrt(x.^2+y.^2)

Convert Several Symbolic Expressions to Anonymous Function

Create the following symbolic expression r. Then convert sin(r)/r and cos(r)/r to a
MATLAB function with the handle ht.

syms x y

r = sqrt(x^2 + y^2);

ht = matlabFunction(sin(r)/r, cos(r)/r)

ht =

 @(x,y)deal(sin(sqrt(x.^2+y.^2)).*1.0./sqrt(x.^2+y.^2),...

 cos(sqrt(x.^2+y.^2)).*1.0./sqrt(x.^2+y.^2))

Convert Symbolic Function to Anonymous Function

Create a symbolic function and convert it to a MATLAB function with the handle ht.

syms x y

f(x,y) = x^3 + y^3;

ht = matlabFunction(f)

ht =

 @(x,y)x.^3+y.^3

Write Generated MATLAB Function to File

Convert a symbolic expression to a MATLAB function and write it to a file.

Create a symbolic expression.

syms x y z

r = x^2 + y^2 + z^2;

Convert r to a MATLAB function and write this function to a file called myfile. If
myfile.m already exists in the current folder, matlabFunction replaces the existing
function with the converted symbolic expression. You can open and edit the resulting file.

f = matlabFunction(log(r)+r^(-1/2),'File','myfile');

function out1 = myfile(x,y,z)

4 Functions — Alphabetical List

4-792

%MYFILE

% OUT1 = MYFILE(X,Y,Z)

t2 = x.^2;

t3 = y.^2;

t4 = z.^2;

t5 = t2 + t3 + t4;

out1 = log(t5) + 1.0./sqrt(t5);

If a path to the file is an empty string, then matlabFunction does not create a file. It
generates an anonymous function instead.

syms x y z

r = x^2 + y^2 + z^2;

f = matlabFunction(log(r)+r^(-1/2),'File','')

f =

 @(x,y,z)log(x.^2+y.^2+z.^2)+1.0./sqrt(x.^2+y.^2+z.^2)

Disable Code Optimization

When you convert a symbolic expression to a MATLAB function and write the resulting
function to a file, matlabFunction optimizes the code by default. This approach can
help simplify and speed up further computations that use the file. However, generating
the optimized code from some symbolic expressions and functions can be very time
consuming. Use Optimize to disable code optimization.

Create a symbolic expression.

syms x

r = x^2*(x^2 + 1);

Convert r to a MATLAB function and write the function to the file myfile. By default,
matlabFunction creates a file containing the optimized code.

f = matlabFunction(r,'File','myfile');

function r = myfile(x)

%MYFILE

% R = MYFILE(X)

t2 = x.^2;

r = t2.*(t2+1.0);

Disable the code optimization by setting the value of Optimize to false.

 matlabFunction

4-793

f = matlabFunction(r,'File','myfile','Optimize',false);

function r = myfile(x)

%MYFILE

% R = MYFILE(X)

r = x.^2.*(x.^2+1.0);

Generate Sparse Matrices

When you convert a symbolic matrix to a MATLAB function, matlabFunction
represents it by a dense matrix by default. If most of the elements of the input symbolic
matrix are zeros, the more efficient approach is to represent it by a sparse matrix.

Create a 3-by-3 symbolic diagonal matrix:

syms x

A = diag(x*ones(1,3))

A =

[x, 0, 0]

[0, x, 0]

[0, 0, x]

Convert A to a MATLAB function representing a numeric matrix, and write the result to
the file myfile1. By default, the generated MATLAB function creates the dense numeric
matrix specifying each element of the matrix, including all zero elements.

f1 = matlabFunction(A,'File','myfile1');

function A = myfile1(x)

%MYFILE1

% A = MYFILE1(X)

A = reshape([x,0.0,0.0,0.0,x,0.0,0.0,0.0,x],[3,3]);

Convert A to a MATLAB function setting Sparse to true. Now, the generated MATLAB
function creates the sparse numeric matrix specifying only nonzero elements and
assuming that all other elements are zeros.

f2 = matlabFunction(A,'File','myfile2','Sparse',true);

function A = myfile2(x)

%MYFILE2

% A = MYFILE2(X)

4 Functions — Alphabetical List

4-794

A = sparse([1,2,3],[1,2,3],[x,x,x],3,3);

Specify Input Arguments for Generated Function

When converting an expression to a MATLAB function, you can specify the order of
the input arguments of the resulting function. You also can specify that some input
arguments are vectors instead of single variables.

Create a symbolic expression.

syms x y z

r = x + y/2 + z/3;

Convert r to a MATLAB function and write this function to the file myfile. By default,
matlabFunction uses alphabetical order of input arguments when converting symbolic
expressions.

matlabFunction(r,'File','myfile');

function r = myfile(x,y,z)

%MYFILE

% R = MYFILE(X,Y,Z)

r = x+y.*(1.0./2.0)+z.*(1.0./3.0);

Use the Vars argument to specify the order of input arguments for the generated
MATLAB function.

matlabFunction(r,'File','myfile','Vars',[y z x]);

function r = myfile(y,z,x)

%MYFILE

% R = MYFILE(Y,Z,X)

r = x+y.*(1.0./2.0)+z.*(1.0./3.0);

Now, convert an expression r to a MATLAB function whose second input argument is a
vector.

syms x y z t

r = (x + y/2 + z/3)*exp(-t);

matlabFunction(r,'File','myfile','Vars',{t,[x y z]});

function r = myfile(t,in2)

%MYFILE

% R = MYFILE(T,IN2)

 matlabFunction

4-795

x = in2(:,1);

y = in2(:,2);

z = in2(:,3);

r = exp(-t).*(x+y.*(1.0./2.0)+z.*(1.0./3.0));

Specify Output Variables

When converting a symbolic expression to a MATLAB function, you can specify the
names of the output variables. Note that matlabFunction without the File argument
(or with a file path specified by an empty string) creates a function handle and ignores
the Outputs flag.

Create symbolic expressions r and q.

syms x y z

r = x^2 + y^2 + z^2;

q = x^2 - y^2 - z^2;

Convert r and q to a MATLAB function and write the resulting function to a file myfile,
which returns a vector of two elements, name1 and name2.

f = matlabFunction(r,q,'File','myfile',...

 'Outputs',{'name1','name2'});

function [name1,name2] = myfile(x,y,z)

%MYFILE

% [NAME1,NAME2] = MYFILE(X,Y,Z)

t2 = x.^2;

t3 = y.^2;

t4 = z.^2;

name1 = t2+t3+t4;

if nargout > 1

 name2 = t2-t3-t4;

end

Convert MuPAD Expression to MATLAB Function

You can convert MuPAD expressions to MATLAB functions using the following two-step
approach.

Use evalin to evaluate the MuPAD expression arcsin(x) + arccos(y) in the
MATLAB Command Window.

4 Functions — Alphabetical List

4-796

syms x y

f = evalin(symengine, 'arcsin(x) + arccos(y)');

Now, use matlabFunction to convert the resulting expression to a MATLAB function.
The file myfile contains the expression written in the MATLAB language.

matlabFunction(f,'File','myfile');

function f = myfile(x,y)

%MYFILE

% F = MYFILE(X,Y)

f = asin(x) + acos(y);

Input Arguments

f — Symbolic input to be converted to MATLAB function
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Symbolic input to be converted to a MATLAB function, specified as a symbolic
expression, function, vector, or matrix. When converting sparse symbolic vectors or
matrices, use the name-value pair argument 'Sparse',true.

f1,...,fN — Symbolic input to be converted to MATLAB function with N outputs
several symbolic expressions | several symbolic functions | several symbolic vectors |
several symbolic matrices

Symbolic input to be converted to MATLAB function with N outputs, specified as several
symbolic expressions, functions, vectors, or matrices, separated by comma.

matlabFunction does not create a separate output argument for each element of a
symbolic vector or matrix. For example, g = matlabFunction([x + 1, y + 1])
creates a MATLAB function with one output argument, while g = matlabFunction(x
+ 1, y + 1) creates a MATLAB function with two output arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 matlabFunction

4-797

Example: matlabFunction(f,'File','myfile','Optimize',false)

'File' — Path to file containing generated MATLAB function
string

Path to the file containing the generated MATLAB function, specified as a string. The
generated function accepts arguments of type double, and can be used without Symbolic
Math Toolbox. If the value string is empty, matlabFunction generates an anonymous
function. If the string does not end in .m, the function appends .m.

By default, matlabFunction with the File argument generates a file containing
optimized code. Code optimization means that intermediate variables are used to
simplify or speed up the code. MATLAB generates intermediate variables as a lowercase
letter t followed by an automatically generated number, for example t32. To disable code
optimization, use the Optimize argument.

See “Write Generated MATLAB Function to File” on page 4-791.

'Optimize' — Flag preventing optimization of code written to function file
true (default) | false

Flag preventing optimization of code written to a function file, specified as false or
true.

By default, matlabFunction with the File argument generates a file containing
optimized code. Code optimization means that intermediate variables are used to
simplify or speed up the code. MATLAB generates intermediate variables as a lowercase
letter t followed by an automatically generated number, for example t32.

matlabFunction without the File argument (or with a file path specified by an empty
string) creates a function handle. In this case, the code is not optimized. If you try to
enforce code optimization by setting Optimize to true, then matlabFunction throws
an error.

See “Disable Code Optimization” on page 4-792.

'Sparse' — Flag that switches between sparse and dense matrix generation
false (default) | true

Flag that switches between sparse and dense matrix generation, specified as true or
false. When you specify 'Sparse',true, the generated MATLAB function represents
symbolic matrices by sparse numeric matrices. Use 'Sparse',true when you convert

4 Functions — Alphabetical List

4-798

symbolic matrices containing many zero elements. Often, operations on sparse matrices
are more efficient than the same operations on dense matrices.

See “Generate Sparse Matrices” on page 4-793.

'Vars' — Order of input variables or vectors in generated MATLAB function
string | vector of symbolic variables | one-dimensional cell array of strings | one-
dimensional cell array of symbolic variables | one-dimensional cell array of vectors of
symbolic variables

Order of input variables or vectors in a generated MATLAB function, specified as a
string, a vector of symbolic variables, or a one-dimensional cell array of strings, symbolic
variables, or vectors of symbolic variables.

The number of specified input variables must equal or exceed the number of free
variables in f. Do not use the same names for the input variables specified by Vars and
the output variables specified by Outputs.

By default, when you convert symbolic expressions, the order is alphabetical. When you
convert symbolic functions, their input arguments appear in front of other variables, and
all other variables are sorted alphabetically.

See “Specify Input Arguments for Generated Function” on page 4-794

'Outputs' — Names of output variables
one-dimensional cell array of strings

Names of output variables, specified as a one-dimensional cell array of strings.

If you do not specify the output variable names, then they coincide with the names you
use when calling matlabFunction. If you call matlabFunction using an expression
instead of individual variables, the default names of output variables consist of the word
out followed by a number, for example, out3.

Do not use the same names for the input variables specified by Vars and the output
variables specified by Outputs.

matlabFunction without the File argument (or with a file path specified by an empty
string) creates a function handle. In this case, matlabFunction ignores the Outputs
flag.

See “Specify Output Variables” on page 4-795.

 matlabFunction

4-799

Output Arguments

g — Function handle that can serve as input argument to numerical functions
MATLAB function handle

Function handle that can serve as an input argument to numerical functions, returned as
a MATLAB function handle.

More About

Tips

• When you use the File argument, use rehash to make the generated function
available immediately. rehash updates the MATLAB list of known files for
directories on the search path.

• To convert a MuPAD expression or function to a MATLAB symbolic
expression, use f = evalin(symengine,'MuPAD_Expression') or f =
feval(symengine,'MuPAD_Function',x1,...,xn). Then you can convert the
resulting symbolic expression to a MATLAB function.

matlabFunction cannot correctly convert some MuPAD expressions to MATLAB
functions. These expressions do not trigger an error message. When converting a
MuPAD expression or function that is not on the “Differences Between MATLAB and
MuPAD Syntax” on page 3-22 list, always check the conversion results. To verify the
results, execute the resulting function.

See Also
ccode | daeFunction | evalin | feval | fortran | matlabFunctionBlock |
odeFunction | rehash | simscapeEquation | subs | sym2poly

Introduced in R2008b

4 Functions — Alphabetical List

4-800

matlabFunctionBlock
Convert symbolic expression to MATLAB Function block

Syntax

matlabFunctionBlock(block,f)

matlabFunctionBlock(block,f1,...,fN)

matlabFunctionBlock(___ ,Name,Value)

Description

matlabFunctionBlock(block,f) converts f to a MATLAB Function block that you
can use in Simulink models. Here, f can be a symbolic expression, function, or a vector of
symbolic expressions or functions.

block specifies the name of the block that you create or modify.

matlabFunctionBlock(block,f1,...,fN) converts symbolic expressions or
functions f1,...,fN to a MATLAB Function block with N outputs. Each element of
f1,...,fN can be a symbolic expression, function, or a vector of symbolic expressions or
functions.

matlabFunctionBlock(___ ,Name,Value) converts a symbolic expression, function,
or a vector of symbolic expressions or functions to a MATLAB Function block using
additional options specified by one or more Name,Value pair arguments. You can specify
Name,Value after the input arguments used in the previous syntaxes.

Examples

Convert Symbolic Expression

Create a new model and convert a symbolic expression to a MATLAB Function block.

Create a new empty model and open it.

new_system('my_system')

 matlabFunctionBlock

4-801

open_system('my_system')

Create a symbolic expression.

syms x y z

f = x^2 + y^2 + z^2;

Use matlabFunctionBlock to create the block my_block containing the symbolic
expression. Double-click the generated block to open and edit the function defining the
block.

matlabFunctionBlock('my_system/my_block',f)

function f = my_block(x,y,z)

%#codegen

f = x.^2 + y.^2 + z.^2;

If you use the name of an existing block, matlabFunctionBlock replaces the definition
of an existing block with the converted symbolic expression.

Save and close my_system:

save_system('my_system')

close_system('my_system')

Convert Symbolic Function

Create a new model and convert a symbolic function to a MATLAB Function block.

Create a new empty model and open it.

new_system('my_system')

open_system('my_system')

Create a symbolic function.

syms x y z

f(x, y, z) = x^2 + y^2 + z^2;

Convert f to a MATLAB Function block. Double-click the block to see the function.

matlabFunctionBlock('my_system/my_block',f)

function f = my_block(x,y,z)

%#codegen

f = x.^2+y.^2+z.^2;

4 Functions — Alphabetical List

4-802

Create Blocks with Multiple Outputs

Convert several symbolic expressions to a MATLAB Function block with multiple output
ports.

Create a new empty model and open it.

new_system('my_system')

open_system('my_system')

Create three symbolic expressions.

syms x y z

f = x^2;

g = y^2;

h = z^2;

Convert them to a MATLAB Function block. matlabFunctionBlock creates a block
with three output ports. Double-click the block to see the function.

matlabFunctionBlock('my_system/my_block',f,g,h)

function [f,g,h] = my_block(x,y,z)

%#codegen

f = x.^2;

if nargout > 1

 g = y.^2;

end

if nargout > 2

 h = z.^2;

end

Specify Function Name for Generated Function

Specifying the name of the function defining the generated MATLAB Function block.

Create a new empty model and open it.

new_system('my_system')

open_system('my_system')

Create a symbolic expression.

syms x y z

f = x^2 + y^2 + z^2;

 matlabFunctionBlock

4-803

Generate a block and set the function name to my_function. Double-click the block to
see the function.

matlabFunctionBlock('my_system/my_block',f,...

 'FunctionName', 'my_function')

function f = my_function(x,y,z)

%#codegen

f = x.^2+y.^2+z.^2;

Disable Code Optimization

When you convert a symbolic expression to a MATLAB Function block,
matlabFunctionBlock optimizes the code by default. This approach can help simplify
and speed up further computations that use the file. Nevertheless, generating the
optimized code from some symbolic expressions and functions can be very time-
consuming. Use Optimize to disable code optimization.

Create a new empty model and open it.

new_system('my_system')

open_system('my_system')

Create a symbolic expression.

syms x

r = x^2*(x^2 + 1);

Use matlabFunctionBlock to create the block my_block containing the symbolic
expression. Double-click the block to see the function defining the block. By default,
matlabFunctionBlock creates a file containing the optimized code.

matlabFunctionBlock('my_system/my_block',r)

function r = my_block(x)

%#codegen

t2 = x.^2;

r = t2.*(t2+1.0);

Disable the code optimization by setting the value of Optimize to false.

matlabFunctionBlock('my_system/my_block',r,...

 'Optimize',false)

function r = my_block(x)

4 Functions — Alphabetical List

4-804

%#codegen

r = x.^2.*(x.^2+1.0);

Specify Input Ports for Generated Block

Specify the order of the input variables that form the input ports in a generated block.

Create a new empty model and open it.

new_system('my_system')

open_system('my_system')

Create a symbolic expression.

syms x y z

f = x^2 + y^2 + z^2;

Convert the expression to a MATLAB Function block. By default,
matlabFunctionBlock uses alphabetical order of input arguments when converting
symbolic expressions.

matlabFunctionBlock('my_system/my_block',f)

function f = my_block(x,y,z)

%#codegen

f = x.^2+y.^2+z.^2;

Use the Vars argument to specify the order of the input ports.

matlabFunctionBlock('my_system/my_block',f,...

 'Vars', [y z x])

function f = my_block(y,z,x)

%#codegen

f = x.^2+y.^2+z.^2;

Specify Output Ports

When generating a block, rename the output variables and the corresponding ports.

Create a new empty model and open it.

new_system('my_system')

open_system('my_system')

 matlabFunctionBlock

4-805

Create a symbolic expression.

syms x y z

f = x^2 + y^2 + z^2;

Convert the expression to a MATLAB Function block and specify the names of the output
variables and ports. Double-click the block to see the function defining the block.

matlabFunctionBlock('my_system/my_block',f,f + 1,f + 2,...

 'Outputs', {'name1','name2','name3'})

function [name1,name2,name3] = my_block(x,y,z)

%#codegen

t2 = x.^2;

t3 = y.^2;

t4 = z.^2;

name1 = t2+t3+t4;

if nargout > 1

 name2 = t2+t3+t4+1.0;

end

if nargout > 2

 name3 = t2+t3+t4+2.0;

end

Specify Function Name, Input and Output Ports

Call matlabFunctionBlock using several name-value pair arguments simultaneously.

Create a new empty model and open it.

new_system('my_system')

open_system('my_system')

Create a symbolic expression.

syms x y z

f = x^2 + y^2 + z^2;

Call matlabFunctionBlock using the name-value pair arguments to specify the
function name, the order of the input ports, and the names of the output ports. Double-
click the block to see the function defining the block.

matlabFunctionBlock('my_system/my_block',f,f + 1,f + 2,...

 'FunctionName', 'my_function','Vars',[y z x],...

4 Functions — Alphabetical List

4-806

 'Outputs',{'name1','name2','name3'})

function [name1,name2,name3] = my_function(y,z,x)

%#codegen

t2 = x.^2;

t3 = y.^2;

t4 = z.^2;

name1 = t2+t3+t4;

if nargout > 1

 name2 = t2+t3+t4+1.0;

end

if nargout > 2

 name3 = t2+t3+t4+2.0;

end

Convert MuPAD Expression to MATLAB Function Block

Convert a MuPAD expression to a MATLAB Function block.

Create a new empty model and open it.

new_system('my_system')

open_system('my_system')

Create a expression written in the MuPAD language.

syms x y

f = evalin(symengine, 'arcsin(x) + arccos(y)');

Convert the expression to a MATLAB Function block The resulting block contains the
same expressions written in the MATLAB language:

matlabFunctionBlock('my_system/my_block', f)

function f = my_block(x,y)

%#codegen

f = asin(x) + acos(y);

Input Arguments

block — Block to create of modify
string

 matlabFunctionBlock

4-807

Block to create of modify, specified as a string.

f — Symbolic input to be converted to MATLAB Function block
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Symbolic input to be converted to MATLAB Function block, specified as a symbolic
expression, function, vector, or matrix

f1,...,fN — Symbolic input to be converted to MATLAB Function block with N outputs
several symbolic expressions | several symbolic functions | several symbolic vectors |
several symbolic matrices

Symbolic input to be converted to MATLAB Function block with N outputs, specified as
several symbolic expressions, functions, vectors, or matrices, separated by comma.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:

'FunctionName' — Name of function
coincides with the input argument block (default) | string

Name of the function, specified as a string. By default, matlabFunction(block,…)
uses block as the function name.

See “Specify Function Name for Generated Function” on page 4-802.

'Optimize' — Flag preventing code optimization
true (default) | false

Flag preventing code optimization, specified as false or true.

By default, matlabFunctionBlock generates a file containing optimized code.
Optimized means intermediate variables are automatically generated to simplify or
speed up the code. MATLAB generates intermediate variables as a lowercase letter t
followed by an automatically generated number, for example t32.

4 Functions — Alphabetical List

4-808

See “Disable Code Optimization” on page 4-803.

'Vars' — Order of input variables and corresponding input ports of generated block
string | one-dimensional cell array of strings | one-dimensional cell array of symbolic
variables | one-dimensional cell array of vectors of symbolic variables | vector of
symbolic variables

Order of input variables and corresponding input ports of generated block, specified as a
string, a vector of symbolic variables, or a one-dimensional cell array of strings, symbolic
variables, or vectors of symbolic variables.

The number of specified input ports must equal or exceed the number of free variables in
f. Do not use the same names for the input ports specified by Vars and the output ports
specified by Outputs.

By default, when you convert symbolic expressions, the order is alphabetical. When you
convert symbolic functions, their input arguments appear in front of other variables, and
all other variables are sorted alphabetically.

See “Specify Input Ports for Generated Block” on page 4-804.

'Outputs' — Names of output ports
out followed by output port numbers (default) | one-dimensional cell array of strings

Names of output ports, specified as a one-dimensional cell array of strings. If you do not
specify the output port names, matlabFunctionBlock uses names that consist of the
word out followed by output port numbers, for example, out3.

Do not use the same names for the input ports specified by Vars and the output ports
specified by Outputs. See “Specify Output Ports” on page 4-804.

More About

Tips

• To convert a MuPAD expression or function to a MATLAB symbolic
expression, use f = evalin(symengine,'MuPAD_Expression') or f =
feval(symengine,'MuPAD_Function',x1,...,xn). Then you can convert the
resulting symbolic expression to a MATLAB Function block. matlabFunctionBlock
cannot correctly convert some MuPAD expressions to a block. These expressions do

 matlabFunctionBlock

4-809

not trigger an error message. When converting a MuPAD expression or function that
is not on the MATLAB vs. MuPAD Expressions list, always check the conversion
results. To verify the results, you can run the simulation containing the resulting
block.

See Also
ccode | evalin | feval | fortran | matlabFunction | simscapeEquation | subs
| sym2poly

Introduced in R2009a

4 Functions — Alphabetical List

4-810

max

Largest elements

Syntax

C = max(A)

C = max(A,[],dim)

[C,I] = max(___)

C = max(A,B)

Description

C = max(A) returns the largest element of A if A is a vector. If A is a matrix, this syntax
treats the columns of A as vectors, returning a row vector containing the largest element
from each column.

C = max(A,[],dim) returns the largest elements of matrix A along the dimension dim.
Thus, max(A,[],1) returns a row vector containing the largest elements of each column
of A, and max(A,[],2) returns a column vector containing the largest elements of each
row of A.

Here, the required argument [] serves as a divider. If you omit it, max(A,dim)
compares elements of A with the value dim.

[C,I] = max(___) finds the indices of the largest elements, and returns them in
output vector I. If there are several identical largest values, this syntax returns the
index of the first largest element that it finds.

C = max(A,B) compares each element of A with the corresponding element of B and
returns C containing the largest elements of each pair.

 max

4-811

Examples

Maximum of Vector of Numbers

Find the largest of these numbers. Because these numbers are not symbolic objects, you
get a floating-point result.

max([-pi, pi/2, 1, 1/3])

ans =

 1.5708

Find the largest of the same numbers converted to symbolic objects.

max(sym([-pi, pi/2, 1, 1/3]))

ans =

pi/2

Maximum of Each Column in Symbolic Matrix

Create matrix A containing symbolic numbers, and call max for this matrix. By default,
max returns the row vector containing the largest elements of each column.

A = sym([0, 1, 2; 3, 4, 5; 1, 2, 3])

max(A)

A =

[0, 1, 2]

[3, 4, 5]

[1, 2, 3]

ans =

[3, 4, 5]

Maximum of Each Row in Symbolic Matrix

Create matrix A containing symbolic numbers, and find the largest elements of each row
of the matrix. In this case, max returns the result as a column vector.

A = sym([0, 1, 2; 3, 4, 5; 1, 2, 3])

max(A,[],2)

A =

4 Functions — Alphabetical List

4-812

[0, 1, 2]

[3, 4, 5]

[1, 2, 3]

ans =

 2

 5

 3

Indices of Largest Elements

Create matrix A. Find the largest element in each column and its index.

A = 1./sym(magic(3))

[Cc,Ic] = max(A)

A =

[1/8, 1, 1/6]

[1/3, 1/5, 1/7]

[1/4, 1/9, 1/2]

Cc =

[1/3, 1, 1/2]

Ic =

 2 1 3

Now, find the largest element in each row and its index.

[Cr,Ir] = max(A,[],2)

Cr =

 1

 1/3

 1/2

Ir =

 2

 1

 3

If dim exceeds the number of dimensions of A, then the syntax [C,I] = max(A,
[],dim) returns C = A and I = ones(size(A)).

[C,I] = max(A,[],3)

 max

4-813

C =

[1/8, 1, 1/6]

[1/3, 1/5, 1/7]

[1/4, 1/9, 1/2]

I =

 1 1 1

 1 1 1

 1 1 1

Largest Elements of Two Symbolic Matrices

Create matrices A and B containing symbolic numbers. Use max to compare each element
of A with the corresponding element of B, and return the matrix containing the largest
elements of each pair.

A = sym(pascal(3))

B = toeplitz(sym([pi/3 pi/2 pi]))

maxAB = max(A,B)

A =

[1, 1, 1]

[1, 2, 3]

[1, 3, 6]

B =

[pi/3, pi/2, pi]

[pi/2, pi/3, pi/2]

[pi, pi/2, pi/3]

maxAB =

[pi/3, pi/2, pi]

[pi/2, 2, 3]

[pi, 3, 6]

Maximum of Complex Numbers

When finding the maximum of these complex numbers, max chooses the number with the
largest complex modulus.

modulus = abs([-1 - i, 1 + 1/2*i])

maximum = max(sym([1 - i, 1/2 + i]))

modulus =

4 Functions — Alphabetical List

4-814

 1.4142 1.1180

maximum =

1 - 1i

If the numbers have the same complex modulus, min chooses the number with the
largest phase angle.

modulus = abs([1 - 1/2*i, 1 + 1/2*i])

phaseAngle = angle([1 - 1/2*i, 1 + 1/2*i])

maximum = max(sym([1 - 1/2*i, 1/2 + i]))

modulus =

 1.1180 1.1180

phaseAngle =

 -0.4636 0.4636

maximum =

1/2 + 1i

Input Arguments

A — Input
symbolic number | symbolic vector | symbolic matrix

Input, specified as a symbolic number, vector, or matrix. All elements of A must be
convertible to floating-point numbers. If A is a scalar, then max(A) returns A. A cannot be
a multidimensional array.

dim — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. The default value is 1. If dim
exceeds the number of dimensions of A, then max(A,[],dim) returns A, and [C,I] =
max(A,[],dim) returns C = A and I = ones(size(A)).

B — Input
symbolic number | symbolic vector | symbolic matrix

Input, specified as a symbolic number, vector, or matrix. All elements of B must be
convertible to floating-point numbers. If A and B are scalars, then max(A,B) returns the
largest of A and B.

 max

4-815

If one argument is a vector or matrix, the other argument must either be a scalar or have
the same dimensions as the first one. If one argument is a scalar and the other argument
is a vector or matrix, then max expands the scalar into a vector or a matrix of the same
length with all elements equal to that scalar.

B cannot be a multidimensional array.

Output Arguments

C — Largest elements
symbolic number | symbolic vector

Largest elements, returned as a symbolic number or vector of symbolic numbers.

I — Indices of largest elements
symbolic number | symbolic vector | symbolic matrix

Indices of largest elements, returned as a symbolic number or vector of symbolic
numbers. [C,I] = max(A,[],dim) also returns matrix I = ones(size(A)) if the
value dim exceeds the number of dimensions of A.

More About

Tips

• Calling max for numbers (or vectors or matrices of numbers) that are not symbolic
objects invokes the MATLAB max function.

• For complex input A, max returns the complex number with the largest complex
modulus (magnitude), computed with max(abs(A)). If complex numbers have
the same modulus, max chooses the number with the largest phase angle,
max(angle(A)).

• max ignores NaNs.

See Also
abs | angle | max | min | sort

Introduced in R2014a

4 Functions — Alphabetical List

4-816

mfun
Numeric evaluation of special mathematical function

Compatibility

mfun will be removed in a future release. Instead, use the appropriate special
function syntax listed in mfunlist. For example, use bernoulli(n) instead of
mfun('bernoulli',n).

Syntax

mfun('function',par1,par2,par3,par4)

Description

mfun('function',par1,par2,par3,par4) numerically evaluates one of the special
mathematical functions listed in mfunlist. Each par argument is a numeric quantity
corresponding to a parameter for function. You can use up to four parameters. The last
parameter specified can be a matrix, usually corresponding to X. The dimensions of all
other parameters depend on the specifications for function. You can access parameter
information for mfun functions in mfunlist.

MuPAD software evaluates function using 16-digit accuracy. Each element of the
result is a MATLAB numeric quantity. Any singularity in function is returned as NaN.

See Also
mfunlist

Introduced before R2006a

 mfunlist

4-817

mfunlist
List special functions for use with mfun

Compatibility

mfun will be removed in a future release. Instead, use the appropriate special
function syntax listed below. For example, use bernoulli(n) instead of
mfun('bernoulli',n).

Syntax

mfunlist

Description

mfunlist lists the special mathematical functions for use with the mfun function. The
following tables describe these special functions.

Syntax and Definitions of mfun Special Functions

The following conventions are used in the next table, unless otherwise indicated in the
Arguments column.

x, y real argument
z, z1, z2 complex argument
m, n integer argument

mfun Special Functions

Function
Name

Definition mfun Name Special Function
Syntax

Arguments

Bernoulli
numbers and
polynomials

Generating functions: bernoulli(n)

bernoulli(n,t)

bernoulli(n)

bernoulli(n,t)

n ≥ 0

4 Functions — Alphabetical List

4-818

Function
Name

Definition mfun Name Special Function
Syntax

Arguments

e

e

B x
t

n

xt

t n

n

n-
= ◊

-

=

•

Â
1

1

0

()
!

0 2< <t p

Bessel
functions

BesselI, BesselJ—Bessel
functions of the first kind.
BesselK, BesselY—Bessel
functions of the second kind.

BesselJ(v,x)

BesselY(v,x)

BesselI(v,x)

BesselK(v,x)

besselj(v,x)

bessely(v,x)

besseli(v,x)

besselk(v,x)

v is real.

Beta function
B x y

x y

x y
(,)

() ()

()
=

◊

+

G G

G

Beta(x,y) beta(x,y)

Binomial
coefficients

m

n

m

n m n

Ê
ËÁ

ˆ
¯̃

=
-()
!

! !

=
+

+() - +

G

G G

()

()

m

n m n

1

1 1

binomial(m,n) nchoosek(m,n)

Complete
elliptic
integrals

Legendre's complete elliptic
integrals of the first, second,
and third kind. This definition
uses modulus k. The numerical
ellipke function and the
MuPAD functions for computing
elliptic integrals use the
parameter m k= =

2 2
sin a .

EllipticK(k)

EllipticE(k)

EllipticPi(a,k)

ellipticK(k)

ellipticE(k)

ellipticPi(a,k)

a is real, –
∞ < a < ∞.

k is real,
0 < k < 1.

Complete
elliptic
integrals
with
complementary
modulus

Associated complete elliptic
integrals of the first, second, and
third kind using complementary
modulus. This definition uses
modulus k. The numerical
ellipke function and the
MuPAD functions for computing

EllipticCK(k)

EllipticCE(k)

EllipticCPi(a,k)

ellipticCK(k)

ellipticCE(k)

ellipticCPi(a,k)

a is real, –
∞ < a < ∞.

k is real,
0 < k < 1.

 mfunlist

4-819

Function
Name

Definition mfun Name Special Function
Syntax

Arguments

elliptic integrals use the
parameter m k= =

2 2
sin a .

Complementary
error function
and its
iterated
integrals

erfc z e dt erf zt

z

() ()= ◊ = --
•

Ú
2

1
2

p

erfc z e z(,)- = ◊
-1

2 2

p

erfc n z erfc n t dt

z

(,) (,)= -
•

Ú 1

erfc(z)

erfc(n,z)

erfc(z)

erfc(n,z)

n > 0

Dawson's
integral F x e e dt

x t

x

() = ◊- Ú
2 2

0

dawson(x) dawson(x)

Digamma
function Y G

G

G
() ln(())

()

()
x

d

dx
x

x

x
= =

¢ Psi(x) psi(x)

Dilogarithm
integral f x

t

t
dt

x

()
ln()

=
-Ú 1

1

dilog(x) dilog(x) x > 1

Error
function erf z e dtt

z

() = -Ú
2 2

0
p

erf(z) erf(z)

Euler
numbers and
polynomials

Generating function for Euler
numbers:

1

0
cosh() !t

E
t

n
n

n

n

=

=

•

Â

euler(n)

euler(n,z)

euler(n)

euler(n,z)

n ≥ 0

t <
p

2

4 Functions — Alphabetical List

4-820

Function
Name

Definition mfun Name Special Function
Syntax

Arguments

Exponential
integrals Ei n z

e

t

dt

zt

n
(,) =

-•

Ú
1

Ei x PV
e

t

tx

() = -
Ê

Ë
Á
Á

ˆ

¯
˜
˜

-•
Ú

Ei(n,z)

Ei(x)

expint(n,x)

ei(x)

n ≥ 0

Real(z) > 0

Fresnel sine
and cosine
integrals

C x t dt

x

() cos= Ê
ËÁ

ˆ
¯̃Ú

p
2

2

0

S x t dt

x

() sin= Ê
ËÁ

ˆ
¯̃Ú

p
2

2

0

FresnelC(x)

FresnelS(x)

fresnelc(x)

fresnels(x)

Gamma
function G()z t e dt

z t= - -
•

Ú 1

0

GAMMA(z) gamma(z)

Harmonic
function h n

k
n

k

n

() ()= = + +
=
Â

1
1

1

Y g

harmonic(n) harmonic(n) n > 0

Hyperbolic
sine and
cosine
integrals

Shi z
t

t
dt

z

()
sinh()

= Ú
0

Chi z z
t

t
dt

z

() ln()
cosh()

= + +
-

Úg
1

0

Shi(z)

Chi(z)

sinhint(z)

coshint(z)

 mfunlist

4-821

Function
Name

Definition mfun Name Special Function
Syntax

Arguments

(Generalized)
hypergeometric
function

F n d z

n k

n
z

d k

d
k

i

i

k

i

j

i

ii

m
k

(, ,)

()

()

()

()
!

=

+
◊

+
◊

=

=

=

• ’

’
Â

G

G

G

G

1

1

0

where j and m are the number of
terms in n and d, respectively.

hypergeom(n,d,x)

where

n =

[n1,n2,...]

d =

[d1,d2,...]

hypergeom(n,d,x)

where

n =

[n1,n2,...]

d =

[d1,d2,...]

n1,n2,...
are real.

d1,d2,...
are real and
nonnegative.

Incomplete
elliptic
integrals

Legendre's incomplete elliptic
integrals of the first, second,
and third kind. This definition
uses modulus k. The numerical
ellipke function and the
MuPAD functions for computing
elliptic integrals use the
parameter m k= =

2 2
sin a .

EllipticF(x,k)

EllipticE(x,k)

EllipticPi(x,a,k)

ellipticF(x,k)

ellipticF(x,k)

ellipticPi(x,a,k)

0 < x ≤ ∞.

a is real, –
∞ < a < ∞.

k is real,
0 < k < 1.

Incomplete
gamma
function

G(,)a z e t dt
t a

z

= ◊- -
•

Ú 1

GAMMA(z1,z2)

z1 = a
z2 = z

igamma(z1,z2)

z1 = a
z2 = z

Logarithm of
the gamma
function

lnGAMMA() ln(())z z= G lnGAMMA(z) gammaln(z)

Logarithmic
integral Li x PV

dt

t
Ei x

x

()
ln

(ln)=
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
=Ú

0

Li(x) logint(x) x > 1

Polygamma
function Y Y

()
() ()

n
n

z
d

dz
z=

where Y()z is the Digamma
function.

Psi(n,z) psi(n,z) n ≥ 0

4 Functions — Alphabetical List

4-822

Function
Name

Definition mfun Name Special Function
Syntax

Arguments

Shifted sine
integral Ssi z Si z() ()= -

p

2

Ssi(z) ssinint(z)

The following orthogonal polynomials are available using mfun. In all cases, n is a
nonnegative integer and x is real.

Orthogonal Polynomials

Polynomial mfun Name Special Function
Syntax

Arguments

Chebyshev of the first
and second kind

T(n,x)

U(n,x)

chebyshevT(n,x)

chebyshevU(n,x)

Gegenbauer G(n,a,x) gegenbauerC(n,a,x)a is a nonrational
algebraic expression or a
rational number greater
than -1/2.

Hermite H(n,x) hermiteH(n,x)
Jacobi P(n,a,b,x) jacobiP(n,a,b,x)a, b are nonrational

algebraic expressions or
rational numbers greater
than -1.

Laguerre L(n,x) laguerreL(n,x)
Generalized Laguerre L(n,a,x) laguerreL(n,a,x)a is a nonrational

algebraic expression or a
rational number greater
than -1.

Legendre P(n,x) legendreP(n,x)

Limitations

In general, the accuracy of a function will be lower near its roots and when its arguments
are relatively large.

 mfunlist

4-823

Running time depends on the specific function and its parameters. In general,
calculations are slower than standard MATLAB calculations.

References

[1] Abramowitz, M. and I.A., Stegun, Handbook of Mathematical Functions With
Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.

See Also
mfun

Introduced before R2006a

4 Functions — Alphabetical List

4-824

min

Smallest elements

Syntax

C = min(A)

C = min(A,[],dim)

[C,I] = min(___)

C = min(A,B)

Description

C = min(A) returns the smallest element of A if A is a vector. If A is a matrix, this
syntax treats the columns of A as vectors, returning a row vector containing the smallest
element from each column.

C = min(A,[],dim) returns the smallest elements of matrix A along the dimension
dim. Thus, min(A,[],1) returns a row vector containing the smallest elements of each
column of A, and min(A,[],2) returns a column vector containing the smallest elements
of each row of A.

Here, the required argument [] serves as a divider. If you omit it, min(A,dim)
compares elements of A with the value dim.

[C,I] = min(___) finds the indices of the smallest elements, and returns them in
output vector I. If there are several identical smallest values, this syntax returns the
index of the first smallest element that it finds.

C = min(A,B) compares each element of A with the corresponding element of B and
returns C containing the smallest elements of each pair.

 min

4-825

Examples

Minimum of Vector of Numbers

Find the smallest of these numbers. Because these numbers are not symbolic objects, you
get a floating-point result.

min([-pi, pi/2, 1, 1/3])

ans =

 -3.1416

Find the smallest of the same numbers converted to symbolic objects.

min(sym([-pi, pi/2, 1, 1/3]))

ans =

-pi

Minimum of Each Column in Symbolic Matrix

Create matrix A containing symbolic numbers, and call min for this matrix. By default,
min returns the row vector containing the smallest elements of each column.

A = sym([0, 1, 2; 3, 4, 5; 1, 2, 3])

min(A)

A =

[0, 1, 2]

[3, 4, 5]

[1, 2, 3]

ans =

[0, 1, 2]

Minimum of Each Row in Symbolic Matrix

Create matrix A containing symbolic numbers, and find the smallest elements of each
row of the matrix. In this case, min returns the result as a column vector.

A = sym([0, 1, 2; 3, 4, 5; 1, 2, 3])

min(A,[],2)

A =

4 Functions — Alphabetical List

4-826

[0, 1, 2]

[3, 4, 5]

[1, 2, 3]

ans =

 0

 3

 1

Indices of Smallest Elements

Create matrix A. Find the smallest element in each column and its index.

A = 1./sym(magic(3))

[Cc,Ic] = min(A)

A =

[1/8, 1, 1/6]

[1/3, 1/5, 1/7]

[1/4, 1/9, 1/2]

Cc =

[1/8, 1/9, 1/7]

Ic =

 1 3 2

Now, find the smallest element in each row and its index.

[Cr,Ir] = min(A,[],2)

Cr=

 1/8

 1/7

 1/9

Ir =

 1

 3

 2

If dim exceeds the number of dimensions of A, then the syntax [C,I] = min(A,
[],dim) returns C = A and I = ones(size(A)).

[C,I] = min(A,[],3)

 min

4-827

C =

[1/8, 1, 1/6]

[1/3, 1/5, 1/7]

[1/4, 1/9, 1/2]

I =

 1 1 1

 1 1 1

 1 1 1

Smallest Elements of Two Symbolic Matrices

Create matrices A and B containing symbolic numbers. Use min to compare each element
of A with the corresponding element of B, and return the matrix containing the smallest
elements of each pair.

A = sym(pascal(3))

B = toeplitz(sym([pi/3 pi/2 pi]))

minAB = min(A,B)

A =

[1, 1, 1]

[1, 2, 3]

[1, 3, 6]

B =

[pi/3, pi/2, pi]

[pi/2, pi/3, pi/2]

[pi, pi/2, pi/3]

minAB =

[1, 1, 1]

[1, pi/3, pi/2]

[1, pi/2, pi/3]

Minimum of Complex Numbers

When finding the minimum of these complex numbers, min chooses the number with the
smallest complex modulus.

modulus = abs([-1 - i, 1 + 1/2*i])

minimum = min(sym([1 - i, 1/2 + i]))

modulus =

4 Functions — Alphabetical List

4-828

 1.4142 1.1180

minimum =

1/2 + 1i

If the numbers have the same complex modulus, min chooses the number with the
smallest phase angle.

modulus = abs([1 - 1/2*i, 1 + 1/2*i])

phaseAngle = angle([1 - 1/2*i, 1 + 1/2*i])

minimum = min(sym([1 - 1/2*i, 1/2 + i]))

modulus =

 1.1180 1.1180

phaseAngle =

 -0.4636 0.4636

minimum =

1 - 1i/2

Input Arguments

A — Input
symbolic number | symbolic vector | symbolic matrix

Input, specified as a symbolic number, vector, or matrix. All elements of A must be
convertible to floating-point numbers. If A is a scalar, then min(A) returns A. A cannot be
a multidimensional array.

dim — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. The default value is 1. If dim
exceeds the number of dimensions of A, then min(A,[],dim) returns A, and [C,I] =
min(A,[],dim) returns C = A and I = ones(size(A)).

B — Input
symbolic number | symbolic vector | symbolic matrix

Input, specified as a symbolic number, vector, or matrix. All elements of B must be
convertible to floating-point numbers. If A and B are scalars, then min(A,B) returns the
smallest of A and B.

 min

4-829

If one argument is a vector or matrix, the other argument must either be a scalar or have
the same dimensions as the first one. If one argument is a scalar and the other argument
is a vector or matrix, then min expands the scalar into a vector or a matrix of the same
length with all elements equal to that scalar.

B cannot be a multidimensional array.

Output Arguments

C — Smallest elements
symbolic number | symbolic vector

Smallest elements, returned as a symbolic number or vector of symbolic numbers.

I — Indices of smallest elements
symbolic number | symbolic vector | symbolic matrix

Indices of smallest elements, returned as a symbolic number or vector of symbolic
numbers. [C,I] = min(A,[],dim) also returns matrix I = ones(size(A)) if the
value dim exceeds the number of dimensions of A.

More About

Tips

• Calling min for numbers (or vectors or matrices of numbers) that are not symbolic
objects invokes the MATLAB min function.

• For complex input A, min returns the complex number with the smallest complex
modulus (magnitude), computed with min(abs(A)). If complex numbers have
the same modulus, min chooses the number with the smallest phase angle,
min(angle(A)).

• min ignores NaNs.

See Also
abs | angle | max | min | sort

Introduced in R2014a

4 Functions — Alphabetical List

4-830

minpoly
Minimal polynomial of matrix

Syntax

minpoly(A)

minpoly(A,var)

Description

minpoly(A) returns a vector of the coefficients of the minimal polynomial of A. If A is a
symbolic matrix, minpoly returns a symbolic vector. Otherwise, it returns a vector with
elements of type double.

minpoly(A,var) returns the minimal polynomial of A in terms of var.

Input Arguments

A

Matrix.

var

Free symbolic variable.

Default: If you do not specify var, minpoly returns a vector of coefficients of the
minimal polynomial instead of returning the polynomial itself.

Examples

Compute the minimal polynomial of the matrix A in terms of the variable x:

syms x

 minpoly

4-831

A = sym([1 1 0; 0 1 0; 0 0 1]);

minpoly(A, x)

ans =

x^2 - 2*x + 1

To find the coefficients of the minimal polynomial of A, call minpoly with one argument:

A = sym([1 1 0; 0 1 0; 0 0 1]);

minpoly(A)

ans =

[1, -2, 1]

Find the coefficients of the minimal polynomial of the symbolic matrix A. For this matrix,
minpoly returns the symbolic vector of coefficients:

A = sym([0 2 0; 0 0 2; 2 0 0]);

P = minpoly(A)

P =

[1, 0, 0, -8]

Now find the coefficients of the minimal polynomial of the matrix B, all elements of
which are double-precision values. Note that in this case minpoly returns coefficients as
double-precision values:

B = [0 2 0; 0 0 2; 2 0 0];

P = minpoly(B)

P =

 1 0 0 -8

More About

Minimal Polynomial of a Matrix

The minimal polynomial of a square matrix A is the monic polynomial p(x) of the least
degree, such that p(A) = 0.

See Also
charpoly | eig | jordan | poly2sym | sym2poly

4 Functions — Alphabetical List

4-832

Introduced in R2012b

 minus, -

4-833

minus, -
Symbolic subtraction

Syntax

-A

A - B

minus(A,B)

Description

-A returns the negation of A.

A - B subtracts B from A and returns the result.

minus(A,B) is an alternate way to execute A - B.

Examples

Subtract Scalar from Array

Subtract 2 from array A.

syms x

A = [x 1;-2 sin(x)];

A - 2

ans =

[x - 2, -1]

[-4, sin(x) - 2]

minus subtracts 2 from each element of A.

Subtract the identity matrix from matrix M:

syms x y z

M = [0 x; y z];

4 Functions — Alphabetical List

4-834

M - eye(2)

ans =

[-1, x]

[y, z - 1]

Subtract Numeric and Symbolic Arguments

Subtract one number from another. Because these are not symbolic objects, you receive
floating-point results.

11/6 - 5/4

ans =

 0.5833

Perform subtraction symbolically by converting the numbers to symbolic objects.

sym(11/6) - sym(5/4)

ans =

7/12

Alternatively, call minus to perform subtraction.

minus(sym(11/6),sym(5/4))

ans =

7/12

Subtract Matrices

Subtract matrices B and C from A.

A = sym([3 4; 2 1]);

B = sym([8 1; 5 2]);

C = sym([6 3; 4 9]);

Y = A - B - C

Y =

[-11, 0]

[-7, -10]

Use syntax -Y to negate the elements of Y.

 minus, -

4-835

-Y

ans =

[11, 0]

[7, 10]

Subtract Functions

Subtract function g from function f.

syms f(x) g(x)

f = sin(x) + 2*x;

y = f - g

y(x) =

2*x - g(x) + sin(x)

Input Arguments

A — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array
| symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function,
or expression.

B — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array
| symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function,
or expression.

More About

Tips

• All nonscalar arguments must have the same size. If one input argument is nonscalar,
then minus expands the scalar into an array of the same size as the nonscalar
argument, with all elements equal to the corresponding scalar.

4 Functions — Alphabetical List

4-836

See Also
ctranspose | ldivide | mldivide | mpower | mrdivide | mtimes | plus | power
| rdivide | times | transpose

Introduced before R2006a

 mldivide, \

4-837

mldivide, \
Symbolic matrix left division

Syntax

X = A\B

X = mldivide(A,B)

Description

X = A\B solves the symbolic system of linear equations in matrix form, A*X = B for X.

If the solution does not exist or if it is not unique, the \ operator issues a warning.

A can be a rectangular matrix, but the equations must be consistent. The symbolic
operator \ does not compute least-squares solutions.

X = mldivide(A,B) is equivalent to x = A\B.

Examples

System of Equations in Matrix Form

Solve a system of linear equations specified by a square matrix of coefficients and a
vector of right sides of equations.

Create a matrix containing the coefficient of equation terms, and a vector containing the
right sides of equations.

A = sym(pascal(4))

b = sym([4; 3; 2; 1])

A =

[1, 1, 1, 1]

[1, 2, 3, 4]

[1, 3, 6, 10]

[1, 4, 10, 20]

4 Functions — Alphabetical List

4-838

b =

 4

 3

 2

 1

Use the operator \ to solve this system.

X = A\b

X =

 5

 -1

 0

 0

Rank-Deficient System

Create a matrix containing the coefficients of equation terms, and a vector containing the
right sides of equations.

A = sym(magic(4))

b = sym([0; 1; 1; 0])

A =

[16, 2, 3, 13]

[5, 11, 10, 8]

[9, 7, 6, 12]

[4, 14, 15, 1]

b =

 0

 1

 1

 0

Find the rank of the system. This system contains four equations, but its rank is 3.
Therefore, the system is rank-deficient. This means that one variable of the system is not
independent and can be expressed in terms of other variables.

rank(horzcat(A,b))

ans =

3

 mldivide, \

4-839

Try to solve this system using the symbolic \ operator. Because the system is rank-
deficient, the returned solution is not unique.

A\b

Warning: The system is rank-deficient. Solution is not unique.

ans =

 1/34

 19/34

 -9/17

 0

Inconsistent System

Create a matrix containing the coefficient of equation terms, and a vector containing the
right sides of equations.

A = sym(magic(4))

b = sym([0; 1; 2; 3])

A =

[16, 2, 3, 13]

[5, 11, 10, 8]

[9, 7, 6, 12]

[4, 14, 15, 1]

b =

 0

 1

 2

 3

Try to solve this system using the symbolic \ operator. The operator issues a warning
and returns a vector with all elements set to Inf because the system of equations is
inconsistent, and therefore, no solution exists. The number of elements in the resulting
vector equals the number of equations (rows in the coefficient matrix).

A\b

Warning: The system is inconsistent. Solution does not exist.

ans =

 Inf

4 Functions — Alphabetical List

4-840

 Inf

 Inf

 Inf

Find the reduced row echelon form of this system. The last row shows that one of the
equations reduced to 0 = 1, which means that the system of equations is inconsistent.

rref(horzcat(A,b))

ans =

[1, 0, 0, 1, 0]

[0, 1, 0, 3, 0]

[0, 0, 1, -3, 0]

[0, 0, 0, 0, 1]

Input Arguments

A — Coefficient matrix
symbolic number | symbolic variable | symbolic function | symbolic expression |
symbolic vector | symbolic matrix

Coefficient matrix, specified as a symbolic number, variable, expression, function, vector,
or matrix.

B — Right side
symbolic number | symbolic variable | symbolic function | symbolic expression |
symbolic vector | symbolic matrix

Right side, specified as a symbolic number, variable, expression, function, vector, or
matrix.

Output Arguments

X — Solution
symbolic number | symbolic variable | symbolic function | symbolic expression |
symbolic vector | symbolic matrix

Solution, returned as a symbolic number, variable, expression, function, vector, or
matrix.

 mldivide, \

4-841

More About

Tips

• When dividing by zero, mldivide considers the numerator’s sign and returns Inf or
-Inf accordingly.

syms x

[sym(0)\sym(1), sym(0)\sym(-1), sym(0)\x]

ans =

[Inf, -Inf, Inf*x]

See Also
ctranspose | ldivide | minus | mpower | mrdivide | mtimes | plus | power |
rdivide | times | transpose

Introduced before R2006a

4 Functions — Alphabetical List

4-842

mod
Symbolic modulus after division

Syntax

mod(a,b)

Description

mod(a,b) finds the modulus after division. To find the remainder, use rem.

If a is a polynomial expression, then mod(a,b) finds the modulus for each coefficient.

Examples

Divide Integers by Integers

Find the modulus after division in case both the dividend and divisor are integers.

Find the modulus after division for these numbers.

[mod(sym(27), 4), mod(sym(27), -4), mod(sym(-27), 4), mod(sym(-27), -4)]

ans =

[3, -1, 1, -3]

Divide Rationals by Integers

Find the modulus after division in case the dividend is a rational number, and divisor is
an integer.

Find the modulus after division for these numbers.

[mod(sym(22/3), 5), mod(sym(1/2), 7), mod(sym(27/6), -11)]

ans =

 mod

4-843

[7/3, 1/2, -13/2]

Divide Polynomial Expressions by Integers

Find the modulus after division in case the dividend is a polynomial expression, and
divisor is an integer. If the dividend is a polynomial expression, then mod finds the
modulus for each coefficient.

Find the modulus after division for these polynomial expressions.

syms x

mod(x^3 - 2*x + 999, 10)

ans =

x^3 + 8*x + 9

mod(8*x^3 + 9*x^2 + 10*x + 11, 7)

ans =

x^3 + 2*x^2 + 3*x + 4

Divide Elements of Matrices

For vectors and matrices, mod finds the modulus after division element-wise. Nonscalar
arguments must be the same size.

Find the modulus after division for the elements of these two matrices.

A = sym([27, 28; 29, 30]);

B = sym([2, 3; 4, 5]);

mod(A,B)

ans =

[1, 1]

[1, 0]

Find the modulus after division for the elements of matrix A and the value 9. Here, mod
expands 9 into the 2-by-2 matrix with all elements equal to 9.

mod(A,9)

ans =

[0, 1]

4 Functions — Alphabetical List

4-844

[2, 3]

Input Arguments

a — Dividend (numerator)
number | symbolic number | symbolic variable | polynomial expression | vector |
matrix

Dividend (numerator), specified as a number, symbolic number, variable, polynomial
expression, or a vector or matrix of numbers, symbolic numbers, variables, or polynomial
expressions.

b — Divisor (denominator)
number | symbolic number | vector | matrix

Divisor (denominator), specified as a number, symbolic number, or a vector or matrix of
numbers or symbolic numbers.

More About

Modulus

The modulus of a and b is

mod , ,a b a b
a

b
() = - * Ê

ËÁ
ˆ
¯̃

floor

where floor rounds (a/b) towards negative infinity. For example, the modulus of -8 and
-3 is -2, but the modulus of -8 and 3 is 1.

If b = 0, then mod(a,0) = 0.

Tips

• Calling mod for numbers that are not symbolic objects invokes the MATLAB mod
function.

• All nonscalar arguments must be the same size. If one input arguments is nonscalar,
then mod expands the scalar into a vector or matrix of the same size as the nonscalar
argument, with all elements equal to the corresponding scalar.

 mod

4-845

See Also
quorem | rem

Introduced before R2006a

4 Functions — Alphabetical List

4-846

mpower, ^
Symbolic matrix power

Syntax

A^B

mpower(A,B)

Description

A^B computes A to the B power.

mpower(A,B) is equivalent to A^B.

Examples

Matrix Base and Scalar Exponent

Create a 2-by-2 matrix.

A = sym('a%d%d', [2 2])

A =

[a11, a12]

[a21, a22]

Find A^2.

A^2

ans =

[a11^2 + a12*a21, a11*a12 + a12*a22]

[a11*a21 + a21*a22, a22^2 + a12*a21]

Scalar Base and Matrix Exponent

Create a 2-by-2 symbolic magic square.

 mpower, ^

4-847

A = sym(magic(2))

A =

[1, 3]

[4, 2]

Find πA.

sym(pi)^A

ans =

[(3*pi^7 + 4)/(7*pi^2), (3*(pi^7 - 1))/(7*pi^2)]

[(4*(pi^7 - 1))/(7*pi^2), (4*pi^7 + 3)/(7*pi^2)]

Input Arguments

A — Base
number | symbolic number | symbolic variable | symbolic function | symbolic
expression | square symbolic matrix

Base, specified as a number or a symbolic number, variable, expression, function, or
square matrix. A and B must be one of the following:

• Both are scalars.
• A is a square matrix, and B is a scalar.
• B is a square matrix, and A is a scalar.

B — Exponent
number | symbolic number | symbolic variable | symbolic function | symbolic
expression | symbolic square matrix

Exponent, specified as a number or a symbolic number, variable, expression, function, or
square matrix. A and B must be one of the following:

• Both are scalars.
• A is a square matrix, and B is a scalar.
• B is a square matrix, and A is a scalar.

See Also
ctranspose | ldivide | minus | mldivide | mrdivide | mtimes | plus | power |
rdivide | times | transpose

4 Functions — Alphabetical List

4-848

Introduced before R2006a

 mrdivide, /

4-849

mrdivide, /
Symbolic matrix right division

Syntax

X = B/A

X = mrdivide(B,A)

Description

X = B/A solves the symbolic system of linear equations in matrix form, X*A = B for X.
The matrices A and B must contain the same number of columns. The right division of
matrices B/A is equivalent to (A'\B')'.

If the solution does not exist or if it is not unique, the / operator issues a warning.

A can be a rectangular matrix, but the equations must be consistent. The symbolic
operator / does not compute least-squares solutions.

X = mrdivide(B,A) is equivalent to x = B/A.

Examples

System of Equations in Matrix Form

Solve a system of linear equations specified by a square matrix of coefficients and a
vector of right sides of equations.

Create a matrix containing the coefficient of equation terms, and a vector containing the
right sides of equations.

A = sym(pascal(4))

b = sym([4 3 2 1])

A =

4 Functions — Alphabetical List

4-850

[1, 1, 1, 1]

[1, 2, 3, 4]

[1, 3, 6, 10]

[1, 4, 10, 20]

b =

[4, 3, 2, 1]

Use the operator / to solve this system.

X = b/A

X =

[5, -1, 0, 0]

Rank-Deficient System

Create a matrix containing the coefficient of equation terms, and a vector containing the
right sides of equations.

A = sym(magic(4))'

b = sym([0 1 1 0])

A =

[16, 5, 9, 4]

[2, 11, 7, 14]

[3, 10, 6, 15]

[13, 8, 12, 1]

b =

[0, 1, 1, 0]

Find the rank of the system. This system contains four equations, but its rank is 3.
Therefore, the system is rank-deficient. This means that one variable of the system is not
independent and can be expressed in terms of other variables.

rank(vertcat(A,b))

ans =

3

Try to solve this system using the symbolic / operator. Because the system is rank-
deficient, the returned solution is not unique.

 mrdivide, /

4-851

b/A

Warning: The system is rank-deficient. Solution is not unique.

ans =

[1/34, 19/34, -9/17, 0]

Inconsistent System

Create a matrix containing the coefficient of equation terms, and a vector containing the
right sides of equations.

A = sym(magic(4))'

b = sym([0 1 2 3])

A =

[16, 5, 9, 4]

[2, 11, 7, 14]

[3, 10, 6, 15]

[13, 8, 12, 1]

b =

[0, 1, 2, 3]

Try to solve this system using the symbolic / operator. The operator issues a warning
and returns a vector with all elements set to Inf because the system of equations is
inconsistent, and therefore, no solution exists. The number of elements equals the
number of equations (rows in the coefficient matrix).

b/A

Warning: The system is inconsistent. Solution does not exist.

ans =

[Inf, Inf, Inf, Inf]

Find the reduced row echelon form of this system. The last row shows that one of the
equations reduced to 0 = 1, which means that the system of equations is inconsistent.

rref(vertcat(A,b)')

ans =

[1, 0, 0, 1, 0]

[0, 1, 0, 3, 0]

[0, 0, 1, -3, 0]

4 Functions — Alphabetical List

4-852

[0, 0, 0, 0, 1]

Input Arguments

A — Coefficient matrix
symbolic number | symbolic variable | symbolic function | symbolic expression |
symbolic vector | symbolic matrix

Coefficient matrix, specified as a symbolic number, variable, expression, function, vector,
or matrix.

B — Right side
symbolic number | symbolic variable | symbolic function | symbolic expression |
symbolic vector | symbolic matrix

Right side, specified as a symbolic number, variable, expression, function, vector, or
matrix.

Output Arguments

X — Solution
symbolic number | symbolic variable | symbolic function | symbolic expression |
symbolic vector | symbolic matrix

Solution, returned as a symbolic number, variable, expression, function, vector, or
matrix.

More About

Tips

• When dividing by zero, mrdivide considers the numerator’s sign and returns Inf or
-Inf accordingly.

syms x

[sym(1)/sym(0), sym(-1)/sym(0), x/sym(0)]

ans =

 mrdivide, /

4-853

[Inf, -Inf, Inf*x]

See Also
ctranspose | ldivide | minus | mldivide | mpower | mtimes | plus | power |
rdivide | times | transpose

Introduced before R2006a

4 Functions — Alphabetical List

4-854

mtimes, *
Symbolic matrix multiplication

Syntax

A*B

mtimes(A,B)

Description

A*B is the matrix product of A and B. If A is an m-by-p and B is a p-by-n matrix, then the
result is an m-by-n matrix C defined as

C i j A i k B k j

k

p

, , ,() = () ()
=
Â

1

For nonscalar A and B, the number of columns of A must equal the number of rows of
B. Matrix multiplication is not universally commutative for nonscalar inputs. That is,
typically A*B is not equal to B*A. If at least one input is scalar, then A*B is equivalent to
A.*B and is commutative.

mtimes(A,B) is equivalent to A*B.

Examples

Multiply Two Vectors

Create a 1-by-5 row vector and a 5-by-1 column vector.

syms x

A = [x, 2*x^2, 3*x^3, 4*x^4]

B = [1/x; 2/x^2; 3/x^3; 4/x^4]

A =

[x, 2*x^2, 3*x^3, 4*x^4]

 mtimes, *

4-855

B =

 1/x

 2/x^2

 3/x^3

 4/x^4

Find the matrix product of these two vectors.

A*B

ans =

30

Multiply Two Matrices

Create a 4-by-3 matrix and a 3-by-2 matrix.

A = sym('a%d%d', [4 3])

B = sym('b%d%d', [3 2])

A =

[a11, a12, a13]

[a21, a22, a23]

[a31, a32, a33]

[a41, a42, a43]

B =

[b11, b12]

[b21, b22]

[b31, b32]

Multiply A by B.

A*B

ans =

[a11*b11 + a12*b21 + a13*b31, a11*b12 + a12*b22 + a13*b32]

[a21*b11 + a22*b21 + a23*b31, a21*b12 + a22*b22 + a23*b32]

[a31*b11 + a32*b21 + a33*b31, a31*b12 + a32*b22 + a33*b32]

[a41*b11 + a42*b21 + a43*b31, a41*b12 + a42*b22 + a43*b32]

Multiply Matrix by Scalar

Create a 4-by-4 Hilbert matrix H.

4 Functions — Alphabetical List

4-856

H = sym(hilb(4))

H =

[1, 1/2, 1/3, 1/4]

[1/2, 1/3, 1/4, 1/5]

[1/3, 1/4, 1/5, 1/6]

[1/4, 1/5, 1/6, 1/7]

Multiply H by e
π
.

C = H*exp(sym(pi))

C =

[exp(pi), exp(pi)/2, exp(pi)/3, exp(pi)/4]

[exp(pi)/2, exp(pi)/3, exp(pi)/4, exp(pi)/5]

[exp(pi)/3, exp(pi)/4, exp(pi)/5, exp(pi)/6]

[exp(pi)/4, exp(pi)/5, exp(pi)/6, exp(pi)/7]

Use vpa and digits to approximate symbolic results with the required number of digits.
For example, approximate it with five-digit accuracy.

old = digits(5);

vpa(C)

digits(old)

ans =

[23.141, 11.57, 7.7136, 5.7852]

[11.57, 7.7136, 5.7852, 4.6281]

[7.7136, 5.7852, 4.6281, 3.8568]

[5.7852, 4.6281, 3.8568, 3.3058]

Input Arguments
A — Input
symbolic number | symbolic variable | symbolic function | symbolic expression |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, function, vector, or matrix.
Inputs A and B must be the same size unless one is a scalar. A scalar value expands into
an array of the same size as the other input.

B — Input
symbolic number | symbolic variable | symbolic function | symbolic expression |
symbolic vector | symbolic matrix

 mtimes, *

4-857

Input, specified as a symbolic number, variable, expression, function, vector, or matrix.
Inputs A and B must be the same size unless one is a scalar. A scalar value expands into
an array of the same size as the other input.

See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | plus | power |
rdivide | times | transpose

Introduced before R2006a

4 Functions — Alphabetical List

4-858

mupad
Start MuPAD notebook

Syntax

mphandle = mupad

mphandle = mupad(file)

Description

mphandle = mupad creates a MuPAD notebook, and keeps a handle (pointer) to the
notebook in the variable mphandle. You can use any variable name you like instead of
mphandle.

mphandle = mupad(file) opens the MuPAD notebook named file and keeps
a handle (pointer) to the notebook in the variable mphandle. The file name must
be a full path unless the file is in the current folder. You also can use the argument
file#linktargetname to refer to the particular link target inside a notebook. In this
case, the mupad function opens the MuPAD notebook (file) and jumps to the beginning
of the link target linktargetname. If there are multiple link targets with the name
linktargetname, the mupad function uses the last linktargetname occurrence.

Examples

To start a new notebook and define a handle mphandle to the notebook, enter:

reset(symengine);

if ~feature('ShowFigureWindows')

 disp('no display available, skipping test');

else mphandle = mupad; end

mphandle = mupad;

To open an existing notebook named notebook1.mn located in the current folder, and
define a handle mphandle to the notebook, enter:

mphandle = mupad('notebook1.mn');

 mupad

4-859

To open a notebook and jump to a particular location, create a link target at that location
inside a notebook and refer to it when opening a notebook. For example, if you have the
Conclusions section in notebook1.mn, create a link target named conclusions and
refer to it when opening the notebook. The mupad function opens notebook1.mn and
scroll it to display the Conclusions section:

mphandle = mupad('notebook1.mn#conclusions');

For information about creating link targets, see “Work with Links”.

More About
• “Create MuPAD Notebooks” on page 3-3
• “Open MuPAD Notebooks” on page 3-6

See Also
getVar | mupadwelcome | openmn | openmu | setVar

Introduced in R2008b

4 Functions — Alphabetical List

4-860

mupadNotebookTitle
Window title of MuPAD notebook

Syntax

T = mupadNotebookTitle(nb)

Description

T = mupadNotebookTitle(nb) returns a cell array containing the window title of
the MuPAD notebook with the handle nb. If nb is a vector of handles to notebooks, then
mupadNotebookTitle(nb) returns a cell array of the same size as nb.

Examples

Find Titles of Particular Notebooks

Knowing the handles to notebooks, find the titles of these notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nb1 = mupad('myFile1.mn')

nb2 = mupad('myFile2.mn')

nb3 = mupad

nb1 =

myFile1

nb2 =

myFile2

nb3 =

Notebook1

Find the titles of myFile1.mn and myFile2.mn:

 mupadNotebookTitle

4-861

mupadNotebookTitle([nb1; nb2])

ans =

 'myFile1'

 'myFile2'

List Titles of All Open Notebooks

Get a cell array containing titles of all currently open MuPAD notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nb1 = mupad('myFile1.mn')

nb2 = mupad('myFile2.mn')

nb3 = mupad

nb1 =

myFile1

nb2 =

myFile2

nb3 =

Notebook1

Suppose that there are no other open notebooks. Use allMuPADNotebooks to get a
vector of handles to these notebooks:

allNBs = allMuPADNotebooks

allNBs =

myFile1

myFile2

Notebook1

List the titles of all open notebooks. The result is a cell array of strings.

mupadNotebookTitle(allNBs)

ans =

 'myFile1'

 'myFile2'

4 Functions — Alphabetical List

4-862

 'Notebook1

Return Single Notebook Title as String

mupadNotebookTitle returns a cell array of titles even if there is only one element in
that cell array. If mupadNotebookTitle returns a cell array of one element, you can
quickly convert it to a string by using char.

Create a new notebook with the handle nb:

nb = mupad;

Find the title of that notebook and convert it to a string:

titleAsStr = char(mupadNotebookTitle(nb));

Use the title the same way as any string:

disp(['The current notebook title is: ' titleAsStr])

The current notebook title is: Notebook1

• “Create MuPAD Notebooks” on page 3-3
• “Open MuPAD Notebooks” on page 3-6
• “Save MuPAD Notebooks” on page 3-12
• “Evaluate MuPAD Notebooks from MATLAB” on page 3-13
• “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25
• “Close MuPAD Notebooks from MATLAB” on page 3-16

Input Arguments

nb — Pointer to MuPAD notebook
handle to notebook | vector of handles to notebooks

Pointer to MuPAD notebook, specified as a MuPAD notebook handle or a vector of
handles. You create the notebook handle when opening a notebook with the mupad or
openmn function.

You can get the list of all open notebooks using the allMuPADNotebooks function.
mupadNotebookTitle accepts a vector of handles returned by allMuPADNotebooks.

 mupadNotebookTitle

4-863

Output Arguments

T — Window title of MuPAD notebook
cell array

Window title of MuPAD notebook, returned as a cell array. If nb is a vector of handles to
notebooks, then T is a cell array of the same size as nb.

See Also
allMuPADNotebooks | close | evaluateMuPADNotebook | getVar | mupad |
openmn | setVar

Introduced in R2013b

4 Functions — Alphabetical List

4-864

mupadwelcome
Start MuPAD interfaces

Syntax

mupadwelcome

Description

mupadwelcome opens a window that enables you to start various interfaces:

• MuPAD Notebook app, for performing calculations
• MATLAB Editor, for writing programs and libraries
• Documentation in the First Steps pane, for information and examples

It also enables you to access recent MuPAD files or browse for files.

 mupadwelcome

4-865

More About
• “Create MuPAD Notebooks” on page 3-3
• “Open MuPAD Notebooks” on page 3-6

See Also
mupad

Introduced in R2008b

4 Functions — Alphabetical List

4-866

nchoosek
Binomial coefficient

Syntax

nchoosek(n,k)

Description

nchoosek(n,k) returns the binomial coefficient of n and k.

Input Arguments

n

Symbolic number, variable or expression.

k

Symbolic number, variable or expression.

Examples

Compute the binomial coefficients for these expressions:

syms n

[nchoosek(n, n), nchoosek(n, n + 1), nchoosek(n, n - 1)]

ans =

[1, 0, n]

If one or both parameters are negative numbers, convert these numbers to symbolic
objects:

[nchoosek(sym(-1), 3), nchoosek(sym(-7), 2), nchoosek(sym(-5), -5)]

 nchoosek

4-867

ans =

[-1, 28, 1]

If one or both parameters are complex numbers, convert these numbers to symbolic
objects:

[nchoosek(sym(i), 3), nchoosek(sym(i), i), nchoosek(sym(i), i + 1)]

ans =

[1/2 + 1i/6, 1, 0]

Differentiate the binomial coefficient:

syms n

diff(nchoosek(n, 2))

ans =

-(psi(n - 1) - psi(n + 1))*nchoosek(n, 2)

Expand the binomial coefficient:

syms n k

expand(nchoosek(n, k))

ans =

-(n*gamma(n))/(k^2*gamma(k)*gamma(n - k) - k*n*gamma(k)*gamma(n - k))

More About

Binomial Coefficient

If n and k are integers and 0 ≤ k ≤ n, the binomial coefficient is defined as:

n

k

n

k n k

Ê

Ë
Á

ˆ

¯
˜ =

-()
!

! !

For complex numbers, the binomial coefficient is defined via the gamma function:

n

k

n

k n k

Ê

Ë
Á

ˆ

¯
˜ =

+()
+() - +()

G
G G

1

1 1

4 Functions — Alphabetical List

4-868

Tips

• Calling nchoosek for numbers that are not symbolic objects invokes the MATLAB
nchoosek function.

• If one or both parameters are complex or negative numbers, convert these numbers to
symbolic objects using sym, and then call nchoosek for those symbolic objects.

Algorithms

If k < 0 or n – k < 0, nchoosek(n,k) returns 0.

If one or both arguments are complex, nchoosek uses the formula representing the
binomial coefficient via the gamma function.

See Also
beta | gamma | factorial | psi

Introduced in R2012a

 ne

4-869

ne

Define inequality

Compatibility

In previous releases, ne in some cases evaluated inequalities involving only symbolic
numbers and returned logical 1 or 0. To obtain the same results as in previous releases,
wrap inequalities in isAlways. For example, use isAlways(A ~= B).

Syntax

A ~= B

ne(A,B)

Description

A ~= B creates a symbolic inequality.

ne(A,B) is equivalent to A ~= B.

Input Arguments

A

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

B

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

4 Functions — Alphabetical List

4-870

Examples

Use assume and the relational operator ~= to set the assumption that x does not equal to
5:

syms x

assume(x ~= 5)

Solve this equation. The solver takes into account the assumption on variable x, and
therefore returns only one solution.

solve((x - 5)*(x - 6) == 0, x)

ans =

6

Alternatives

You can also define inequality using eq (or its shortcut ==) and the logical negation not
(or ~). Thus, A ~= B is equivalent to ~(A == B).

More About

Tips

• Calling ~= or ne for non-symbolic A and B invokes the MATLAB ne function. This
function returns a logical array with elements set to logical 1 (true) where A is not
equal to B; otherwise, it returns logical 0 (false).

• If both A and B are arrays, then these arrays must have the same dimensions. A ~= B
returns an array of inequalities A(i,j,...) ~= B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is expanded into
an array of the same dimensions as the other array. In other words, if A is a variable
(for example, x), and B is an m-by-n matrix, then A is expanded into m-by-n matrix of
elements, each set to x.

See Also
eq | ge | gt | isAlways | le | lt

 ne

4-871

Introduced in R2012a

4 Functions — Alphabetical List

4-872

nnz
Number of nonzero elements

Syntax

nnz(X)

Description

nnz(X) computes the number of nonzero elements in X.

Examples

Number of Nonzero Elements and Matrix Density

Compute the number of nonzero elements of a 10-by-10 symbolic matrix and its density.

Create the following matrix as an element-wise product of a random matrix composed of
0s and 1s and the symbolic Hilbert matrix.

A = gallery('rando',10).*sym(hilb(10))

A =

[0, 1/2, 1/3, 0, 1/5, 1/6, 1/7, 0, 0, 1/10]

[1/2, 1/3, 1/4, 0, 0, 0, 0, 1/9, 0, 1/11]

[0, 1/4, 0, 0, 1/7, 1/8, 1/9, 1/10, 0, 0]

[0, 1/5, 0, 0, 1/8, 0, 1/10, 1/11, 0, 1/13]

[1/5, 0, 0, 1/8, 1/9, 0, 1/11, 1/12, 0, 0]

[1/6, 0, 1/8, 0, 0, 0, 0, 0, 1/14, 1/15]

[0, 1/8, 0, 0, 1/11, 0, 0, 0, 0, 1/16]

[1/8, 0, 1/10, 1/11, 0, 0, 0, 1/15, 1/16, 0]

[0, 0, 1/11, 0, 1/13, 0, 1/15, 1/16, 1/17, 0]

[1/10, 1/11, 0, 0, 1/14, 0, 1/16, 0, 1/18, 0]

Compute the number of nonzero elements in the resulting matrix.

Number = nnz(A)

 nnz

4-873

Number =

 48

Find the density of this sparse matrix.

Density = nnz(A)/prod(size(A)

Density =

 0.4800

Input Arguments

X — Input array
symbolic vector | symbolic matrix | symbolic multidimensional array

Input array, specified as a symbolic vector, matrix, or multidimensional array.

See Also
nonzeros | rank | reshape | size

Introduced in R2014b

4 Functions — Alphabetical List

4-874

nonzeros
Nonzero elements

Syntax

nonzeros(X)

Description

nonzeros(X) returns a column vector containing all nonzero elements of X.

Examples

List All Nonzero Elements of Symbolic Matrix

Find all nonzero elements of a 10-by-10 symbolic matrix.

Create the following 5-by-5 symbolic Toeplitz matrix.

T = toeplitz(sym([0 2 3 4 0]))

T =

[0, 2, 3, 4, 0]

[2, 0, 2, 3, 4]

[3, 2, 0, 2, 3]

[4, 3, 2, 0, 2]

[0, 4, 3, 2, 0]

Use the triu function to return a triangular matrix that retains only the upper part of T.

T1 = triu(T)

T1 =

[0, 2, 3, 4, 0]

[0, 0, 2, 3, 4]

[0, 0, 0, 2, 3]

[0, 0, 0, 0, 2]

 nonzeros

4-875

[0, 0, 0, 0, 0]

List all nonzero elements of this matrix. nonzeros searches for nonzero elements of a
matrix in the first column, then in the second one, and so on. It returns the column vector
containing all nonzero elements. It retains duplicate elements.

nonzeros(T1)

ans =

 2

 3

 2

 4

 3

 2

 4

 3

 2

Input Arguments

X — Input array
symbolic vector | symbolic matrix | symbolic multidimensional array

Input array, specified as a symbolic vector, matrix, or multidimensional array.

See Also
nnz | rank | reshape | size

Introduced in R2014b

4 Functions — Alphabetical List

4-876

norm
Norm of matrix or vector

Syntax

norm(A)

norm(A,p)

norm(V)

norm(V,P)

Description

norm(A) returns the 2-norm of matrix A.

norm(A,p) returns the p-norm of matrix A.

norm(V) returns the 2-norm of vector V.

norm(V,P) returns the P-norm of vector V.

Input Arguments

A

Symbolic matrix.

p

One of these values 1, 2, inf, or 'fro'.

• norm(A,1) returns the 1-norm of A.
• norm(A,2) or norm(A) returns the 2-norm of A.
• norm(A,inf) returns the infinity norm of A.
• norm(A,'fro') returns the Frobenius norm of A.

 norm

4-877

Default: 2

V

Symbolic vector.

P

• norm(V,P) is computed as sum(abs(V).^P)^(1/P) for 1<=P<inf.
• norm(V) computes the 2-norm of V.
• norm(A,inf) is computed as max(abs(V)).
• norm(A,-inf) is computed as min(abs(V)).

Default: 2

Examples

Compute the 2-norm of the inverse of the 3-by-3 magic square A:

A = inv(sym(magic(3)))

norm2 = norm(A)

A =

[53/360, -13/90, 23/360]

[-11/180, 1/45, 19/180]

[-7/360, 17/90, -37/360]

norm2 =

3^(1/2)/6

Use vpa to approximate the result with 20-digit accuracy:

vpa(norm2, 20)

ans =

0.28867513459481288225

Compute the 1-norm, Frobenius norm, and infinity norm of the inverse of the 3-by-3
magic square A:

A = inv(sym(magic(3)))

norm1 = norm(A, 1)

4 Functions — Alphabetical List

4-878

normf = norm(A, 'fro')

normi = norm(A, inf)

A =

[53/360, -13/90, 23/360]

[-11/180, 1/45, 19/180]

[-7/360, 17/90, -37/360]

norm1 =

16/45

normf =

391^(1/2)/60

normi =

16/45

Use vpa to approximate these results 20-digit accuracy:

vpa(norm1, 20)

vpa(normf, 20)

vpa(normi, 20)

ans =

0.35555555555555555556

ans =

0.32956199888808647519

ans =

0.35555555555555555556

Compute the 1-norm, 2-norm, and 3-norm of the column vector V = [Vx; Vy; Vz]:

syms Vx Vy Vz

V = [Vx; Vy; Vz];

norm1 = norm(V, 1)

norm2 = norm(V)

norm3 = norm(V, 3)

norm1 =

abs(Vx) + abs(Vy) + abs(Vz)

norm2 =

(abs(Vx)^2 + abs(Vy)^2 + abs(Vz)^2)^(1/2)

 norm

4-879

norm3 =

(abs(Vx)^3 + abs(Vy)^3 + abs(Vz)^3)^(1/3)

Compute the infinity norm, negative infinity norm, and Frobenius norm of V:

normi = norm(V, inf)

normni = norm(V, -inf)

normf = norm(V, 'fro')

normi =

max(abs(Vx), abs(Vy), abs(Vz))

normni =

min(abs(Vx), abs(Vy), abs(Vz))

normf =

(abs(Vx)^2 + abs(Vy)^2 + abs(Vz)^2)^(1/2)

More About

1-norm of a Matrix

The 1-norm of an m-by-n matrix A is defined as follows:

A A j n
j

ij

i

m

1
1

1=
Ê

Ë
ÁÁ

ˆ

¯
˜̃ =

=
Âmax , where …

2-norm of a Matrix

The 2-norm of an m-by-n matrix A is defined as follows:

A A
H

2
= max eigenvalue of A

The 2-norm is also called the spectral norm of a matrix.

Frobenius Norm of a Matrix

The Frobenius norm of an m-by-n matrix A is defined as follows:

4 Functions — Alphabetical List

4-880

A A
F ij

j

n

i

m

=
Ê

Ë
Á
Á

ˆ

¯
˜
˜==

ÂÂ
2

11

Infinity Norm of a Matrix

The infinity norm of an m-by-n matrix A is defined as follows:

A A A Aj

j

n

j

j

n

mj

j

n

•
= = =

=
Ê

Ë
Á
Á

ˆ

¯
˜
˜Â Â Âmax , , ,1

1

2

1 1

…

P-norm of a Vector

The P-norm of a 1-by-n or n-by-1 vector V is defined as follows:

V V
P i

P

i

n P

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
Â

1

1

Here n must be an integer greater than 1.

Frobenius Norm of a Vector

The Frobenius norm of a 1-by-n or n-by-1 vector V is defined as follows:

V V
F i

i

n

=

=

Â
2

1

The Frobenius norm of a vector coincides with its 2-norm.

Infinity and Negative Infinity Norm of a Vector

The infinity norm of a 1-by-n or n-by-1 vector V is defined as follows:

V V i ni•
= () =max , where 1…

The negative infinity norm of a 1-by-n or n-by-1 vector V is defined as follows:

 norm

4-881

V V i ni-•
= () =min , where 1…

Tips

• Calling norm for a numeric matrix that is not a symbolic object invokes the MATLAB
norm function.

See Also
cond | equationsToMatrix | inv | linsolve | rank

Introduced in R2012b

4 Functions — Alphabetical List

4-882

not
Logical NOT for symbolic expressions

Syntax

~A

not(A)

Description

~A represents the logical negation. ~A is true when A is false and vice versa.

not(A) is equivalent to ~A.

Input Arguments

A

Symbolic equation, inequality, or logical expression that contains symbolic
subexpressions.

Examples

Create this logical expression using ~:

syms x y

xy = ~(x > y);

Use assume to set the corresponding assumption on variables x and y:

assume(xy)

Verify that the assumption is set:

assumptions

 not

4-883

ans =

~y < x

Create this logical expression using logical operators ~ and &:

syms x

range = abs(x) < 1 & ~(abs(x) < 1/3);

Replace variable x with these numeric values. Note that subs does not evaluate these
inequalities to logical 1 or 0.

x1 = subs(range, x, 0)

x2 = subs(range, x, 2/3)

x1 =

0 < 1 & ~0 < 1/3

x2 =

2/3 < 1 & ~2/3 < 1/3

To evaluate these inequalities to logical 1 or 0, use logical or isAlways:

logical(x1)

isAlways(x2)

ans =

 0

ans =

 1

Note that simplify does not simplify these logical expressions to logical 1 or 0. Instead,
they return symbolic values TRUE or FALSE.

s1 = simplify(x1)

s2 = simplify(x2)

s1 =

FALSE

s2 =

TRUE

Convert symbolic TRUE or FALSE to logical values using logical:

logical(s1)

4 Functions — Alphabetical List

4-884

logical(s2)

ans =

 0

ans =

 1

More About

Tips

• If you call simplify for a logical expression that contains symbolic subexpressions,
you can get symbolic values TRUE or FALSE. These values are not the same as logical
1 (true) and logical 0 (false). To convert symbolic TRUE or FALSE to logical values,
use logical.

See Also
all | and | any | isAlways | or | xor

Introduced in R2012a

 null

4-885

null
Form basis for null space of matrix

Syntax

Z = null(A)

Description

Z = null(A) returns a list of vectors that form the basis for the null space of a matrix
A. The product A*Z is zero. size(Z, 2) is the nullity of A. If A has full rank, Z is empty.

Examples

Find the basis for the null space and the nullity of the magic square of symbolic numbers.
Verify that A*Z is zero:

A = sym(magic(4));

Z = null(A)

nullityOfA = size(Z, 2)

A*Z

Z =

 -1

 -3

 3

 1

nullityOfA =

 1

ans =

 0

 0

 0

 0

Find the basis for the null space of the matrix B that has full rank:

4 Functions — Alphabetical List

4-886

B = sym(hilb(3))

Z = null(B)

B =

[1, 1/2, 1/3]

[1/2, 1/3, 1/4]

[1/3, 1/4, 1/5]

Z =

Empty sym: 1-by-0

See Also
rank | rref | size | svd

Introduced before R2006a

 numden

4-887

numden
Extract numerator and denominator

Syntax

[N,D] = numden(A)

Description

[N,D] = numden(A) converts A to a rational form where the numerator and
denominator are relatively prime polynomials with integer coefficients. The function
returns the numerator and denominator of the rational form of an expression.

If A is a symbolic or a numeric matrix, then N is the symbolic matrix of numerators, and D
is the symbolic matrix of denominators. Both N and D are matrices of the same size as A.

Examples

Numerators and Denominators of Symbolic Numbers

Find the numerator and denominator of a symbolic number.

[n, d] = numden(sym(4/5))

n =

4

d =

5

Numerators and Denominators of Symbolic Expressions

Find the numerator and denominator of the symbolic expression.

syms x y

[n,d] = numden(x/y + y/x)

4 Functions — Alphabetical List

4-888

n =

x^2 + y^2

d =

x*y

Numerators and Denominators of Matrix Elements

Find the numerator and denominator of each element of a symbolic matrix.

syms a b

[n,d] = numden([a/b, 1/b; 1/a, 1/(a*b)])

n =

[a, 1]

[1, 1]

d =

[b, b]

[a, a*b]

Input Arguments

A — Input
symbolic number | symbolic expression | symbolic function | symbolic vector | symbolic
matrix

Input, specified as a symbolic number, expression, function, vector, or matrix.

Output Arguments

N — Numerator
symbolic number | symbolic expression | symbolic function | symbolic vector | symbolic
matrix

Numerator, returned as a symbolic number, expression, function, vector, or matrix.

D — Denominator
symbolic number | symbolic expression | symbolic function | symbolic vector | symbolic
matrix

 numden

4-889

Denominator, returned as a symbolic number, expression, function, vector, or matrix.

See Also
divisors | partfrac | simplifyFraction

Introduced before R2006a

4 Functions — Alphabetical List

4-890

numel
Number of elements of symbolic array

Syntax

numel(A)

Description

numel(A) returns the number of elements in symbolic array A, equal to
prod(size(A)).

Examples

Number of Elements in Vector

Find the number of elements in vector V.

syms x y

V = [x y 3];

numel(V)

ans =

 3

Number of Elements in 3-D Array

Create a 3-D symbolic array and find the number of elements in it.

Create the 3-D symbolic array A:

A = sym(magic(3));

A(:,:,2) = A'

A(:,:,1) =

[8, 1, 6]

 numel

4-891

[3, 5, 7]

[4, 9, 2]

A(:,:,2) =

[8, 3, 4]

[1, 5, 9]

[6, 7, 2]

Use numel to count the number of elements in A.

numel(A)

ans =

 18

Input Arguments

A — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array

Input, specified as a symbolic variable, vector, matrix, or multidimensional array.

See Also
prod | size

Introduced in R2008b

4 Functions — Alphabetical List

4-892

odeFunction
Convert system of symbolic algebraic expressions to MATLAB function handle suitable
for ode45, ode15s, and other ODE solvers

Syntax

f = odeFunction(expr,vars)

f = odeFunction(expr,vars,p1,...,pN)

f = odeFunction(___ ,Name,Value)

Description

f = odeFunction(expr,vars) converts a system of symbolic algebraic expressions to
a MATLAB function handle acceptable as an input argument to the numerical MATLAB
ODE solvers, except for ode15i. The argument vars specifies the state variables of the
system.

f = odeFunction(expr,vars,p1,...,pN) lets you specify the symbolic parameters
of the system as p1,...,pN.

f = odeFunction(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Examples

Function Handle Suitable for ODE Solvers

Convert a system of symbolic differential expressions to a function handle suitable for the
MATLAB ODE solvers. Then solve the system by using the ode15s solver.

Create the following second-order differential algebraic equation.

syms y(t);

eqn = diff(y(t), t, t) == (1 - y(t)^2)*diff(y(t),t) - y(t);

 odeFunction

4-893

Use reduceDifferentialOrder to rewrite that equation as a system of two first-order
differential equations. Here, vars is a vector of state variables of the system. The new
variable Dy(t) represents the first derivative of y(t) with respect to t.

[eqs,vars] = reduceDifferentialOrder(eqn,y(t))

eqs =

 diff(Dyt(t), t) + y(t) + Dyt(t)*(y(t)^2 - 1)

 Dyt(t) - diff(y(t), t)

vars =

 y(t)

 Dyt(t)

Set initial conditions for y(t) and its derivative Dy(t). For example, set the initial value
of the variable to 2 and the initial value of its first derivative to 0.

initConditions = [2,0];

Find the mass matrix M of the system and a vector F containing the right sides of
equations.

[M,F] = massMatrixForm(eqs,vars)

M =

[0, 1]

[-1, 0]

F =

 - y(t) - Dyt(t)*(y(t)^2 - 1)

 -Dyt(t)

M and F refer to the form M t x t x t F t x t, ,()() () = ()()& . To simplify further computations,

rewrite the system in the form &x t f t x t() = ()(), .

f = M\F

f =

 Dyt(t)

 Dyt(t) - y(t) - Dyt(t)*y(t)^2

Convert f to a MATLAB function handle by using odeFunction. The resulting function
handle serves as an input argument to the MATLAB ODE solver ode15s.

odefun = odeFunction(f,vars);

4 Functions — Alphabetical List

4-894

ode15s(odefun, [0 10], initConditions)

Function Handles for System Containing Symbolic Parameters

Convert a system of symbolic differential equations containing both state variables and
symbolic parameters to a function handle suitable for the MATLAB ODE solvers.

Create the system of differential algebraic equations. Here, the symbolic functions x1(t)
and x2(t) represent the state variables of the system. The system also contains constant
symbolic parameters a, b, and the parameter function r(t). These parameters do not
represent state variables. Specify the equations and state variables as two symbolic
vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic
function calls.

 odeFunction

4-895

syms x1(t) x2(t) a b r(t)

eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)^2,...

 x1(t)^2 + x2(t)^2 == r(t)^2];

vars = [x1(t), x2(t)];

Find the mass matrix M and vector of the right side F for this system. M and F refer to the
form M t x t x t F t x t, ,()() () = ()()& .

[M, F] = massMatrixForm(eqs, vars)

M =

[1, 0]

[0, 0]

F =

 b*x2(t)^2 + a*x1(t)

 r(t)^2 - x1(t)^2 - x2(t)^2

Use odeFunction to generate MATLAB function handles from M and F. The function
handle F contains symbolic parameters.

M = odeFunction(M, vars)

F = odeFunction(F, vars, a, b, r(t))

M =

 @(t,in2)reshape([1.0,0.0,0.0,0.0],[2,2])

F =

 @(t,in2,param1,param2,param3)[param1.*in2(1,:)+...

 param2.*in2(2,:).^2;param3.^2-in2(1,:).^2-in2(2,:).^2]

Specify the parameter values.

a = -0.6;

b = -0.1;

r = @(t) cos(t)/(1 + t^2);

Create the reduced function handle F as follows.

F = @(t, Y) F(t, Y, a, b, r(t));

Specify consistent initial conditions for the DAE system.

t0 = 0;

y0 = [-r(t0)*sin(0.1); r(t0)*cos(0.1)];

yp0= [a*y0(1) + b*y0(2)^2; 1.234];

4 Functions — Alphabetical List

4-896

Create an option set that contains the mass matrix M of the system and vector yp0 of
initial conditions for the derivatives.

opt = odeset('mass', M, 'InitialSlope', yp0);

Now, use ode15s to solve the system of equations.

ode15s(F, [t0, 1], y0, opt)

File Instead of Function Handle

From a system of symbolic differential equations, generate code suitable for the MATLAB
ODE solvers and write it to a file.

 odeFunction

4-897

Create the following system of differential algebraic equations. Here, the functions x(t)
and y(t) represent state variables of the system.

syms x(t) y(t)

eqs = [diff(x(t), t) + 2*diff(y(t), t) == 0.1*y(t), ...

 x(t) - y(t) == cos(t) - 0.2*t*sin(x(t))];

vars = [x(t), y(t)];

Find the mass matrix M and vector of the right side F for this system. M andF refer to the
form M t x t x t F t x t, ,()() () = ()()& .

[M, F] = massMatrixForm(eqs, vars)

M =

[1, 2]

[0, 0]

F =

 y(t)/10

 cos(t) - x(t) + y(t) - (t*sin(x(t)))/5

Use odeFunction to generate MATLAB code from M and F, and to write that code to
myfileM.m and myfileF.m. If the files myfileM.m and myfileF.m already exist in the
current folder, odeFunction overwrites the contents of the existing files. You can open
and edit the resulting files.

M = odeFunction(M, vars, 'File', 'myfileM');

function expr = myfileM(t,in2)

%MYFILEM

 % EXPR = MYFILEM(T,IN2)

expr = reshape([1.0,0.0,2.0,0.0],[2, 2]);

F = odeFunction(F, vars, 'File', 'myfileF');

function expr = myfileF(t,in2)

%MYFILEF

% EXPR = MYFILEF(T,IN2)

x = in2(1,:);

y = in2(2,:);

expr = [y.*(1.0./1.0e1);-x+y+cos(t)-t.*sin(x).*(1.0./5.0)];

4 Functions — Alphabetical List

4-898

Specify consistent initial values for x(t) and y(t) and their first derivatives. Here,
the vector xy0 specifies initial values for x(t) and y(t), and the vector xyp0 specifies
initial values for their derivatives.

xy0 = [2; 1];

xyp0 = [0; 0.05*xy0(2)];

Create an option set that contains the mass matrix M of the system, vector xyp0 of initial
conditions for the derivatives, and numerical tolerances for the numerical search.

opt = odeset('mass',M, 'RelTol', 10^(-6), 'AbsTol', 10^(-6), 'InitialSlope', xyp0);

Now, use ode15s to solve the system of equations.

ode15s(F, [0 7], xy0, opt);

 odeFunction

4-899

Sparse Matrices

Use the name-value pair argument 'Sparse',true when converting sparse symbolic
matrices to MATLAB function handles.

Create the system of differential algebraic equations. Here, the symbolic functions x1(t)
and x2(t) represent the state variables of the system. Specify the equations and state
variables as two symbolic vectors: equations as a vector of symbolic equations, and
variables as a vector of symbolic function calls.

syms x1(t) x2(t)

a = -0.6;

b = -0.1;

r = @(t) cos(t)/(1 + t^2);

eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)^2,...

 x1(t)^2 + x2(t)^2 == r(t)^2];

vars = [x1(t), x2(t)];

Find the mass matrix M and vector of the right side F for this system. M and F refer to the
form M t x t x t F t x t, ,()() () = ()()& .

[M, F] = massMatrixForm(eqs, vars)

M =

[1, 0]

[0, 0]

F =

 - (3*x1(t))/5 - x2(t)^2/10

 cos(t)^2/(t^2 + 1)^2 - x1(t)^2 - x2(t)^2

Generate MATLAB function handles from M and F. Because most of the elements of the
mass matrix M are zeros, use the Sparse argument when converting M.

M = odeFunction(M, vars, 'Sparse', true)

F = odeFunction(F, vars)

M =

 @(t,in2)sparse([1],[1],[1.0],2,2)

4 Functions — Alphabetical List

4-900

F =

 @(t,in2)[in2(1,:).*(-3.0./5.0)-in2(2,:).^2.*(1.0./1.0e1);...

 cos(t).^2.*1.0./(t.^2+1.0).^2-in2(1,:).^2-in2(2,:).^2]

Specify consistent initial conditions for the DAE system.

t0 = 0;

y0 = [-r(t0)*sin(0.1); r(t0)*cos(0.1)];

yp0= [a*y0(1) + b*y0(2)^2; 1.234];

Create an option set that contains the mass matrix M of the system and vector yp0 of
initial conditions for the derivatives.

opt = odeset('mass', M, 'InitialSlope', yp0);

Now, use ode15s to solve the system of equations.

ode15s(F, [t0, 1], y0, opt)

 odeFunction

4-901

Input Arguments
expr — System of algebraic expressions
vector of symbolic expressions

System of algebraic expressions, specified as a vector of symbolic expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).

Example: [x(t),y(t)] or [x(t);y(t)]

4 Functions — Alphabetical List

4-902

p1,...,pN — Parameters of system
symbolic variables | symbolic functions | symbolic function calls | symbolic vector |
symbolic matrix

Parameters of the system, specified as symbolic variables, functions, or function calls,
such as f(t). You can also specify parameters of the system as a vector or matrix of
symbolic variables, functions, or function calls. If expr contains symbolic parameters
other than the variables specified in vars, you must specify these additional parameters
as p1,...,pN.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: odeFunction(expr,vars,'File','myfile')

'File' — Path to file containing generated code
string

Path to the file containing generated code, specified as a string. The generated file
accepts arguments of type double, and can be used without Symbolic Math Toolbox. If
the value is an empty string, odeFunction generates an anonymous function. If the
string does not end in .m, the function appends .m.

By default, odeFunction with the File argument generates a file containing optimized
code. Optimized means intermediate variables are automatically generated to simplify
or speed up the code. MATLAB generates intermediate variables as a lowercase letter
t followed by an automatically generated number, for example t32. To disable code
optimization, use the Optimize argument.

'Optimize' — Flag preventing optimization of code written to function file
true (default) | false

Flag preventing optimization of code written to a function file, specified as false or
true.

By default, odeFunction with the File argument generates a file containing optimized
code. Optimized means intermediate variables are automatically generated to simplify

 odeFunction

4-903

or speed up the code. MATLAB generates intermediate variables as a lowercase letter t
followed by an automatically generated number, for example t32.

odeFunction without the File argument (or with a file path specified by an empty
string) creates a function handle. In this case, the code is not optimized. If you try to
enforce code optimization by setting Optimize to true, then odeFunction throws an
error.

'Sparse' — Flag that switches between sparse and dense matrix generation
false (default) | true

Flag that switches between sparse and dense matrix generation, specified as true or
false. When you specify 'Sparse',true, the generated function represents symbolic
matrices by sparse numeric matrices. Use 'Sparse',true when you convert symbolic
matrices containing many zero elements. Often, operations on sparse matrices are more
efficient than the same operations on dense matrices. See “Sparse Matrices” on page
4-899.

Output Arguments

f — Function handle that can serve as input argument to all numerical MATLAB ODE solvers,
except for ode15i
MATLAB function handle

Function handle that can serve as input argument to all numerical MATLAB ODE
solvers, except for ode15i, returned as a MATLAB function handle.

odeFunction returns a function handle suitable for the ODE solvers such as ode45,
ode15s, ode23t, and others. The only ODE solver that does not accept this function
handle is the solver for fully implicit differential equations, ode15i. To convert the
system of equations to a function handle suitable for ode15i, use daeFunction.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | massMatrixForm | matlabFunction | ode15i | ode15s | ode23t
| ode45 | reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder |
reduceRedundancies

Introduced in R2015a

4 Functions — Alphabetical List

4-904

odeToVectorField
Convert higher-order differential equations to systems of first-order differential
equations

Syntax

V = odeToVectorField(eqn1,...,eqnN)

[V,Y] = odeToVectorField(eqn1,...,eqnN)

Description

V = odeToVectorField(eqn1,...,eqnN) converts higher-order differential
equations eqn1,...,eqnN to a system of first-order differential equations. This syntax
returns a symbolic vector representing the resulting system of first-order differential
equations.

[V,Y] = odeToVectorField(eqn1,...,eqnN) converts higher-order differential
equations eqn1,...,eqnN to a system of first-order differential equations. This syntax
returns two symbolic vectors. The first vector represents the resulting system of first-
order differential equations. The second vector shows the substitutions made during
conversion.

Input Arguments

eqn1,...,eqnN

Symbolic equations, strings separated by commas and representing a system of ordinary
differential equations, or array of symbolic equations or strings. Each equation or string
represents an ordinary differential equation.

When representing eqn as a symbolic equation, you must create a symbolic function,
for example y(x). Here x is an independent variable for which you solve an ordinary
differential equation. Use the == operator to create an equation. Use the diff function to
indicate differentiation. For example, to convert d2y(x)/dt2 = x*y(x), use:

 odeToVectorField

4-905

syms y(x)

V = odeToVectorField(diff(y, 2) == x*y)

When representing eqn as a string, use the letter D to indicate differentiation. By
default, odeToVectorField assumes that the independent variable is t. Thus, Dy
means dy/dt. You can specify the independent variable. The letter D followed by a digit
indicates repeated differentiation. Any character immediately following a differentiation
operator is a dependent variable. For example, to convert d2y(x)/dt2 = x*y(x), enter:

V = odeToVectorField('D2y = x*y','x')

or

V = odeToVectorField('D2y == x*y','x')

Output Arguments

V

Symbolic vector representing the system of first-order differential equations. Each
element of this vector is the right side of the first-order differential equation Y[i]′ = V[i].

Y

Symbolic vector representing the substitutions made when converting the input
equations eqn1,...,eqnN to the elements of V.

Examples

Convert this fifth-order differential equation to a system of first-order differential
equations:

syms y(t)

V = odeToVectorField(t^3*diff(y, 5) + 2*t*diff(y, 4) + diff(y, 2) + y^2 == -3*t)

V =

 Y[2]

 Y[3]

 Y[4]

 Y[5]

 -(3*t + Y[1]^2 + 2*t*Y[5] + Y[3])/t^3

4 Functions — Alphabetical List

4-906

Convert this system of first- and second-order differential equations to a system of first-
order differential equations. To see the substitutions that odeToVectorField makes for
this conversion, use two output arguments:

syms f(t) g(t)

[V,Y] = odeToVectorField(diff(f, 2) == f + g, diff(g) == -f + g)

V =

 Y[1] - Y[2]

 Y[3]

 Y[1] + Y[2]

Y =

 g

 f

 Df

Convert this second-order differential equation to a system of first-order differential
equations:

syms y(t)

V = odeToVectorField(diff(y, 2) == (1 - y^2)*diff(y) - y)

V =

 Y[2]

 - (Y[1]^2 - 1)*Y[2] - Y[1]

Generate a MATLAB function from this system of first-order differential equations using
matlabFunction with V as an input:

M = matlabFunction(V,'vars', {'t','Y'})

M =

 @(t,Y)[Y(2);-(Y(1).^2-1.0).*Y(2)-Y(1)]

To solve this system, call the MATLAB ode45 numerical solver using the generated
MATLAB function as an input:

sol = ode45(M,[0 20],[2 0]);

Plot the solution using linspace to generate 100 points in the interval [0,20] and deval
to evaluate the solution for each point:

x = linspace(0,20,100);

y = deval(sol,x,1);

plot(x,y)

 odeToVectorField

4-907

Convert the second-order differential equation y″(x) = x with the initial condition y(0) = t
to a system. Specify the differential equation and initial condition as strings. Also specify
that x is an independent variable:

V = odeToVectorField('D2y = x', 'y(0) = t', 'x')

V =

 Y[2]

 x

If you define equations by strings and do not specify the independent variable,
odeToVectorField assumes that the independent variable is t. This assumption
makes the equation y″(t) = x inconsistent with the initial condition y(0) = t. In this case,
y″(t) = d2t/dt2 = 0, and odeToVectorField errors.

4 Functions — Alphabetical List

4-908

More About

Tips

• The names of symbolic variables used in differential equations should not contain the
letter D because odeToVectorField assumes that D is a differential operator and
any character immediately following D is a dependent variable.

• To generate a MATLAB function for the resulting system of first-order differential
equations, use matlabFunction with V as an input. Then, you can use the generated
MATLAB function as an input for the MATLAB numerical solvers ode23 and ode45.

• The highest-order derivatives must appear in eqn1,...,eqnN linearly. For example,
odeToVectorField can convert these equations:

• y″(t) = –t2

• y*y″(t) = –t2. odeToVectorField can convert this equation because it can be
rewritten as y″(t) = –t2/y.

However, it cannot convert these equations:

• y″(t)2 = –t2

• sin(y″(t)) = –t2

Algorithms

To convert an nth-order differential equation

a t y a t y a t y a t y a t y an
n

n
n

n
n

() () () () ()
() () ()

+ + + + ¢¢ + ¢ +
-

-

-

-

1
1

2
2

2 1… 00 0() ()t y r t+ =

into a system of first-order differential equations, make these substitutions:

Y y

Y y

Y y

Y y

Y y

n
n

n
n

1

2

3

1
2

1

=

= ¢

= ¢¢

=

=

-

-

-

…

()

()

 odeToVectorField

4-909

Using the new variables, you can rewrite the equation as a system of n first-order
differential equations:

Y y Y

Y y Y

Y y Y

Y
a t

a t
Y

a

n
n

n

n
n

n
n

n

1 2

2 3

1
1

1

¢ = ¢ =

¢ = ¢¢ =

¢ = =

¢ = -
()

()
-

-
-

- -

…

()

22
1

1
2

0
1

t

a t
Y

a t

a t
Y

a t

a t
Y

r t

a tn
n

n n n

()

()
- -

()

()
-

()

()
+

()

()- ...

odeToVectorField returns the right sides of these equations as the elements of vector
V.

When you convert a system of higher-order differential equations to a system of
first-order differential equations, it can be helpful to see the substitutions that
odeToVectorField made during the conversion. These substitutions are listed as
elements of vector Y.

See Also
dsolve | matlabFunction | ode23 | ode45 | syms

Introduced in R2012a

4 Functions — Alphabetical List

4-910

openmn
Open MuPAD notebook

Syntax

h = openmn(file)

Description

h = openmn(file) opens the MuPAD notebook file named file, and returns a handle
to the file in h. The file name must be a full path unless the file is in the current folder.
The command h = mupad(file) accomplishes the same task.

Examples

To open a notebook named e-e-x.mn in the folder \Documents\Notes of drive H:,
enter:

h = openmn('H:\Documents\Notes\e-e-x.mn');

More About
• “Create MuPAD Notebooks” on page 3-3
• “Open MuPAD Notebooks” on page 3-6

See Also
mupad | open | openmu | openxvc | openxvz

Introduced in R2008b

 openmu

4-911

openmu
Open MuPAD program file

Syntax

openmu(file)

Description

openmu(file) opens the MuPAD program file named file in the MATLAB Editor. The
command open(file) accomplishes the same task.

Examples

To open a program file named yyx.mu located in the folder \Documents\Notes on drive
H:, enter:

openmu('H:\Documents\Notes\yyx.mu')

This command opens yyx.mu in the MATLAB Editor.

More About
• “Open MuPAD Notebooks” on page 3-6

See Also
mupad | open | openmn | openxvc | openxvz

Introduced in R2008b

4 Functions — Alphabetical List

4-912

openxvc
Open MuPAD uncompressed graphics file (XVC)

Syntax

openxvc(file)

Description

openxvc(file) opens the MuPAD XVC graphics file named file. The file name must
be a full path unless the file is in the current folder.

Input Arguments

file

MuPAD XVC graphics file.

Examples

To open a graphics file named image1.xvc in the folder \Documents\Notes of drive
H:, enter:

openxvc('H:\Documents\Notes\image1.xvc')

More About
• “Open MuPAD Notebooks” on page 3-6

See Also
mupad | open | openmn | openmu | openxvz

Introduced in R2008b

 openxvz

4-913

openxvz
Open MuPAD compressed graphics file (XVZ)

Syntax

openxvz(file)

Description

openxvz(file) opens the MuPAD XVZ graphics file named file. The file name must
be a full path unless the file is in the current folder.

Input Arguments

file

MuPAD XVZ graphics file.

Examples

To open a graphics file named image1.xvz in the folder \Documents\Notes of drive
H:, enter:

openxvz('H:\Documents\Notes\image1.xvz')

More About
• “Open MuPAD Notebooks” on page 3-6

See Also
mupad | open | openmn | openmu | openxvc

Introduced in R2008b

4 Functions — Alphabetical List

4-914

or
Logical OR for symbolic expressions

Syntax

A | B

or(A,B)

Description

A | B represents the logical disjunction. A | B is true when either A or B or both are
true.

or(A,B) is equivalent to A | B.

Input Arguments

A

Symbolic equation, inequality, or logical expression that contains symbolic
subexpressions.

B

Symbolic equation, inequality, or logical expression that contains symbolic
subexpressions.

Examples

Combine these symbolic inequalities into the logical expression using |:

syms x y

xy = x >= 0 | y >= 0;

Set the corresponding assumptions on variables x and y using assume:

 or

4-915

assume(xy)

Verify that the assumptions are set:

assumptions

ans =

0 <= x | 0 <= y

Combine two symbolic inequalities into the logical expression using |:

range = x < -1 | x > 1;

Replace variable x with these numeric values. If you replace x with 10, one inequality
is valid. If you replace x with 0, both inequalities are invalid. Note that subs does not
evaluate these inequalities to logical 1 or 0.

x1 = subs(range, x, 10)

x2 = subs(range, x, 0)

x1 =

1 < 10 | 10 < -1

x2 =

0 < -1 | 1 < 0

To evaluate these inequalities to logical 1 or 0, use isAlways:

isAlways(x1)

isAlways(x2)

ans =

 1

ans =

 0

Note that simplify does not simplify these logical expressions to logical 1 or 0. Instead,
they return symbolic values TRUE or FALSE.

s1 = simplify(x1)

s2 = simplify(x2)

s1 =

TRUE

s2 =

4 Functions — Alphabetical List

4-916

FALSE

Convert symbolic TRUE or FALSE to logical values using isAlways:

isAlways(s1)

isAlways(s2)

ans =

 1

ans =

 0

More About

Tips

• If you call simplify for a logical expression containing symbolic subexpressions, you
can get symbolic values TRUE or FALSE. These values are not the same as logical 1
(true) and logical 0 (false). To convert symbolic TRUE or FALSE to logical values, use
isAlways.

See Also
all | and | any | isAlways | not | xor

Introduced in R2012a

 orth

4-917

orth

Orthonormal basis for range of symbolic matrix

Syntax

B = orth(A)

B = orth(A,'real')

B = orth(A,'skipnormalization')

B = orth(A,'real','skipnormalization')

Description

B = orth(A) computes an orthonormal basis for the range of A.

B = orth(A,'real') computes an orthonormal basis using a real scalar product in the
orthogonalization process.

B = orth(A,'skipnormalization') computes a non-normalized orthogonal basis. In
this case, the vectors forming the columns of B do not necessarily have length 1.

B = orth(A,'real','skipnormalization') computes a non-normalized orthogonal
basis using a real scalar product in the orthogonalization process.

Input Arguments

A

Symbolic matrix.

'real'

Flag that prompts orth to avoid using a complex scalar product in the orthogonalization
process.

4 Functions — Alphabetical List

4-918

'skipnormalization'

Flag that prompts orth to skip normalization and compute an orthogonal basis instead
of an orthonormal basis. If you use this flag, lengths of the resulting vectors (the columns
of matrix B) are not required to be 1.

Output Arguments

B

Symbolic matrix.

Examples

Compute an orthonormal basis of the range of this matrix. Because these numbers are
not symbolic objects, you get floating-point results.

A = [2 -3 -1; 1 1 -1; 0 1 -1];

B = orth(A)

B =

 -0.9859 -0.1195 0.1168

 0.0290 -0.8108 -0.5846

 0.1646 -0.5729 0.8029

Now, convert this matrix to a symbolic object, and compute an orthonormal basis:

A = sym([2 -3 -1; 1 1 -1; 0 1 -1]);

B = orth(A)

B =

[(2*5^(1/2))/5, -6^(1/2)/6, -(2^(1/2)*15^(1/2))/30]

[5^(1/2)/5, 6^(1/2)/3, (2^(1/2)*15^(1/2))/15]

[0, 6^(1/2)/6, -(2^(1/2)*15^(1/2))/6]

You can use double to convert this result to the double-precision numeric form. The
resulting matrix differs from the matrix returned by the MATLAB orth function because
these functions use different versions of the Gram-Schmidt orthogonalization algorithm:

double(B)

 orth

4-919

ans =

 0.8944 -0.4082 -0.1826

 0.4472 0.8165 0.3651

 0 0.4082 -0.9129

Verify that B'*B = I, where I is the identity matrix:

B'*B

ans =

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

Now, verify that the 2-norm of each column of B is 1:

norm(B(:, 1))

norm(B(:, 2))

norm(B(:, 3))

ans =

1

ans =

1

ans =

1

Compute an orthonormal basis of this matrix using 'real' to avoid complex conjugates:

syms a

A = [a 1; 1 a];

B = orth(A,'real')

B =

[a/(a^2 + 1)^(1/2), -(a^2 - 1)/((a^2 + 1)*((a^2 -...

 1)^2/(a^2 + 1)^2 + (a^2*(a^2 - 1)^2)/(a^2 + 1)^2)^(1/2))]

[1/(a^2 + 1)^(1/2), (a*(a^2 - 1))/((a^2 + 1)*((a^2 -...

 1)^2/(a^2 + 1)^2 + (a^2*(a^2 - 1)^2)/(a^2 + 1)^2)^(1/2))]

Compute an orthogonal basis of this matrix using 'skipnormalization':

syms a

A = [a 1; 1 a];

4 Functions — Alphabetical List

4-920

B = orth(A,'skipnormalization')

B =

[a, -(a^2 - 1)/(a*conj(a) + 1)]

[1, -(conj(a) - a^2*conj(a))/(a*conj(a) + 1)]

Compute an orthogonal basis of this matrix using 'skipnormalization' and 'real':

syms a

A = [a 1; 1 a];

B = orth(A,'skipnormalization','real')

B =

[a, -(a^2 - 1)/(a^2 + 1)]

[1, (a*(a^2 - 1))/(a^2 + 1)]

More About

Orthonormal Basis

An orthonormal basis for the range of matrix A is matrix B, such that:

• B'*B = I, where I is the identity matrix.
• The columns of B span the same space as the columns of A.
• The number of columns of B is the rank of A.

Tips

• Calling orth for numeric arguments that are not symbolic objects invokes the
MATLAB orth function. Results returned by MATLAB orth can differ from results
returned by orth because these two functions use different algorithms to compute an
orthonormal basis. The Symbolic Math Toolbox orth function uses the classic Gram-
Schmidt orthogonalization algorithm. The MATLAB orth function uses the modified
Gram-Schmidt algorithm because the classic algorithm is numerically unstable.

• Using 'skipnormalization' to compute an orthogonal basis instead of an
orthonormal basis can speed up your computations.

Algorithms

orth uses the classic Gram-Schmidt orthogonalization algorithm.

 orth

4-921

See Also
norm | null | orth | rank | svd

Introduced in R2013a

4 Functions — Alphabetical List

4-922

pade

Pade approximant

Syntax

pade(f,var)

pade(f,var,a)

pade(___ ,Name,Value)

Description

pade(f,var) returns the third-order Padé approximant of the expression f at var = 0.
For details, see “Padé Approximant” on page 4-928.

If you do not specify var, then pade uses the default variable determined by
symvar(f,1).

pade(f,var,a) returns the third-order Padé approximant of expression f at the point
var = a.

pade(___ ,Name,Value) uses additional options specified by one or more Name,Value
pair arguments. You can specify Name,Value after the input arguments in any of the
previous syntaxes.

Examples

Find Padé Approximant for Symbolic Expressions

Find the Padé approximant of sin(x). By default, pade returns a third-order Padé
approximant.

syms x

pade(sin(x))

 pade

4-923

ans =

-(x*(7*x^2 - 60))/(3*(x^2 + 20))

Specify Expansion Variable

If you do not specify the expansion variable, symvar selects it. Find the Padé
approximant of sin(x) + cos(y). The symvar function chooses x as the expansion
variable.

syms x y

pade(sin(x) + cos(y))

ans =

(- 7*x^3 + 3*cos(y)*x^2 + 60*x + 60*cos(y))/(3*(x^2 + 20))

Specify the expansion variable as y. The pade function returns the Padé approximant
with respect to y.

pade(sin(x) + cos(y),y)

ans =

(12*sin(x) + y^2*sin(x) - 5*y^2 + 12)/(y^2 + 12)

Approximate Value of Function at Particular Point

Find the value of tan(3*pi/4). Use pade to find the Padé approximant for tan(x) and
substitute into it using subs to find tan(3*pi/4).

syms x

f = tan(x);

P = pade(f);

y = subs(P,x,3*pi/4)

y =

(pi*((9*pi^2)/16 - 15))/(4*((9*pi^2)/8 - 5))

Use vpa to convert y into a numeric value.

vpa(y)

ans =

4 Functions — Alphabetical List

4-924

-1.2158518789569086447244881326842

Increase Accuracy of Padé Approximant

You can increase the accuracy of the Padé approximant by increasing the order. If
the expansion point is a pole or a zero, the accuracy can also be increased by setting
OrderMode to relative. The OrderMode option has no effect if the expansion point is
not a pole or zero.

Find the Padé approximant of tan(x) using pade with an expansion point of 0 and
Order of [1 1]. Find the value of tan(1/5) by substituting into the Padé approximant
using subs, and use vpa to convert 1/5 into a numeric value.

syms x

p11 = pade(tan(x),x,0,'Order',[1 1])

p11 = subs(p11,x,vpa(1/5))

p11 =

x

p11 =

0.2

Find the approximation error by subtracting p11 from the actual value of tan(1/5).

y = tan(vpa(1/5));

error = y - p11

error =

0.0027100355086724833213582716475345

Increase the accuracy of the Padé approximant by increasing the order using Order. Set
Order to [2 2], and find the error.

p22 = pade(tan(x),x,0,'Order',[2 2])

p22 = subs(p22,x,vpa(1/5));

error = y - p22

p22 =

-(3*x)/(x^2 - 3)

error =

0.0000073328059697806186555689448317799

The accuracy increases with increasing order.

 pade

4-925

If the expansion point is a pole or zero, the accuracy of the Padé approximant decreases.
Setting the OrderMode option to relative compensates for the decreased accuracy. For
details, see “Padé Approximant” on page 4-928. Because the tan function has a zero
at 0, setting OrderMode to relative increases accuracy. This option has no effect if the
expansion point is not a pole or zero.

p22Rel = pade(tan(x),x,0,'Order',[2 2],'OrderMode','relative')

p22Rel = subs(p22Rel,x,vpa(1/5));

error = y - p22Rel

p22Rel =

(x*(x^2 - 15))/(3*(2*x^2 - 5))

error =

0.0000000084084014806113311713765317725998

The accuracy increases if the expansion point is a pole or zero and OrderMode is set to
relative.

Plot Accuracy of Padé Approximant

Plot the difference between exp(x) and its Padé approximants of orders [1,1] through
[4,4]. Use axis to focus on the region of interest. The plot shows that accuracy
increases with increasing order of the Padé approximant.

syms x

expr = exp(x);

hold on

grid on

for i = 1:4

 ezplot(expr - pade(expr,'Order',i))

end

axis([-4 4 -4 4])

legend('Order [1,1]','Order [2,2]','Order [3,3]','Order [4,4]',...

 'Location','Best');

title('Difference Between exp(x) and its Pad\''{e} Approximant',...

 'interpreter','latex')

ylabel('Error')

4 Functions — Alphabetical List

4-926

Input Arguments

f — Input to approximate
symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic
multidimensional array | symbolic function | symbolic expression

Input to approximate, specified as a symbolic number, variable, vector, matrix,
multidimensional array, function, or expression.

var — Expansion variable
symbolic variable

 pade

4-927

Expansion variable, specified as a symbolic variable. If you do not specify var, then pade
uses the default variable determined by symvar(f,1).

a — Expansion point
number | symbolic number | symbolic variable | symbolic function | symbolic
expression

Expansion point, specified as a number, or a symbolic number, variable, function, or
expression. The expansion point cannot depend on the expansion variable. You also can
specify the expansion point as a Name,Value pair argument. If you specify the expansion
point both ways, then the Name,Value pair argument takes precedence.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: pade(f,'Order',[2 2]) returns the Padé approximant of f of order m = 2
and n = 2.

'ExpansionPoint' — Expansion point
number | symbolic number | symbolic variable | symbolic function | symbolic
expression

Expansion point, specified as a number, or a symbolic number, variable, function, or
expression. The expansion point cannot depend on the expansion variable. You can also
specify the expansion point using the input argument a. If you specify the expansion
point both ways, then the Name,Value pair argument takes precedence.

'Order' — Order of Padé approximant
integer | vector of two integers | symbolic integer | symbolic vector of two integers

Order of the Padé approximant, specified as an integer, a vector of two integers, or
a symbolic integer, or vector of two integers. If you specify a single integer, then the
integer specifies both the numerator order m and denominator order n producing a
Padé approximant with m = n. If you specify a vector of two integers, then the first
integer specifies m and the second integer specifies n. By default, pade returns a Padé
approximant with m = n = 3.

4 Functions — Alphabetical List

4-928

'OrderMode' — Flag that selects absolute or relative order for Padé approximant
string

Flag that selects absolute or relative order for Padé approximant, specified as a string.
The default value of absolute uses the standard definition of the Padé approximant. If
you set OrderMode to relative, it only has an effect when there is a pole or a zero at
the expansion point a. In this case, to increase accuracy, pade multiplies the numerator
by (var - a)p where p is the multiplicity of the zero or pole at the expansion point. For
details, see “Padé Approximant” on page 4-928.

More About

Padé Approximant

By default, pade approximates the function f(x) using the standard form of the Padé
approximant of order [m, n] around x = x0 which is

a a x x a x x

b x x b x x

m

m

n

n

0 1 0 0

1 0 0
1

+ -() + + -()

+ -() + + -()

...

...

.

When OrderMode is relative, and a pole or zero exists at the expansion point x = x0,
the pade function uses this form of the Padé approximant

x x a a x x a x x

b x x b x x

p
m

m

n
n

-() + -() + + -()()
+ -() + + -()

0 0 1 0 0

1 0 0
1

...

...

..

The parameters p and a0 are given by the leading order term f = a0 (x - x0)p + O((x - x0)p + 1)
of the series expansion of f around x = x0. Thus, p is the multiplicity of the pole or zero at
x0.

Tips

• If you use both the third argument a and ExpansionPoint to specify the expansion
point, the value specified via ExpansionPoint prevails.

 pade

4-929

Algorithms

• The parameters a1,…,bn are chosen such that the series expansion of the Pade
approximant coincides with the series expansion of f to the maximal possible order.

• The expansion points ±∞ and ±i∞ are not allowed.
• When pade cannot find the Padé approximant, it returns the function call.
• For pade to return the Padé approximant, a Taylor or Laurent series expansion of f

must exist at the expansion point.

See Also
series | taylor

Introduced in R2014b

4 Functions — Alphabetical List

4-930

partfrac
Partial fraction decomposition

Syntax

partfrac(expr,var)

partfrac(expr,var,Name,Value)

Description

partfrac(expr,var) finds the partial fraction decomposition of expr with respect to
var. If you do not specify var, then partfrac uses the variable determined by symvar.

partfrac(expr,var,Name,Value) finds the partial fraction decomposition using
additional options specified by one or more Name,Value pair arguments.

Examples

Partial Fraction Decomposition

Find partial fraction decomposition of univariate and multivariate expressions.

First, find partial fraction decomposition of univariate expressions. For expressions with
one variable, you can omit specifying the variable.

syms x

partfrac(x^2/(x^3 - 3*x + 2))

ans =

5/(9*(x - 1)) + 1/(3*(x - 1)^2) + 4/(9*(x + 2))

For some expressions, partfrac returns visibly simpler forms.

partfrac((x^6 + 15*x^5 + 94*x^4 + 316*x^3 + 599*x^2 + 602*x + 247)/...

(x^6 + 14*x^5 + 80*x^4 + 238*x^3 + 387*x^2 + 324*x + 108))

ans =

 partfrac

4-931

1/(x + 1) + 1/(x + 2)^2 + 1/(x + 3)^3 + 1

Next, find partial fraction decomposition of a multivariate expression with respect to a
particular variable.

syms a b

partfrac(a^2/(a^2 - b^2),a)

partfrac(a^2/(a^2 - b^2),b)

ans =

b/(2*(a - b)) - b/(2*(a + b)) + 1

ans =

a/(2*(a + b)) + a/(2*(a - b))

If you do not specify the variable, then partfrac computes partial fraction
decomposition with respect to a variable determined by symvar.

symvar(a^2/(a^2 - b^2),1)

partfrac(a^2/(a^2 - b^2))

ans =

b

ans =

a/(2*(a + b)) + a/(2*(a - b))

Factorization Modes

Use the FactorMode argument to choose a particular factorization mode.

Find the partial fraction decomposition without specifying the factorization mode. By
default, partfrac uses factorization over rational numbers. In this mode, partfrac
keeps numbers in their exact symbolic form.

syms x

partfrac(1/(x^3 + 2), x)

ans =

1/(x^3 + 2)

Find the partial fraction decomposition of the same expression, but this time use numeric
factorization over real numbers. In this mode, partfrac factors the denominator into
linear and quadratic irreducible polynomials with real coefficients. This mode converts
all numeric values to floating-point numbers.

4 Functions — Alphabetical List

4-932

partfrac(1/(x^3 + 2), x, 'FactorMode', 'real')

ans =

0.2099868416491455274612017678797/(x + 1.2599210498948731647672106072782) -...

(0.2099868416491455274612017678797*x - 0.52913368398939982491723521309077)/(x^2 -...

1.2599210498948731647672106072782*x + 1.5874010519681994747517056392723)

Find the partial fraction decomposition of this expression using factorization over
complex numbers. In this mode, partfrac reduces quadratic polynomials in the
denominator to linear expressions with complex coefficients. This mode converts all
numeric values to floating-point numbers.

partfrac(1/(x^3 + 2), x, 'FactorMode', 'complex')

ans =

(- 0.10499342082457276373060088393985 + 0.18185393932862023392667876903163i)/(x -...

0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i) +...

0.2099868416491455274612017678797/(x + 1.2599210498948731647672106072782) +...

(- 0.10499342082457276373060088393985 - 0.18185393932862023392667876903163i)/(x -...

0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i)

Find the partial fraction decomposition of this expression using the full factorization
mode. In this mode, partfrac factors the denominator into linear expressions, reducing
quadratic polynomials to linear expressions with complex coefficients. This mode keeps
numbers in their exact symbolic form.

partfrac(1/(x^3 + 2), x, 'FactorMode', 'full')

ans =

2^(1/3)/(6*(x + 2^(1/3))) +...

(2^(1/3)*((3^(1/2)*1i)/2 - 1/2))/(6*(x + 2^(1/3)*((3^(1/2)*1i)/2 - 1/2))) -...

(2^(1/3)*((3^(1/2)*1i)/2 + 1/2))/(6*(x - 2^(1/3)*((3^(1/2)*1i)/2 + 1/2)))

Approximate the result with floating-point numbers by using vpa. Because the
expression does not contain any symbolic parameters besides the variable x, the result is
the same as in complex factorization mode.

vpa(ans)

ans =

(- 0.10499342082457276373060088393985 + 0.18185393932862023392667876903163i)/(x -...

0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i) +...

0.2099868416491455274612017678797/(x + 1.2599210498948731647672106072782) +...

(- 0.10499342082457276373060088393985 - 0.18185393932862023392667876903163i)/(x -...

0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i)

 partfrac

4-933

Replace 2 in the same expression with a symbolic parameter a and find partial fraction
decomposition in the complex and full factorization modes. In the complex mode,
partfrac factors only those expressions in the denominator whose coefficients can be
converted to floating-point numbers. Thus, it returns this expression unchanged.

syms a

partfrac(1/(x^3 + a), x, 'FactorMode', 'complex')

ans =

1/(x^3 + a)

When you use the full factorization mode, partfrac factors expressions in the
denominator symbolically. Thus, the partial fraction decomposition of the same
expression in the full factorization mode is the following expression.

partfrac(1/(x^3 + a), x, 'FactorMode', 'full')

ans =

1/(3*(-a)^(2/3)*(x - (-a)^(1/3))) -...

((3^(1/2)*1i)/2 + 1/2)/(3*(-a)^(2/3)*(x + (-a)^(1/3)*((3^(1/2)*1i)/2 + 1/2))) +...

((3^(1/2)*1i)/2 - 1/2)/(3*(-a)^(2/3)*(x - (-a)^(1/3)*((3^(1/2)*1i)/2 - 1/2)))

Full Factorization Mode

In the full factorization mode,partfrac can also return partial fraction decomposition as
a symbolic sum of polynomial roots expressed as RootOf.

Find the partial fraction decomposition of this expression.

syms x

s = partfrac(1/(x^3 + x - 3), x, 'FactorMode','full')

s =

symsum(-((6*root(z^3 + z - 3, z, k)^2)/247 +...

 (27*root(z^3 + z - 3, z, k))/247 +...

 4/247)/(root(z^3 + z - 3, z, k) - x), k, 1, 3)

Approximate the result with floating-point numbers by using vpa.

vpa(s)

ans =

(- 0.092300247114462739909288600864302 + 0.11581130283490645120989658654914i)/(x +...

0.60670583138111481706606568869074 - 1.450612249188441526515442203395i) +...

4 Functions — Alphabetical List

4-934

(- 0.092300247114462739909288600864302 - 0.11581130283490645120989658654914i)/(x +...

0.60670583138111481706606568869074 + 1.450612249188441526515442203395i) +...

0.1846004942289254798185772017286/(x - 1.2134116627622296341321313773815)

Numerators and Denominators of Partial Fraction Decomposition

Find a vector of numerators and a vector of denominators of the partial fraction
decomposition.

Find the partial fraction decomposition of this expression.

syms x

P = partfrac(x^2/(x^3 - 3*x + 2), x)

P =

5/(9*(x - 1)) + 1/(3*(x - 1)^2) + 4/(9*(x + 2))

Partial fraction decomposition is a sum of fractions. Use the children function to return
a vector containing the terms of that sum. then use numden to extract numerators and
denominators of the terms.

[N,D] = numden(children(P))

N =

[5, 1, 4]

D =

[9*x - 9, 3*(x - 1)^2, 9*x + 18]

Reconstruct the partial fraction decomposition from the vectors of numerators and
denominators.

P1 = sum(N./D)

P1 =

1/(3*(x - 1)^2) + 5/(9*x - 9) + 4/(9*x + 18)

Verify that the reconstructed expression, P1, is equivalent to the original partial fraction
decomposition, P.

isAlways(P1 == P)

ans =

 1

 partfrac

4-935

Input Arguments

expr — Rational expression
symbolic expression | symbolic function

Rational expression, specified as a symbolic expression or function.

var — Variable of interest
symbolic variable

Variable of interest, specified as a symbolic variable.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: partfrac(1/(x^3 - 2),x,'FactorMode','real')

'FactorMode' — Factorization mode
'rational' (default) | 'real' | 'complex' | 'full'

Factorization mode, specified as the comma-separated pair consisting of 'FactorMode'
and one of these strings.

'rational' Factorization over rational numbers.
'real' Factorization over real numbers. A real numeric factorization is

a factorization into linear and quadratic irreducible polynomials
with real coefficients. This factorization mode requires the
coefficients of the input to be convertible to real floating-point
numbers. All other inputs (for example, those inputs containing
symbolic or complex coefficients) are treated as irreducible.

'complex' Factorization over complex numbers. A complex numeric
factorization is a factorization into linear factors whose coefficients
are floating-point numbers. Such factorization is only available
if the coefficients of the input are convertible to floating-point
numbers, that is, if the roots can be determined numerically.
Symbolic inputs are treated as irreducible.

4 Functions — Alphabetical List

4-936

'full' Full factorization. A full factorization is a symbolic factorization
into linear factors. The result shows these factors using radicals or
as a symsum ranging over a RootOf.

More About

Partial Fraction Decomposition

Partial fraction decomposition of a rational expression

f x g x
p x

q x
() = () +

()

()
,

where the denominator can be written as q x q x q x() = () ()1 2
… , is an expression of the

form

f x g x
p x

q x

j

jj

() = () +
()
()Â

Here, the denominators q xj () are irreducible polynomials or powers of irreducible

polynomials. Also, the numerators p xj () are polynomials of smaller degrees than the

corresponding denominators q xj () .

Partial fraction decomposition can simplify integration by integrating each term of the
returned expression separately.

See Also
children | coeffs | collect | combine | compose | divisors | expand | factor
| horner | numden | rewrite | simplify | simplifyFraction

Introduced in R2015a

 pinv

4-937

pinv
Moore-Penrose inverse (pseudoinverse) of symbolic matrix

Syntax

X = pinv(A)

Description

X = pinv(A) returns the pseudoinverse of A. Pseudoinverse is also called the Moore-
Penrose inverse.

Input Arguments

A

Symbolic m-by-n matrix.

Output Arguments

X

Symbolic n-by-m matrix, such that A*X*A = A and X*A*X = X.

Examples

Compute the pseudoinverse of this matrix. Because these numbers are not symbolic
objects, you get floating-point results.

A = [1 1i 3; 1 3 2];

X = pinv(A)

X =

 0.0729 + 0.0312i 0.0417 - 0.0312i

4 Functions — Alphabetical List

4-938

 -0.2187 - 0.0521i 0.3125 + 0.0729i

 0.2917 + 0.0625i 0.0104 - 0.0937i

Now, convert this matrix to a symbolic object, and compute the pseudoinverse.

A = sym([1 1i 3; 1 3 2]);

X = pinv(A)

X =

[7/96 + 1i/32, 1/24 - 1i/32]

[- 7/32 - 5i/96, 5/16 + 7i/96]

[7/24 + 1i/16, 1/96 - 3i/32]

Check that A*X*A = A and X*A*X = X.

isAlways(A*X*A == A)

ans =

 1 1 1

 1 1 1

isAlways(X*A*X == X)

ans =

 1 1

 1 1

 1 1

Now, verify that A*X and X*A are Hermitian matrices.

isAlways(A*X == (A*X)')

ans =

 1 1

 1 1

isAlways(X*A == (X*A)')

ans =

 1 1 1

 1 1 1

 1 1 1

Compute the pseudoinverse of this matrix.

syms a

A = [1 a; -a 1];

 pinv

4-939

X = pinv(A)

X =

[(a*conj(a) + 1)/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) -...

(conj(a)*(a - conj(a)))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1),

- (a - conj(a))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) -...

(conj(a)*(a*conj(a) + 1))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1)]

[(a - conj(a))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) +...

(conj(a)*(a*conj(a) + 1))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1),

(a*conj(a) + 1)/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) -...

(conj(a)*(a - conj(a)))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1)]

Now, compute the pseudoinverse of A assuming that a is real.

assume(a,'real')

A = [1 a; -a 1];

X = pinv(A)

X =

[1/(a^2 + 1), -a/(a^2 + 1)]

[a/(a^2 + 1), 1/(a^2 + 1)]

For further computations, remove the assumption.

syms a clear

More About

Moore-Penrose Pseudoinverse

The pseudoinverse of an m-by-n matrix A is an n-by-m matrix X, such that A*X*A = A
and X*A*X = X. The matrices A*X and X*A must be Hermitian.

Tips

• Calling pinv for numeric arguments that are not symbolic objects invokes the
MATLAB pinv function.

• For an invertible matrix A, the Moore-Penrose inverse X of A coincides with the
inverse of A.

See Also
inv | linalg::pseudoInverse | pinv | rank | svd

4 Functions — Alphabetical List

4-940

Introduced in R2013a

 plus, +

4-941

plus, +
Symbolic addition

Syntax

A + B

plus(A,B)

Description

A + B adds A and B.

plus(A,B) is equivalent to A + B.

Examples

Add Scalar to Array

plus adds x to each element of the array.

syms x

A = [x sin(x) 3];

A + x

ans =

[2*x, x + sin(x), x + 3]

Add Two Matrices

Add the identity matrix to matrix M.

syms x

M = [x x^2;Inf 0];

M + eye(2)

ans =

4 Functions — Alphabetical List

4-942

[x + 1, x^2]

[Inf, 1]

Alternatively, use plus(M,eye(2)).

plus(M,eye(2))

ans =

[x + 1, x^2]

[Inf, 1]

Add Symbolic Functions

syms f(x) g(x)

f(x) = x^2 + 5*x + 6;

g(x) = 3*x - 2;

h = f + g

h(x) =

x^2 + 8*x + 4

Add Expression to Symbolic Function

Add expression expr to function f.

syms f(x)

f(x) = x^2 + 3*x + 2;

expr = x^2 - 2;

f(x) = f(x) + expr

f(x) =

2*x^2 + 3*x

Input Arguments

A — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array
| symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function,
or expression.

 plus, +

4-943

B — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array
| symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function,
or expression.

More About

Tips

• All nonscalar arguments must be the same size. If one input argument is nonscalar,
then plus expands the scalar into an array of the same size as the nonscalar
argument, with all elements equal to the scalar.

See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | mtimes | power
| rdivide | times | transpose

Introduced before R2006a

4 Functions — Alphabetical List

4-944

pochhammer
Pochhammer symbol

Syntax
pochhammer(x,n)

Description
pochhammer(x,n) returns the “Pochhammer Symbol” on page 4-948 (x)n.

Examples

Find Pochhammer Symbol for Numeric and Symbolic Inputs

Find the Pochhammer symbol for the numeric inputs x = 3 at n = 2.

pochhammer(3,2)

ans =

 12

Find the Pochhammer symbol for the symbolic input x at n = 3 . The pochhammer
function does not automatically return the expanded form of the expression. Use expand
to force pochhammer to return the form of the expanded expression.

syms x

P = pochhammer(x, 3)

P = expand(P)

P =

pochhammer(x, 3)

P =

x^3 + 3*x^2 + 2*x

Rewrite and Factor Outputs of Pochhammer

If conditions are satisfied, expand rewrites the solution using gamma.

 pochhammer

4-945

syms n x

assume(x>0)

assume(n>0)

P = pochhammer(x, n);

P = expand(P)

P =

gamma(n + x)/gamma(x)

Clear assumptions on n and x to use them in further computations.

syms n x clear

To convert expanded output of pochhammer into its factors, use factor.

P = expand(pochhammer(x, 4));

P = factor(P)

P =

[x, x + 3, x + 2, x + 1]

Differentiate Pochhammer Symbol

Differentiate pochhammer once with respect to x.

syms n x

diff(pochhammer(x,n),x)

ans =

pochhammer(x, n)*(psi(n + x) - psi(x))

Differentiate pochhammer twice with respect to n.

diff(pochhammer(x,n),n,2)

ans =

pochhammer(x, n)*psi(n + x)^2 + pochhammer(x, n)*psi(1, n + x)

Taylor Series Expansion of Pochhammer Symbol

Use taylor to find the Taylor series expansion of pochhammer with n = 3 around the
expansion point x = 2.

4 Functions — Alphabetical List

4-946

syms x

taylor(pochhammer(x,3),x,2)

ans =

26*x + 9*(x - 2)^2 + (x - 2)^3 - 28

Plot Pochhammer Symbol

Plot the Pochhammer symbol from n = 0 to n = 4 for x. Use axis to display the region
of interest.

syms x

hold on

for n = 0:4

 ezplot(pochhammer(x,n))

end

axis([-4 4 -4 4])

grid on

legend('n = 0','n = 1','n = 2','n = 3','n = 4','Location','Best')

title('Pochhammer symbol (x)_n for n=0 to n=4')

 pochhammer

4-947

Input Arguments

x — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic
variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

4 Functions — Alphabetical List

4-948

n — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic
variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

More About

Pochhammer Symbol

Pochhammer’s symbol is defined as

x
x n

x
n

() =
+()

()

G

G
,

where Γ is the Gamma function.

If n is a positive integer, Pochhammer’s symbol is

x x x x nn
() = +() + -()1 1...

Algorithms

• If x and n are numerical values, then an explicit numerical result is returned.
Otherwise, a symbolic function call is returned.

• If both x and x + n are nonpositive integers, then

x
x

x n
n

n() = -()
-()

- -()
1

1

1

G

G
.

• The following special cases are implemented.

 pochhammer

4-949

x

x x

x

x

n

n

n

n

() =

() =

() =
-

() = +()

() = +()

-

0

1

1

1

1

1

1 1

2 2

G

G

• If n is a positive integer, then expand(pochhammer(x,n)) returns the expanded
polynomial x x x n+() + -()1 1... .

• If n is not an integer, then expand(pochhammer(x,n)) returns a representation in
terms of gamma.

See Also
factorial | gamma

Introduced in R2014b

4 Functions — Alphabetical List

4-950

poles

Poles of expression or function

Syntax

poles(f,var)

P = poles(f,var)

[P,N] = poles(f,var)

[P,N,R] = poles(f,var)

poles(f,var,a,b)

P = poles(f,var,a,b)

[P,N] = poles(f,var,a,b)

[P,N,R] = poles(f,var,a,b)

Description

poles(f,var) finds nonremovable singularities of f. These singularities are called the
poles of f. Here, f is a function of the variable var.

P = poles(f,var) finds the poles of f and assigns them to vector P.

[P,N] = poles(f,var) finds the poles of f and their orders. This syntax assigns the
poles to vector P and their orders to vector N.

[P,N,R] = poles(f,var) finds the poles of f and their orders and residues. This
syntax assigns the poles to vector P, their orders to vector N, and their residues to vector
R.

poles(f,var,a,b) finds the poles in the interval (a,b).

P = poles(f,var,a,b) finds the poles of f in the interval (a,b) and assigns them to
vector P.

[P,N] = poles(f,var,a,b) finds the poles of f in the interval (a,b) and their orders.
This syntax assigns the poles to vector P and their orders to vector N.

 poles

4-951

[P,N,R] = poles(f,var,a,b) finds the poles of f in the interval (a,b) and their
orders and residues. This syntax assigns the poles to vector P, their orders to vector N,
and their residues to vector R.

Input Arguments

f

Symbolic expression or function.

var

Symbolic variable.

Default: Variable determined by symvar.

a,b

Real numbers (including infinities) that specify the search interval for function poles.

Default: Entire complex plane.

Output Arguments

P

Symbolic vector containing the values of poles.

N

Symbolic vector containing the orders of poles.

R

Symbolic vector containing the residues of poles.

Examples

Find the poles of these expressions:

4 Functions — Alphabetical List

4-952

syms x

poles(1/(x - i))

poles(sin(x)/(x - 1))

ans =

1i

ans =

1

Find the poles of this expression. If you do not specify a variable, poles uses the default
variable determined by symvar:

syms x a

poles(1/((x - 1)*(a - 2)))

ans =

1

To find the poles of this expression as a function of variable a, specify a as the second
argument:

syms x a

poles(1/((x - 1)*(a - 2)), a)

ans =

2

Find the poles of the tangent function in the interval (-pi, pi):

syms x

poles(tan(x), x, -pi, pi)

ans =

 -pi/2

 pi/2

The tangent function has an infinite number of poles. If you do not specify the interval,
poles cannot find all of them. It issues a warning and returns an empty symbolic object:

syms x

poles(tan(x))

Warning: Cannot determine the poles.

 poles

4-953

ans =

Empty sym: 0-by-1

If poles can prove that the expression or function does not have any poles in the
specified interval, it returns an empty symbolic object without issuing a warning:

syms x

poles(tan(x), x, -1, 1)

ans =

Empty sym: 0-by-1

Use two output vectors to find the poles of this expression and their orders. Restrict the
search interval to (-pi, 10*pi):

syms x

[Poles, Orders] = poles(tan(x)/(x - 1)^3, x, -pi, pi)

Poles =

 -pi/2

 pi/2

 1

Orders =

 1

 1

 3

Use three output vectors to find the poles of this expression and their orders and
residues:

syms x a

[Poles, Orders, Residues] = poles(a/x^2/(x - 1), x)

Poles =

 1

 0

Orders =

 1

 2

Residues =

 a

 -a

4 Functions — Alphabetical List

4-954

More About

Tips

• If poles cannot find all nonremovable singularities and cannot prove that they do not
exist, it issues a warning and returns an empty symbolic object.

• If poles can prove that f has no poles (either in the specified interval (a,b) or in the
complex plane), it returns an empty symbolic object without issuing a warning.

• a and b must be real numbers or infinities. If you provide complex numbers, poles
uses an empty interval and returns an empty symbolic object.

See Also
limit | solve | symvar | vpasolve

Introduced in R2012b

 poly2sym

4-955

poly2sym
Create symbolic polynomial from vector of coefficients

Compatibility

poly2sym will not accept character strings as a second input argument in a future
release. Instead, create symbolic variables with syms.

Syntax

p = poly2sym(c)

p = poly2sym(c,var)

Description

p = poly2sym(c) creates the symbolic polynomial expression p from the vector
of coefficients c. The polynomial variable is x. If c = [c1,c2,...,cn], then p =
poly2sym(c) returns c x c x c

n n

n1

1

2

2- -
+ + +... .

This syntax does not create the symbolic variable x in the MATLAB Workspace.

p = poly2sym(c,var) uses var as a polynomial variable when creating the symbolic
polynomial expression p from the vector of coefficients c.

Examples

Create Polynomial Expression

Create a polynomial expression from a symbolic vector of coefficients. If you do not
specify a polynomial variable, poly2sym uses x.

syms a b c d

4 Functions — Alphabetical List

4-956

p = poly2sym([a, b, c, d])

p =

a*x^3 + b*x^2 + c*x + d

Create a polynomial expression from a symbolic vector of rational coefficients.

p = poly2sym(sym([1/2, -1/3, 1/4]))

p =

x^2/2 - x/3 + 1/4

Create a polynomial expression from a numeric vector of floating-point coefficients.
The toolbox converts floating-point coefficients to rational numbers before creating a
polynomial expression.

p = poly2sym([0.75, -0.5, 0.25])

p =

(3*x^2)/4 - x/2 + 1/4

Specify Polynomial Variable

Create a polynomial expression from a symbolic vector of coefficients. Use t as a
polynomial variable.

syms a b c d t

p = poly2sym([a, b, c, d], t)

p =

a*t^3 + b*t^2 + c*t + d

To use a symbolic expression, such as t^2 + 1 or exp(t), instead of a polynomial
variable, substitute the variable using subs.

p1 = subs(p, t, t^2 + 1)

p2 = subs(p, t, exp(t))

p1 =

d + a*(t^2 + 1)^3 + b*(t^2 + 1)^2 + c*(t^2 + 1)

p2 =

d + c*exp(t) + a*exp(3*t) + b*exp(2*t)

 poly2sym

4-957

Input Arguments

c — Polynomial coefficients
numeric vector | symbolic vector

Polynomial coefficients, specified as a numeric or symbolic vector. Argument c can be a
column or row vector.

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments

p — Polynomial
symbolic expression

Polynomial, returned as a symbolic expression.

More About

Tips

• When you call poly2sym for a numeric vector c, the toolbox converts the numeric
vector to a vector of symbolic numbers using the default (rational) conversion mode of
sym.

See Also
coeffs | sym | sym2poly

Introduced before R2006a

4 Functions — Alphabetical List

4-958

polylog
Polylogarithm

Syntax

polylog(n,x)

Description

polylog(n,x) returns the polylogarithm of the order n and the argument x.

Examples

Polylogarithm for Numeric and Symbolic Arguments

Depending on its arguments, polylog returns floating-point or exact symbolic results.

Compute polylogarithms for these numbers. Because these numbers are not symbolic
objects, you get floating-point results.

A = [polylog(3,-1/2), polylog(4,1/3), polylog(5,3/4)]

A =

 -0.4726 0.3408 0.7697

Compute polylogarithms for the same numbers converted to symbolic objects. For most
symbolic (exact) numbers, polylog returns unresolved symbolic calls.

symA = [polylog(3,sym(-1/2)), polylog(sym(4),1/3), polylog(5,sym(3/4))]

symA =

[polylog(3, -1/2), polylog(4, 1/3), polylog(5, 3/4)]

Use vpa to approximate symbolic results with the required number of digits.

vpa(symA)

 polylog

4-959

ans =

[-0.47259784465889687461862319312655,...

0.3407911308562507524776409440122,...

0.76973541059975738097269173152535]

Explicit Expressions for Polylogarithms

If the order of the polylogarithm is 0, 1, or a negative integer, then polylog returns an
explicit expression.

The polylogarithm of n = 1 is a logarithm function.

syms x

polylog(1,x)

ans =

-log(1 - x)

The polylogarithms of n < 1 are rational expressions.

polylog(0,x)

ans =

-x/(x - 1)

polylog(-1,x)

ans =

x/(x - 1)^2

polylog(-2,x)

ans =

-(x^2 + x)/(x - 1)^3

polylog(-3,x)

ans =

(x^3 + 4*x^2 + x)/(x - 1)^4

polylog(-10,x)

ans =

-(x^10 + 1013*x^9 + 47840*x^8 + 455192*x^7 + ...

1310354*x^6 + 1310354*x^5 + 455192*x^4 +...

4 Functions — Alphabetical List

4-960

47840*x^3 + 1013*x^2 + x)/(x - 1)^11

More Special Values

The polylog function has special values for some parameters.

If the second argument is 0, then the polylogarithm equals 0 for any integer value of the
first argument. If the second argument is 1, then the polylogarithm is the Riemann zeta
function of the first argument.

syms n

[polylog(n,0), polylog(n,1)]

ans =

[0, zeta(n)]

If the second argument is -1, then the polylogarithm has a special value for any integer
value of the first argument except 1.

assume(n ~= 1)

polylog(n,-1)

ans =

zeta(n)*(2^(1 - n) - 1)

For further computations, clear the assumption.

syms n clear

Other special values of the polylogarithm include the following.

[polylog(4,sym(1)), polylog(sym(5),-1), polylog(2,sym(i))]

ans =

[pi^4/90, -(15*zeta(5))/16, catalan*1i - pi^2/48]

Plot Polylogarithm

Plot the polylogarithms of the orders from -3 to 1.

syms x

for n = -3:1

 ezplot(polylog(n,x),[-5 1])

 hold on

 polylog

4-961

end

title('Polylogarithm')

hold off

Handle Expressions Containing Polylogarithms

Many functions, such as diff and int, can handle expressions containing polylog.

Differentiate these expressions containing polylogarithms.

syms n x

diff(polylog(n, x), x)

diff(x*polylog(n, x), x)

4 Functions — Alphabetical List

4-962

ans =

polylog(n - 1, x)/x

ans =

polylog(n, x) + polylog(n - 1, x)

Compute integrals of these expressions containing polylogarithms.

int(polylog(n, x)/x, x)

int(polylog(n, x) + polylog(n - 1, x), x)

ans =

polylog(n + 1, x)

ans =

x*polylog(n, x)

Input Arguments

n — Index of polylogarithm
integer

Index of the polylogarithm, specified as an integer.

x — Argument of polylogarithm
number | symbolic variable | symbolic expression | symbolic function | vector | matrix

Argument of the polylogarithm, specified as a number, symbolic variable, expression,
function, vector, or matrix.

More About

Polylogarithm

For a complex number z of modulus |z| < 1, the polylogarithm of order n is defined as
follows.

Lin

k

n
k

z
z

k
() =

=

•

Â
1

 polylog

4-963

This function is extended to the whole complex plane by analytic continuation, with a
branch cut along the real interval [1, ∞) for n ≥ 1.

Tips

• polylog(2,x) is equivalent to dilog(1 - x).
• The logarithmic integral function (the integral logarithm) uses the same notation,

Li(x), but without an index. The toolbox provides the logint function for the
integral logarithm.

See Also
dilog | log | log10 | log2 | logint | zeta

Introduced in R2014b

4 Functions — Alphabetical List

4-964

potential
Potential of vector field

Syntax

potential(V,X)

potential(V,X,Y)

Description

potential(V,X) computes the potential of the vector field V with respect to the vector X
in Cartesian coordinates. The vector field V must be a gradient field.

potential(V,X,Y) computes the potential of vector field V with respect to X using Y as
base point for the integration.

Input Arguments

V

Vector of symbolic expressions or functions.

X

Vector of symbolic variables with respect to which you compute the potential.

Y

Vector of symbolic variables, expressions, or numbers that you want to use as a base
point for the integration. If you use this argument, potential returns P(X) such that
P(Y) = 0. Otherwise, the potential is only defined up to some additive constant.

Examples

Compute the potential of this vector field with respect to the vector [x, y, z]:

 potential

4-965

syms x y z

P = potential([x, y, z*exp(z)], [x y z])

P =

x^2/2 + y^2/2 + exp(z)*(z - 1)

Use the gradient function to verify the result:

simplify(gradient(P, [x y z]))

ans =

 x

 y

 z*exp(z)

Compute the potential of this vector field specifying the integration base point as [0 0
0]:

syms x y z

P = potential([x, y, z*exp(z)], [x y z], [0 0 0])

P =

x^2/2 + y^2/2 + exp(z)*(z - 1) + 1

Verify that P([0 0 0]) = 0:

subs(P, [x y z], [0 0 0])

ans =

 0

If a vector field is not gradient, potential returns NaN:

potential([x*y, y], [x y])

ans =

NaN

More About

Scalar Potential of Gradient Vector Field

The potential of a gradient vector field V(X) = [v1(x1,x2,...),v2(x1,x2,...),...] is the scalar P(X)
such that V X P X() = — () .

4 Functions — Alphabetical List

4-966

The vector field is gradient if and only if the corresponding Jacobian is symmetrical:

∂
∂

Ê

Ë
ÁÁ

ˆ

¯
˜̃ =

∂

∂

Ê

Ë
ÁÁ

ˆ

¯
˜̃

v

x

v

x

i

j

j

i

The potential function represents the potential in its integral form:

P X X Y V Y X Y d() = -() ◊ + -()()Ú l l
0

1

Tips

• If potential cannot verify that V is a gradient field, it returns NaN.
• Returning NaN does not prove that V is not a gradient field. For performance reasons,

potential sometimes does not sufficiently simplify partial derivatives, and
therefore, it cannot verify that the field is gradient.

• If Y is a scalar, then potential expands it into a vector of the same length as X with
all elements equal to Y.

See Also
curl | diff | divergence | gradient | hessian | jacobian | laplacian |
vectorPotential

Introduced in R2012a

 power, .^

4-967

power, .^
Symbolic array power

Syntax

A.^B

power(A,B)

Description

A.^B computes A to the B power and is an elementwise operation.

power(A,B) is equivalent to A.^B.

Examples

Square Each Matrix Element

Create a 2-by-3 matrix.

A = sym('a', [2 3])

A =

[a1_1, a1_2, a1_3]

[a2_1, a2_2, a2_3]

Square each element of the matrix.

A.^2

ans =

[a1_1^2, a1_2^2, a1_3^2]

[a2_1^2, a2_2^2, a2_3^2]

Use Matrices for Base and Exponent

Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

4 Functions — Alphabetical List

4-968

H = sym(hilb(3))

d = diag(sym([1 2 3]))

H =

[1, 1/2, 1/3]

[1/2, 1/3, 1/4]

[1/3, 1/4, 1/5]

d =

[1, 0, 0]

[0, 2, 0]

[0, 0, 3]

Raise the elements of the Hilbert matrix to the powers of the diagonal matrix. The base
and the exponent must be matrices of the same size.

H.^d

ans =

[1, 1, 1]

[1, 1/9, 1]

[1, 1, 1/125]

Input Arguments

A — Input
number | symbolic number | symbolic variable | symbolic vector | symbolic matrix |
symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or a symbolic number, variable, vector, matrix,
multidimensional array, function, or expression. Inputs A and B must be the same size
unless one is a scalar. A scalar value expands into an array of the same size as the other
input.

B — Input
number | symbolic number | symbolic variable | symbolic vector | symbolic matrix |
symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or a symbolic number, variable, vector, matrix,
multidimensional array, function, or expression. Inputs A and B must be the same size
unless one is a scalar. A scalar value expands into an array of the same size as the other
input.

 power, .^

4-969

See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus
| rdivide | times | transpose

Introduced before R2006a

4 Functions — Alphabetical List

4-970

pretty
Prettyprint symbolic expressions

Syntax

pretty(X)

Description

pretty(X) prints symbolic output of X in a format that resembles typeset mathematics.

Examples

The following statements:

A = sym(pascal(2))

B = eig(A)

pretty(B)

return:

A =

[1, 1]

[1, 2]

B =

 3/2 - 5^(1/2)/2

 5^(1/2)/2 + 3/2

/ 3 sqrt(5) \

| - - ------- |

| 2 2 |

| |

| sqrt(5) 3 |

| ------- + - |

\ 2 2 /

 pretty

4-971

Solve this equation, and then use pretty to represent the solutions in the format similar
to typeset mathematics:

syms x

s = solve(x^4 + 2*x + 1, x,'MaxDegree',3);

pretty(s)

For better readability, pretty uses abbreviations when representing long expressions:

/ -1 \

| |

| 2 1 |

| #2 - ---- + - |

| 9 #2 3 |

| |

| 1 #2 1 |

| ---- - #1 - -- + - |

| 9 #2 2 3 |

| |

| 1 #2 1 |

| #1 + ---- - -- + - |

\ 9 #2 2 3 /

where

 / 2 \

 sqrt(3) | ---- + #2 | 1i

 \ 9 #2 /

 #1 == ------------------------

 2

 / sqrt(11) sqrt(27) 17 \1/3

 #2 == | ----------------- - -- |

 \ 27 27 /

Introduced before R2006a

4 Functions — Alphabetical List

4-972

psi
Digamma function

Syntax

psi(x)

psi(k,x)

Description

psi(x) computes the digamma function of x.

psi(k,x) computes the polygamma function of x, which is the kth derivative of the
digamma function at x.

Input Arguments

x

Symbolic number, variable, expression, or a vector, matrix, or multidimensional array of
these.

k

Nonnegative integer or vector, matrix or multidimensional array of nonnegative integers.
If x is nonscalar and k is scalar, then k is expanded into a nonscalar of the same
dimensions as x with each element being equal to k. If both x and k are nonscalars, they
must have the same dimensions.

Examples

Compute the digamma and polygamma functions for these numbers. Because these
numbers are not symbolic objects, you get the floating-point results.

[psi(1/2) psi(2, 1/2) psi(1.34) psi(1, sin(pi/3))]

 psi

4-973

ans =

 -1.9635 -16.8288 -0.1248 2.0372

Compute the digamma and polygamma functions for the numbers converted to symbolic
objects.

[psi(sym(1/2)), psi(1, sym(1/2)), psi(sym(1/4))]

ans =

[- eulergamma - 2*log(2), pi^2/2, - eulergamma - pi/2 - 3*log(2)]

For some symbolic (exact) numbers, psi returns unresolved symbolic calls.

psi(sym(sqrt(2)))

ans =

psi(2^(1/2))

Compute the derivatives of these expressions containing the digamma and polygamma
functions.

syms x

diff(psi(1, x^3 + 1), x)

diff(psi(sin(x)), x)

ans =

3*x^2*psi(2, x^3 + 1)

ans =

cos(x)*psi(1, sin(x))

Expand the expressions containing the digamma functions.

syms x

expand(psi(2*x + 3))

expand(psi(x + 2)*psi(x))

ans =

psi(x + 1/2)/2 + log(2) + psi(x)/2 +...

1/(2*x + 1) + 1/(2*x + 2) + 1/(2*x)

ans =

psi(x)/x + psi(x)^2 + psi(x)/(x + 1)

Compute the limits for expressions containing the digamma and polygamma functions.

syms x

4 Functions — Alphabetical List

4-974

limit(x*psi(x), x, 0)

limit(psi(3, x), x, inf)

ans =

-1

ans =

0

Compute the digamma function for elements of matrix M and vector V.

M = sym([0 inf; 1/3 1/2]);

V = sym([1, inf]);

psi(M)

psi(V)

ans =

[Inf, Inf]

[- eulergamma - (3*log(3))/2 - (pi*3^(1/2))/6, - eulergamma - 2*log(2)]

ans =

[-eulergamma, Inf]

Compute the polygamma function for elements of matrix M and vector V. The psi
function acts elementwise on nonscalar inputs.

M = sym([0 inf; 1/3 1/2]);

polyGammaM = [1 3; 2 2];

V = sym([1, inf]);

polyGammaV = [6 6];

psi(polyGammaM,M)

psi(polyGammaV,V)

ans =

[Inf, 0]

[- 26*zeta(3) - (4*3^(1/2)*pi^3)/9, -14*zeta(3)]

ans =

[-720*zeta(7), 0]

Because all elements of polyGammaV have the same value, you can replace polyGammaV
by a scalar of that value. psi expands the scalar into a nonscalar of the same size as V
and computes the result.

V = sym([1, inf]);

psi(6,V)

ans =

[-720*zeta(7), 0]

 psi

4-975

More About

Digamma Function

The digamma function is the first derivative of the logarithm of the gamma function:

y x
d

dx
x

x

x
() = () =

¢()

()
lnG

G

G

Polygamma Function

The polygamma function of the order k is the (k + 1)th derivative of the logarithm of the
gamma function:

y yk
k

k

k

k
x

d

dx

x
d

dx

x
()

+

+
() = () = ()

1

1
lnG

Tips

• Calling psi for a number that is not a symbolic object invokes the MATLAB psi
function. This function accepts real nonnegative arguments x. If you want to compute
the polygamma function for a complex number, use sym to convert that number to a
symbolic object, and then call psi for that symbolic object.

• psi(0, x) is equivalent to psi(x).

See Also
beta | gamma | nchoosek | factorial

Introduced in R2011b

4 Functions — Alphabetical List

4-976

qr
QR factorization

Syntax

R = qr(A)

[Q,R] = qr(A)

[Q,R,P] = qr(A)

[C,R] = qr(A,B)

[C,R,P] = qr(A,B)

[Q,R,p] = qr(A,'vector')

[C,R,p] = qr(A,B,'vector')

___ = qr(___ ,'econ')

___ = qr(___ ,'real')

Description

R = qr(A) returns the R part of the QR decomposition A = Q*R. Here, A is an m-by-n
matrix, R is an m-by-n upper triangular matrix, and Q is an m-by-m unitary matrix.

[Q,R] = qr(A) returns an upper triangular matrix R and a unitary matrix Q, such that
A = Q*R.

[Q,R,P] = qr(A) returns an upper triangular matrix R, a unitary matrix Q, and a
permutation matrix P, such that A*P = Q*R. If all elements of A can be approximated by
the floating-point numbers, then this syntax chooses the column permutation P so that
abs(diag(R)) is decreasing. Otherwise, it returns P = eye(n).

[C,R] = qr(A,B) returns an upper triangular matrix R and a matrix C, such that C =
Q'*B and A = Q*R. Here, A and B must have the same number of rows.

C and R represent the solution of the matrix equation A*X = B as X = R\C.

[C,R,P] = qr(A,B) returns an upper triangular matrix R, a matrix C, such that C
= Q'*B, and a permutation matrix P, such that A*P = Q*R. If all elements of A can be

 qr

4-977

approximated by the floating-point numbers, then this syntax chooses the permutation
matrix P so that abs(diag(R)) is decreasing. Otherwise, it returns P = eye(n). Here,
A and B must have the same number of rows.

C, R, and P represent the solution of the matrix equation A*X = B as X = P*(R\C).

[Q,R,p] = qr(A,'vector') returns the permutation information as a vector p, such
that A(:,p) = Q*R.

[C,R,p] = qr(A,B,'vector') returns the permutation information as a vector p.

C, R, and p represent the solution of the matrix equation A*X = B as X(p,:) = R\C.

___ = qr(___ ,'econ') returns the "economy size" decomposition. If A is an m-by-n
matrix with m > n, then qr computes only the first n columns of Q and the first n rows of
R. For m <= n, the syntaxes with 'econ' are equivalent to the corresponding syntaxes
without 'econ'.

When you use 'econ', qr always returns the permutation information as a vector p.

You can use 0 instead of 'econ'. For example, [Q,R] = qr(A,0) is equivalent to
[Q,R] = qr(A,'econ').

___ = qr(___ ,'real') assumes that input arguments and intermediate results
are real, and therefore, suppresses calls to abs and conj. When you use this flag, qr
assumes that all symbolic variables represent real numbers. When using this flag, ensure
that all numeric arguments are real numbers.

Use 'real' to avoid complex conjugates in the result.

Examples

R part of QR Factorization

Compute the R part of the QR decomposition of the 4-by-4 Wilkinson's eigenvalue test
matrix.

Create the 4-by-4 Wilkinson's eigenvalue test matrix:

A = sym(wilkinson(4))

4 Functions — Alphabetical List

4-978

A =

[3/2, 1, 0, 0]

[1, 1/2, 1, 0]

[0, 1, 1/2, 1]

[0, 0, 1, 3/2]

Use the syntax with one output argument to return the R part of the QR decomposition
without returning the Q part:

R = qr(A)

R =

[13^(1/2)/2, (4*13^(1/2))/13, (2*13^(1/2))/13, 0]

[0, (13^(1/2)*53^(1/2))/26, (10*13^(1/2)*53^(1/2))/689, (2*13^(1/2)*53^(1/2))/53]

[0, 0, (53^(1/2)*381^(1/2))/106, (172*53^(1/2)*381^(1/2))/20193]

[0, 0, 0, (35*381^(1/2))/762]

QR Factorization of Pascal Matrix

Compute the QR decomposition of the 3-by-3 Pascal matrix.

Create the 3-by-3 Pascal matrix:

A = sym(pascal(3))

A =

[1, 1, 1]

[1, 2, 3]

[1, 3, 6]

Find the Q and R matrices representing the QR decomposition of A:

[Q,R] = qr(A)

Q =

[3^(1/2)/3, -2^(1/2)/2, 6^(1/2)/6]

[3^(1/2)/3, 0, -6^(1/2)/3]

[3^(1/2)/3, 2^(1/2)/2, 6^(1/2)/6]

R =

[3^(1/2), 2*3^(1/2), (10*3^(1/2))/3]

[0, 2^(1/2), (5*2^(1/2))/2]

[0, 0, 6^(1/2)/6]

Verify that A = Q*R using isAlways:

isAlways(A == Q*R)

 qr

4-979

ans =

 1 1 1

 1 1 1

 1 1 1

Permutation Information

Using permutations helps increase numerical stability of the QR factorization for
floating-point matrices. The qr function returns permutation information either as a
matrix or as a vector.

Set the number of significant decimal digits, used for variable-precision arithmetic, to 10.
Approximate the 3-by-3 symbolic Hilbert matrix by floating-point numbers:

previoussetting = digits(10);

A = vpa(hilb(3))

A =

[1.0, 0.5, 0.3333333333]

[0.5, 0.3333333333, 0.25]

[0.3333333333, 0.25, 0.2]

First, compute the QR decomposition of A without permutations:

[Q,R] = qr(A)

Q =

[0.8571428571, -0.5016049166, 0.1170411472]

[0.4285714286, 0.5684855721, -0.7022468832]

[0.2857142857, 0.6520863915, 0.7022468832]

R =

[1.166666667, 0.6428571429, 0.45]

[0, 0.1017143303, 0.1053370325]

[0, 0, 0.003901371573]

Compute the difference between A and Q*R. The computed Q and R matrices do not
strictly satisfy the equality A*P = Q*R because of the round-off errors.

A - Q*R

ans =

[-1.387778781e-16, -3.989863995e-16, -2.064320936e-16]

[-3.469446952e-18, -8.847089727e-17, -1.084202172e-16]

4 Functions — Alphabetical List

4-980

[-2.602085214e-18, -6.591949209e-17, -6.678685383e-17]

To increase numerical stability of the QR decomposition, use permutations by specifying
the syntax with three output arguments. For matrices that do not contain symbolic
variables, expressions, or functions, this syntax triggers pivoting, so that abs(diag(R))
in the returned matrix R is decreasing.

[Q,R,P] = qr(A)

Q =

[0.8571428571, -0.4969293466, -0.1355261854]

[0.4285714286, 0.5421047417, 0.7228063223]

[0.2857142857, 0.6776309272, -0.6776309272]

R =

[1.166666667, 0.45, 0.6428571429]

[0, 0.1054092553, 0.1016446391]

[0, 0, 0.003764616262]

P =

 1 0 0

 0 0 1

 0 1 0

Check the equality A*P = Q*R again. QR factorization with permutations results in
smaller round-off errors.

A*P - Q*R

ans =

[-3.469446952e-18, -4.33680869e-18, -6.938893904e-18]

[0, -8.67361738e-19, -1.734723476e-18]

[0, -4.33680869e-19, -1.734723476e-18]

Now, return the permutation information as a vector by using the 'vector' argument:

[Q,R,p] = qr(A,'vector')

Q =

[0.8571428571, -0.4969293466, -0.1355261854]

[0.4285714286, 0.5421047417, 0.7228063223]

[0.2857142857, 0.6776309272, -0.6776309272]

R =

[1.166666667, 0.45, 0.6428571429]

[0, 0.1054092553, 0.1016446391]

[0, 0, 0.003764616262]

p =

 qr

4-981

 1 3 2

Verify that A(:,p) = Q*R:

A(:,p) - Q*R

ans =

[-3.469446952e-18, -4.33680869e-18, -6.938893904e-18]

[0, -8.67361738e-19, -1.734723476e-18]

[0, -4.33680869e-19, -1.734723476e-18]

Exact symbolic computations let you avoid roundoff errors:

A = sym(hilb(3));

[Q,R] = qr(A);

A - Q*R

ans =

[0, 0, 0]

[0, 0, 0]

[0, 0, 0]

Restore the number of significant decimal digits to its default setting:

digits(previoussetting)

Use QR Decomposition to Solve Matrix Equation

You can use qr to solve systems of equations in a matrix form.

Suppose you need to solve the system of equations A*X = b, where A and b are the
following matrix and vector:

A = sym(invhilb(5))

b = sym([1:5]')

A =

[25, -300, 1050, -1400, 630]

[-300, 4800, -18900, 26880, -12600]

[1050, -18900, 79380, -117600, 56700]

[-1400, 26880, -117600, 179200, -88200]

[630, -12600, 56700, -88200, 44100]

b =

4 Functions — Alphabetical List

4-982

 1

 2

 3

 4

 5

Use qr to find matrices C and R, such that C = Q'*B and A = Q*R:

[C,R] = qr(A,b);

Compute the solution X:

X = R\C

X =

 5

 71/20

 197/70

 657/280

 1271/630

Verify that X is the solution of the system A*X = b using isAlways:

isAlways(A*X == b)

ans =

 1

 1

 1

 1

 1

Use QR Decomposition with Permutation Information to Solve Matrix
Equation

When solving systems of equations that contain floating-point numbers, the QR
decomposition with the permutation matrix or vector.

Suppose you need to solve the system of equations A*X = b, where A and b are the
following matrix and vector:

previoussetting = digits(10);

A = vpa([2 -3 -1; 1 1 -1; 0 1 -1]);

b = vpa([2; 0; -1]);

 qr

4-983

Use qr to find matrices C and R, such that C = Q'*B and A = Q*R:

[C,R,P] = qr(A,b)

C =

 -2.110579412

 -0.2132007164

 0.7071067812

R =

[3.31662479, 0.3015113446, -1.507556723]

[0, 1.705605731, -1.492405014]

[0, 0, 0.7071067812]

P =

 0 0 1

 1 0 0

 0 1 0

Compute the solution X:

X = P*(R\C)

X =

 1.0

 -0.25

 0.75

Alternatively, return the permutation information as a vector:

[C,R,p] = qr(A,b,'vector')

C =

 -2.110579412

 -0.2132007164

 0.7071067812

R =

[3.31662479, 0.3015113446, -1.507556723]

[0, 1.705605731, -1.492405014]

[0, 0, 0.7071067812]

p =

 2 3 1

In this case, compute the solution X as follows:

X(p,:) = R\C

X =

4 Functions — Alphabetical List

4-984

 1.0

 -0.25

 0.75

Restore the number of significant decimal digits to its default setting:

digits(previoussetting)

"Economy Size" Decomposition

Use 'econ' to compute the “economy size” QR decomposition.

Create a matrix that consists of the first two columns of the 4-by-4 Pascal matrix:

A = sym(pascal(4));

A = A(:,1:2)

A =

[1, 1]

[1, 2]

[1, 3]

[1, 4]

Compute the QR decomposition for this matrix:

[Q,R] = qr(A)

Q =

[1/2, -(3*5^(1/2))/10, (3^(1/2)*10^(1/2))/10, 0]

[1/2, -5^(1/2)/10, -(2*3^(1/2)*10^(1/2))/15, 6^(1/2)/6]

[1/2, 5^(1/2)/10, -(3^(1/2)*10^(1/2))/30, -6^(1/2)/3]

[1/2, (3*5^(1/2))/10, (3^(1/2)*10^(1/2))/15, 6^(1/2)/6]

R =

[2, 5]

[0, 5^(1/2)]

[0, 0]

[0, 0]

Now, compute the “economy size” QR decomposition for this matrix. Because the number
of rows exceeds the number of columns, qr computes only the first 2 columns of Q and the
first 2 rows of R.

[Q,R] = qr(A,'econ')

 qr

4-985

Q =

[1/2, -(3*5^(1/2))/10]

[1/2, -5^(1/2)/10]

[1/2, 5^(1/2)/10]

[1/2, (3*5^(1/2))/10]

R =

[2, 5]

[0, 5^(1/2)]

Avoid Complex Conjugates

Use the 'real' flag to avoid complex conjugates in the result.

Create a matrix, one of the elements of which is a variable:

syms x

A = [1 2; 3 x]

A =

[1, 2]

[3, x]

Compute the QR factorization of this matrix. By default, qr assumes that x represents a
complex number, and therefore, the result contains expressions with the abs function.

[Q,R] = qr(A)

Q =

[10^(1/2)/10, -((3*x)/10 - 9/5)/(abs(x/10 - 3/5)^2...

 + abs((3*x)/10 - 9/5)^2)^(1/2)]

[(3*10^(1/2))/10, (x/10 - 3/5)/(abs(x/10 - 3/5)^2...

 + abs((3*x)/10 - 9/5)^2)^(1/2)]

R =

[10^(1/2), (10^(1/2)*(3*x + 2))/10]

[0, (abs(x/10 - 3/5)^2 + abs((3*x)/10 - 9/5)^2)^(1/2)]

When you use 'real', qr assumes that all symbolic variables represent real numbers,
and can return shorter results:

[Q,R] = qr(A,'real')

Q =

4 Functions — Alphabetical List

4-986

[10^(1/2)/10, -((3*x)/10 - 9/5)/(x^2/10 - (6*x)/5...

 + 18/5)^(1/2)]

[(3*10^(1/2))/10, (x/10 - 3/5)/(x^2/10 - (6*x)/5...

 + 18/5)^(1/2)]

R =

[10^(1/2), (10^(1/2)*(3*x + 2))/10]

[0, (x^2/10 - (6*x)/5 + 18/5)^(1/2)]

Input Arguments

A — Input matrix
m-by-n symbolic matrix

Input matrix, specified as an m-by-n symbolic matrix.

B — Input
symbolic vector | symbolic matrix

Input, specified as a symbolic vector or matrix. The number of rows in B must be the
same as the number of rows in A.

Output Arguments

R — R part of the QR decomposition
m-by-n upper triangular symbolic matrix

R part of the QR decomposition, returned as an m-by-n upper triangular symbolic matrix.

Q — Q part of the QR decomposition
m-by-m unitary symbolic matrix

Q part of the QR decomposition, returned as an m-by-m unitary symbolic matrix.

P — Permutation information
matrix of double-precision values

Permutation information, returned as a matrix of double-precision values, such that A*P
= Q*R.

 qr

4-987

p — Permutation information
vector of double-precision values

Permutation information, returned as a vector of double-precision values, such that
A(:,p) = Q*R.

C — Matrix representing solution of matrix equation A*X = B
symbolic matrix

Matrix representing solution of matrix equation A*X = B, returned as a symbolic matrix,
such that C = Q'*B.

More About

QR Factorization of Matrix

The QR factorization expresses an m-by-n matrix A as A = Q*R. Here, Q is an m-by-m
unitary matrix, and R is an m-by-n upper triangular matrix. If the components of A are
real numbers, then Q is an orthogonal matrix.

Tips

• The upper triangular matrix A satisfies the following condition: R = chol(A'*A).
• The arguments 'econ' and 0 only affect the shape of the returned matrices.
• Calling qr for numeric matrices that are not symbolic objects (not created by sym,

syms, or vpa) invokes the MATLAB qr function.
• If you use 'matrix' instead of 'vector', then qr returns permutation matrices, as

it does by default. If you use 'matrix' and 'econ', then qr throws an error.

See Also
chol | eig | lu | svd

Introduced in R2014a

4 Functions — Alphabetical List

4-988

quorem
Quotient and remainder

Syntax

[Q,R] = quorem(A,B,var)

[Q,R] = quorem(A,B)

Description

[Q,R] = quorem(A,B,var) divides A by B and returns the quotient Q and remainder
R of the division, such that A = Q*B + R. This syntax regards A and B as polynomials in
the variable var.

If A and B are matrices, quorem performs elements-wise division, using var are a
variable. It returns the quotient Q and remainder R of the division, such that A = Q.*B
+ R.

[Q,R] = quorem(A,B) uses the variable determined by symvar(A,1). If
symvar(A,1) returns an empty symbolic object sym([]), then quorem uses the variable
determined by symvar(B,1).

If both symvar(A,1) and symvar(B,1) are empty, then A and B must both be integers
or matrices with integer elements. In this case, quorem(A,B) returns symbolic integers
Q and R, such that A = Q*B + R. If A and B are matrices, then Q and R are symbolic
matrices with integer elements, such that A = Q.*B + R, and each element of R is
smaller in absolute value than the corresponding element of B.

Examples

Divide Multivariate Polynomials

Compute the quotient and remainder of the division of these multivariate polynomials
with respect to the variable y:

 quorem

4-989

syms x y

p1 = x^3*y^4 - 2*x*y + 5*x + 1;

p2 = x*y;

[q, r] = quorem(p1, p2, y)

q =

x^2*y^3 - 2

r =

5*x + 1

Divide Univariate Polynomials

Compute the quotient and remainder of the division of these univariate polynomials:

syms x

p = x^3 - 2*x + 5;

[q, r] = quorem(x^5, p)

q =

x^2 + 2

r =

- 5*x^2 + 4*x - 10

Divide Integers

Compute the quotient and remainder of the division of these integers:

[q, r] = quorem(sym(10)^5, sym(985))

q =

101

r =

515

Input Arguments

A — Dividend (numerator)
symbolic integer | polynomial | symbolic vector | symbolic matrix

4 Functions — Alphabetical List

4-990

Dividend (numerator), specified as a symbolic integer, polynomial, or a vector or matrix
of symbolic integers or polynomials.

B — Divisor (denominator)
symbolic integer | polynomial | symbolic vector | symbolic matrix

Divisor (denominator), specified as a symbolic integer, polynomial, or a vector or matrix
of symbolic integers or polynomials.

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments

Q — Quotient of the division
symbolic integer | symbolic expression | symbolic vector | symbolic matrix

Quotient of the division, returned as a symbolic integer, expression, or a vector or matrix
of symbolic integers or expressions.

R — Remainder of the division
symbolic integer | symbolic expression | symbolic vector | symbolic matrix

Remainder of the division, returned as a symbolic integer, expression, or a vector or
matrix of symbolic integers or expressions.

See Also
deconv | mod

Introduced before R2006a

 rank

4-991

rank
Find rank of symbolic matrix

Syntax

rank(A)

Description

rank(A) returns the rank of symbolic matrix A.

Examples

Find Rank of Matrix

syms a b c d

A = [a b; c d];

rank(A)

ans =

 2

Rank of Symbolic Matrices Is Exact

Symbolic calculations return the exact rank of a matrix while numeric calculations can
suffer from round-off errors. This exact calculation is useful for ill-conditioned matrices,
such as the Hilbert matrix. The rank of a Hilbert matrix of order n is n.

Find the rank of the Hilbert matrix of order 15 numerically. Then convert the numeric
matrix to a symbolic matrix using sym and find the rank symbolically.

H = hilb(15);

rank(H)

rank(sym(H))

4 Functions — Alphabetical List

4-992

ans =

 12

ans =

 15

The symbolic calculation returns the correct rank of 15. The numeric calculation returns
an incorrect rank of 12 due to round-off errors.

Rank Function Does Not Simplify Symbolic Calculations

Consider this matrix

A
x x

=
- () ()È

Î
Í
Í

˘

˚
˙
˙

1

1 1

2 2
sin cos

.

After simplification of 1-sin(x)^2 to cos(x)^2, the matrix has a rank of 1. However,
rank returns an incorrect rank of 2 because it does not take into account identities
satisfied by special functions occurring in the matrix elements. Demonstrate the
incorrect result.

syms x

A = [1-sin(x) cos(x); cos(x) 1+sin(x)];

rank(A)

ans =

 2

rank returns an incorrect result because the outputs of intermediate steps are not
simplified. While there is no fail-safe workaround, you can simplify symbolic expressions
by using numeric substitution and evaluating the substitution using vpa.

Find the correct rank by substituting x with a number and evaluating the result using
vpa.

rank(vpa(subs(A,x,1)))

ans =

 1

However, even after numeric substitution, rank can return incorrect results due to
round-off errors.

 rank

4-993

Input Arguments

A — Input
number | vector | matrix | symbolic number | symbolic vector | symbolic matrix

Input, specified as a number, vector, or matrix or a symbolic number, vector, or matrix.

See Also
eig | null | rref | size

Introduced before R2006a

4 Functions — Alphabetical List

4-994

rdivide, ./

Symbolic array right division

Syntax

A./B

rdivide(A,B)

Description

A./B divides A by B.

rdivide(A,B) is equivalent to A./B.

Examples

Divide Scalar by Matrix

Create a 2-by-3 matrix.

B = sym('b', [2 3])

B =

[b1_1, b1_2, b1_3]

[b2_1, b2_2, b2_3]

Divide the symbolic expression sin(a) by each element of the matrix B.

syms a

sin(a)./B

ans =

[sin(a)/b1_1, sin(a)/b1_2, sin(a)/b1_3]

[sin(a)/b2_1, sin(a)/b2_2, sin(a)/b2_3]

 rdivide, ./

4-995

Divide Matrix by Matrix

Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

H = sym(hilb(3))

d = diag(sym([1 2 3]))

H =

[1, 1/2, 1/3]

[1/2, 1/3, 1/4]

[1/3, 1/4, 1/5]

d =

[1, 0, 0]

[0, 2, 0]

[0, 0, 3]

Divide d by H by using the elementwise right division operator .\. This operator divides
each element of the first matrix by the corresponding element of the second matrix. The
dimensions of the matrices must be the same.

d./H

ans =

[1, 0, 0]

[0, 6, 0]

[0, 0, 15]

Divide Expression by Symbolic Function

Divide a symbolic expression by a symbolic function. The result is a symbolic function.

syms f(x)

f(x) = x^2;

f1 = (x^2 + 5*x + 6)./f

f1(x) =

(x^2 + 5*x + 6)/x^2

Input Arguments
A — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array
| symbolic function | symbolic expression

4 Functions — Alphabetical List

4-996

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function,
or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value
expands into an array of the same size as the other input.

B — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array
| symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function,
or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value
expands into an array of the same size as the other input.

See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus
| power | times | transpose

Introduced before R2006a

 read

4-997

read

Read MuPAD program file into symbolic engine

Syntax

read(symengine,filename)

Description

read(symengine,filename) reads the MuPAD program file filename into the
symbolic engine. Reading a program file means finding and executing it.

Input Arguments

filename

The name of a MuPAD program file that you want to read. This file must have the
extension .mu or .gz.

Examples

Suppose you wrote the MuPAD procedure myProc and saved it in the file
myProcedure.mu.

4 Functions — Alphabetical List

4-998

Before you can call this procedure at the MATLAB Command Window, you must read the
file myProcedure.mu into the symbolic engine. To read a program file into the symbolic
engine, use read:

read(symengine, 'myProcedure.mu')

If the file is not on the MATLAB path, specify the full path to this file. For example, if
myProcedure.mu is in the MuPAD folder on disk C, enter:

read(symengine, 'C:/MuPAD/myProcedure.mu')

Now you can access the procedure myProc using evalin or feval. For example,
compute the factorial of 10:

feval(symengine, 'myProc', 10)

ans =

3628800

 read

4-999

Alternatives

You also can use feval to call the MuPAD read function. The read function available
from the MATLAB Command Window is equivalent to calling the MuPAD read function
with the Plain option. It ignores any MuPAD aliases defined in the program file:

feval(symengine, 'read',' "myProcedure.mu" ', 'Plain')

If your program file contains aliases or uses the aliases predefined by MATLAB, do not
use Plain:

feval(symengine, 'read',' "myProcedure.mu" ')

More About

Tips

• If you do not specify the file extension, read searches for the file filename.mu.
• If filename is a GNU® zip file with the extension .gz, read uncompresses it upon

reading.
• filename can include full or relative path information. If filename does not have a

path component, read uses the MATLAB function which to search for the file on the
MATLAB path.

• read ignores any MuPAD aliases defined in the program file. If your program file
contains aliases or uses the aliases predefined by MATLAB, see “Alternatives” on
page 4-999.

• “Use Your Own MuPAD Procedures” on page 3-38

See Also
evalin | feval | symengine

Introduced in R2011b

4 Functions — Alphabetical List

4-1000

real
Real part of complex number

Syntax

real(z)

real(A)

Description

real(z) returns the real part of z.

real(A) returns the real part of each element of A.

Input Arguments

z

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Examples

Find the real parts of these numbers. Because these numbers are not symbolic objects,
you get floating-point results.

[real(2 + 3/2*i), real(sin(5*i)), real(2*exp(1 + i))]

ans =

 2.0000 0 2.9374

Compute the real parts of the numbers converted to symbolic objects:

 real

4-1001

[real(sym(2) + 3/2*i), real(4/(sym(1) + 3*i)), real(sin(sym(5)*i))]

ans =

[2, 2/5, 0]

Compute the real part of this symbolic expression:

real(2*exp(1 + sym(i)))

ans =

2*cos(1)*exp(1)

In general, real cannot extract the entire real parts from symbolic expressions
containing variables. However, real can rewrite and sometimes simplify the input
expression:

syms a x y

real(a + 2)

real(x + y*i)

ans =

real(a) + 2

ans =

real(x) - imag(y)

If you assign numeric values to these variables or specify that these variables are real,
real can extract the real part of the expression:

syms a

a = 5 + 3*i;

real(a + 2)

ans =

 7

syms x y real

real(x + y*i)

ans =

x

Clear the assumption that x and y are real:

syms x y clear

4 Functions — Alphabetical List

4-1002

Find the real parts of the elements of matrix A:

syms x

A = [-1 + sym(i), sinh(x); exp(10 + sym(7)*i), exp(sym(pi)*i)];

real(A)

ans =

[-1, real(sinh(x))]

[cos(7)*exp(10), -1]

Alternatives

You can compute the real part of z via the conjugate: real(z)= (z + conj(z))/2.

More About

Tips

• Calling real for a number that is not a symbolic object invokes the MATLAB real
function.

See Also
conj | imag | in | sign | signIm

Introduced before R2006a

 rectangularPulse

4-1003

rectangularPulse

Rectangular pulse function

Syntax

rectangularPulse(a,b,x)

rectangularPulse(x)

Description

rectangularPulse(a,b,x) returns the rectangular pulse function.

rectangularPulse(x) is a shortcut for rectangularPulse(-1/2,1/2,x).

Input Arguments

a

Number (including infinities and symbolic numbers), symbolic variable, or symbolic
expression. This argument specifies the rising edge of the rectangular pulse function.

Default: -1/2

b

Number (including infinities and symbolic numbers), symbolic variable, or symbolic
expression. This argument specifies the falling edge of the rectangular pulse function.

Default: 1/2

x

Number (including infinities and symbolic numbers), symbolic variable, or symbolic
expression.

4 Functions — Alphabetical List

4-1004

Examples

Compute the rectangular pulse function for these numbers. Because these numbers are
not symbolic objects, you get floating-point results:

[rectangularPulse(-1, 1, -2)

rectangularPulse(-1, 1, -1)

rectangularPulse(-1, 1, 0)

rectangularPulse(-1, 1, 1)

rectangularPulse(-1, 1, 2)]

ans =

 0

 0.5000

 1.0000

 0.5000

 0

Compute the rectangular pulse function for the numbers converted to symbolic objects:

[rectangularPulse(sym(-1), 1, -2)

rectangularPulse(-1, sym(1), -1)

rectangularPulse(-1, 1, sym(0))

rectangularPulse(sym(-1), 1, 1)

rectangularPulse(sym(-1), 1, 2)]

ans =

 0

 1/2

 1

 1/2

 0

If a < b, the rectangular pulse function for x = a and x = b equals 1/2:

syms a b x

assume(a < b)

rectangularPulse(a, b, a)

rectangularPulse(a, b, b)

ans =

1/2

ans =

 rectangularPulse

4-1005

1/2

For further computations, remove the assumption:

syms a b clear

For a = b, the rectangular pulse function returns 0:

syms a x

rectangularPulse(a, a, x)

ans =

0

Use rectangularPulse with one input argument as a shortcut for computing
rectangularPulse(-1/2, 1/2, x):

syms x

rectangularPulse(x)

ans =

rectangularPulse(-1/2, 1/2, x)

[rectangularPulse(sym(-1))

rectangularPulse(sym(-1/2))

rectangularPulse(sym(0))

rectangularPulse(sym(1/2))

rectangularPulse(sym(1))]

ans =

 0

 1/2

 1

 1/2

 0

Plot the rectangular pulse function:

syms x

ezplot(rectangularPulse(x), [-1, 1])

4 Functions — Alphabetical List

4-1006

Call rectangularPulse with infinities as its rising and falling edges:

syms x

rectangularPulse(-inf, 0, x)

rectangularPulse(0, inf, x)

rectangularPulse(-inf, inf, x)

ans =

heaviside(-x)

ans =

heaviside(x)

ans =

 rectangularPulse

4-1007

1

More About

Rectangular Pulse Function

The rectangular pulse function is defined as follows:

If a < x < b, then the rectangular pulse function equals 1. If x = a or x = b and a <>
b, then the rectangular pulse function equals 1/2. Otherwise, it equals 0.

The rectangular pulse function is also called the rectangle function, box function, Π-
function, or gate function.

Tips

• If a and b are variables or expressions with variables, rectangularPulse assumes
that a < b. If a and b are numerical values, such that a > b, rectangularPulse
throws an error.

• If a = b, rectangularPulse returns 0.

See Also
dirac | heaviside | triangularPulse

Introduced in R2012b

4 Functions — Alphabetical List

4-1008

reduceDAEIndex
Convert system of first-order differential algebraic equations to equivalent system of
differential index 1

Syntax
[newEqs,newVars] = reduceDAEIndex(eqs,vars)

[newEqs,newVars,R] = reduceDAEIndex(eqs,vars)

[newEqs,newVars,R,oldIndex] = reduceDAEIndex(eqs,vars)

Description
[newEqs,newVars] = reduceDAEIndex(eqs,vars) converts a high-index system
of first-order differential algebraic equations eqs to an equivalent system newEqs of
differential index 1.

reduceDAEIndex keeps the original equations and variables and introduces new
variables and equations. After conversion, reduceDAEIndex checks the differential
index of the new system by calling isLowIndexDAE. If the index of newEqs is 2 or
higher, then reduceDAEIndex issues a warning.

[newEqs,newVars,R] = reduceDAEIndex(eqs,vars) returns matrix R that
expresses the new variables in newVars as derivatives of the original variables vars.

[newEqs,newVars,R,oldIndex] = reduceDAEIndex(eqs,vars) returns the
differential index, oldIndex, of the original system of DAEs, eqs.

Examples

Reduce Differential Index of DAE System

Check if the following DAE system has a low (0 or 1) or high (>1) differential index. If the
index is higher than 1, then use reduceDAEIndex to reduce it.

Create the following system of two differential algebraic equations. Here, the symbolic
functions x(t), y(t), and z(t) represent the state variables of the system. Specify

 reduceDAEIndex

4-1009

the equations and variables as two symbolic vectors: equations as a vector of symbolic
equations, and variables as a vector of symbolic function calls.

syms x(t) y(t) z(t) f(t)

eqs = [diff(x) == x + z, diff(y) == f(t), x == y];

vars = [x(t), y(t), z(t)];

Use isLowIndexDAE to check the differential index of the system. For this system,
isLowIndexDAE returns 0 (false). This means that the differential index of the system
is 2 or higher.

isLowIndexDAE(eqs, vars)

ans =

 0

Use reduceDAEIndex to rewrite the system so that the differential index is 1. The new
system has one additional state variable, Dyt(t).

[newEqs, newVars] = reduceDAEIndex(eqs, vars)

newEqs =

 diff(x(t), t) - z(t) - x(t)

 Dyt(t) - f(t)

 x(t) - y(t)

 diff(x(t), t) - Dyt(t)

newVars =

 x(t)

 y(t)

 z(t)

 Dyt(t)

Check if the differential order of the new system is lower than 2.

isLowIndexDAE(newEqs, newVars)

ans =

 1

Reduce the Index and Return More Details

Reduce the differential index of a system that contains two second-order differential
algebraic equation. Because the equations are second-order equations, first use
reduceDifferentialOrder to rewrite the system to a system of first-order DAEs.

4 Functions — Alphabetical List

4-1010

Create the following system of two second-order DAEs. Here, x(t), y(t), and F(t) are
the state variables of the system. Specify the equations and variables as two symbolic
vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic
function calls.

syms t x(t) y(t) F(t) r g

eqs = [diff(x(t), t, t) == -F(t)*x(t),...

 diff(y(t), t, t) == -F(t)*y(t) - g,...

 x(t)^2 + y(t)^2 == r^2];

vars = [x(t), y(t), F(t)];

Rewrite this system so that all equations become first-order differential equations. The
reduceDifferentialOrder function replaces the second-order DAE by two first-order
expressions by introducing the new variables Dxt(t) and Dyt(t). It also replaces the
first-order equations by symbolic expressions.

[eqs, vars] = reduceDifferentialOrder(eqs, vars)

eqs =

 diff(Dxt(t), t) + F(t)*x(t)

 diff(Dyt(t), t) + g + F(t)*y(t)

 x(t)^2 + y(t)^2 - r^2

 Dxt(t) - diff(x(t), t)

 Dyt(t) - diff(y(t), t)

vars =

 x(t)

 y(t)

 F(t)

 Dxt(t)

 Dyt(t)

Use reduceDAEIndex to rewrite the system so that the differential index is 1.

[eqs, vars, R, originalIndex] = reduceDAEIndex(eqs, vars)

eqs =

 Dxtt(t) + F(t)*x(t)

 g + Dytt(t) + F(t)*y(t)

 x(t)^2 + y(t)^2 - r^2

 Dxt(t) - Dxt1(t)

 Dyt(t) - Dyt1(t)

 2*Dxt1(t)*x(t) + 2*Dyt1(t)*y(t)

 2*Dxt1t(t)*x(t) + 2*Dxt1(t)^2 + 2*Dyt1(t)^2 + 2*y(t)*diff(Dyt1(t), t)

 Dxtt(t) - Dxt1t(t)

 reduceDAEIndex

4-1011

 Dytt(t) - diff(Dyt1(t), t)

 Dyt1(t) - diff(y(t), t)

vars =

 x(t)

 y(t)

 F(t)

 Dxt(t)

 Dyt(t)

 Dytt(t)

 Dxtt(t)

 Dxt1(t)

 Dyt1(t)

 Dxt1t(t)

R =

[Dytt(t), diff(Dyt(t), t)]

[Dxtt(t), diff(Dxt(t), t)]

[Dxt1(t), diff(x(t), t)]

[Dyt1(t), diff(y(t), t)]

[Dxt1t(t), diff(x(t), t, t)]

originalIndex =

 3

Use reduceRedundancies to shorten the system.

[eqs, vars] = reduceRedundancies(eqs, vars)

eqs =

 Dxtt(t) + F(t)*x(t)

 g + Dytt(t) + F(t)*y(t)

 x(t)^2 + y(t)^2 - r^2

 2*Dxt(t)*x(t) + 2*Dyt(t)*y(t)

 2*Dxtt(t)*x(t) + 2*Dxt(t)^2 + 2*Dyt(t)^2 + 2*y(t)*diff(Dyt(t), t)

 Dytt(t) - diff(Dyt(t), t)

 Dyt(t) - diff(y(t), t)

vars =

 x(t)

 y(t)

 F(t)

 Dxt(t)

 Dyt(t)

 Dytt(t)

4 Functions — Alphabetical List

4-1012

 Dxtt(t)

Input Arguments

eqs — System of first-order DAEs
vector of symbolic equations | vector of symbolic expressions

System of first-order DAEs, specified as a vector of symbolic equations or expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).

Example: [x(t),y(t)]

Output Arguments

newEqs — System of first-order DAEs of differential index 1
column vector of symbolic expressions

System of first-order DAEs of differential index 1, returned as a column vector of
symbolic expressions.

newVars — Extended set of variables
column vector of symbolic function calls

Extended set of variables, returned as a column vector of symbolic function calls. This
vector includes the original state variables vars followed by the generated variables that
replace the second- and higher-order derivatives in eqs.

R — Relations between new and original variables
symbolic matrix

Relations between new and original variables, returned as a symbolic matrix with two
columns. The first column contains the new variables. The second column contains their
definitions as derivatives of the original variables vars.

oldIndex — Differential index of original DAE system
integer

 reduceDAEIndex

4-1013

Differential index of original DAE system, returned as an integer or NaN.

More About

Algorithms

The implementation of reduceDAEIndex uses the Pantelides algorithm. This
algorithm reduces higher-index systems to lower-index systems by selectively
adding differentiated forms of the original equations. The Pantelides algorithm can
underestimate the differential index of a new system, and therefore, can fail to reduce
the differential index to 1. In this case, reduceDAEIndex issues a warning and, for
the syntax with four output arguments, returns the value of oldIndex as NaN. The
reduceDAEToODE function uses more reliable, but slower Gaussian elimination. Note
that reduceDAEToODE requires the DAE system to be semilinear.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEToODE |
reduceDifferentialOrder | reduceRedundancies

Introduced in R2014b

4 Functions — Alphabetical List

4-1014

reduceDAEToODE
Convert system of first-order semilinear differential algebraic equations to equivalent
system of differential index 0

Syntax

newEqs = reduceDAEToODE(eqs,vars)

[newEqs,constraintEqs] = reduceDAEToODE(eqs,vars)

[newEqs,constraintEqs,oldIndex] = reduceDAEToODE(eqs,vars)

Description

newEqs = reduceDAEToODE(eqs,vars) converts a high-index system of first-order
semilinear algebraic equations eqs to an equivalent system of ordinary differential
equations, newEqs. The differential index of the new system is 0, that is, the Jacobian of
newEqs with respect to the derivatives of the variables in vars is invertible.

[newEqs,constraintEqs] = reduceDAEToODE(eqs,vars) returns a vector of
constraint equations.

[newEqs,constraintEqs,oldIndex] = reduceDAEToODE(eqs,vars) returns the
differential index oldIndex of the original system of semilinear DAEs, eqs.

Examples

Convert DAE System to Implicit ODE System

Convert a system of differential algebraic equations (DAEs) to a system of implicit
ordinary differential equations (ODEs).

Create the following system of two differential algebraic equations. Here, the symbolic
functions x(t), y(t), and z(t) represent the state variables of the system. Specify
the equations and variables as two symbolic vectors: equations as a vector of symbolic
equations, and variables as a vector of symbolic function calls.

syms x(t) y(t) z(t)

 reduceDAEToODE

4-1015

eqs = [diff(x,t)+x*diff(y,t) == y,...

 x*diff(x, t)+x^2*diff(y) == sin(x),...

 x^2 + y^2 == t*z];

vars = [x(t), y(t), z(t)];

Use reduceDAEToODE to rewrite the system so that the differential index is 0.

newEqs = reduceDAEToODE(eqs, vars)

newEqs =

 x(t)*diff(y(t), t) - y(t) + diff(x(t), t)

 diff(x(t), t)*(cos(x(t)) - y(t)) - x(t)*diff(y(t), t)

 z(t) - 2*x(t)*diff(x(t), t) - 2*y(t)*diff(y(t), t) + t*diff(z(t), t)

Reduce System and Return More Details

Check if the following DAE system has a low (0 or 1) or high (>1) differential index. If the
index is higher than 1, first try to reduce the index by using reduceDAEIndex and then
by using reduceDAEToODE.

Create the system of differential algebraic equations. Here, the functions x1(t), x2(t),
and x3(t) represent the state variables of the system. The system also contains the
functions q1(t), q2(t), and q3(t). These functions do not represent state variables.
Specify the equations and variables as two symbolic vectors: equations as a vector of
symbolic equations, and variables as a vector of symbolic function calls.

syms x1(t) x2(t) x3(t) q1(t) q2(t) q3(t)

eqs = [diff(x2) == q1 - x1,

 diff(x3) == q2 - 2*x2 - t*(q1-x1),

 q3 - t*x2 - x3];

vars = [x1(t), x2(t), x3(t)];

Use isLowIndexDAE to check the differential index of the system. For this system,
isLowIndexDAE returns 0 (false). This means that the differential index of the system
is 2 or higher.

isLowIndexDAE(eqs, vars)

ans =

 0

Use reduceDAEIndex as your first attempt to rewrite the system so that the differential
index is 1. For this system, reduceDAEIndex issues a warning because it cannot reduce
the differential index of the system to 0 or 1.

4 Functions — Alphabetical List

4-1016

[newEqs, newVars] = reduceDAEIndex(eqs, vars)

Warning: The index of the reduced DAEs is larger than 1.

newEqs =

 x1(t) - q1(t) + diff(x2(t), t)

 Dx3t(t) - q2(t) + 2*x2(t) + t*(q1(t) - x1(t))

 q3(t) - x3(t) - t*x2(t)

 diff(q3(t), t) - x2(t) - t*diff(x2(t), t) - Dx3t(t)

newVars =

 x1(t)

 x2(t)

 x3(t)

 Dx3t(t)

If reduceDAEIndex cannot reduce the semilinear system so that the index is 0 or
1, try using reduceDAEToODE. This function can be much slower, therefore it is not
recommended as a first choice. Use the syntax with two output arguments to also return
the constraint equations.

[newEqs, constraintEqs] = reduceDAEToODE(eqs, vars)

newEqs =

 x1(t) - q1(t) + diff(x2(t), t)

 2*x2(t) - q2(t) + t*q1(t) - t*x1(t) + diff(x3(t), t)

 diff(x1(t), t) - diff(q1(t), t) + diff(q2(t), t, t) - diff(q3(t), t, t, t)

constraintEqs =

 x1(t) - q1(t) + diff(q2(t), t) - diff(q3(t), t, t)

 x3(t) - q3(t) + t*x2(t)

 x2(t) - q2(t) + diff(q3(t), t)

Use the syntax with three output arguments to return the new equations, constraint
equations, and the differential index of the original system, eqs.

[newEqs, constraintEqs, oldIndex] = reduceDAEToODE(eqs, vars)

newEqs =

 x1(t) - q1(t) + diff(x2(t), t)

 2*x2(t) - q2(t) + t*q1(t) - t*x1(t) + diff(x3(t), t)

 diff(x1(t), t) - diff(q1(t), t) + diff(q2(t), t, t) - diff(q3(t), t, t, t)

constraintEqs =

 x1(t) - q1(t) + diff(q2(t), t) - diff(q3(t), t, t)

 reduceDAEToODE

4-1017

 x3(t) - q3(t) + t*x2(t)

 x2(t) - q2(t) + diff(q3(t), t)

oldIndex =

 3

Input Arguments

eqs — System of first-order semilinear DAEs
vector of symbolic equations | vector of symbolic expressions

System of first-order semilinear DAEs, specified as a vector of symbolic equations or
expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).

Example: [x(t),y(t)] or [x(t);y(t)]

Output Arguments

newEqs — System of implicit ordinary differential equations
column vector of symbolic expressions

System of implicit ordinary differential equations, returned as a column vector of
symbolic expressions. The differential index of this system is 0.

constraintEqs — Constraint equations encountered during system reduction
column vector of symbolic expressions

Constraint equations encountered during system reduction, returned as a column vector
of symbolic expressions. These expressions depend on the variables vars, but not on
their derivatives. The constraints are conserved quantities of the differential equations
in newEqs, meaning that the time derivative of each constraint vanishes modulo the
equations in newEqs.

You can use these equations to determine consistent initial conditions for the DAE
system.

4 Functions — Alphabetical List

4-1018

oldIndex — Differential index of original DAE system eqs
integer

Differential index of original DAE system eqs, returned as an integer.

More About

Algorithms

The implementation of reduceDAEToODE is based on Gaussian elimination. This
algorithm is more reliable than the Pantelides algorithm used by reduceDAEIndex, but
it can be much slower.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex |
reduceDifferentialOrder | reduceRedundancies

Introduced in R2014b

 reduceDifferentialOrder

4-1019

reduceDifferentialOrder
Reduce system of higher-order differential equations to equivalent system of first-order
differential equations

Syntax

[newEqs,newVars] = reduceDifferentialOrder(eqs,vars)

[newEqs,newVars,R] = reduceDifferentialOrder(eqs,vars)

Description

[newEqs,newVars] = reduceDifferentialOrder(eqs,vars) rewrites a system of
higher-order differential equations eqs as a system of first-order differential equations
newEqs by substituting derivatives in eqs with new variables. Here, newVars consists of
the original variables vars augmented with these new variables.

[newEqs,newVars,R] = reduceDifferentialOrder(eqs,vars) returns the
matrix R that expresses the new variables in newVars as derivatives of the original
variables vars.

Examples

Reduce Differential Order of DAE System

Reduce a system containing higher-order DAEs to a system containing only first-order
DAEs.

Create the system of differential equations, which includes a second-order expression.
Here, x(t) and y(t) are the state variables of the system, and c1 and c2 are
parameters. Specify the equations and variables as two symbolic vectors: equations as a
vector of symbolic equations, and variables as a vector of symbolic function calls.

syms x(t) y(t) c1 c2

eqs = [diff(x(t), t, t) + sin(x(t)) + y(t) == c1*cos(t),...

4 Functions — Alphabetical List

4-1020

 diff(y(t), t) == c2*x(t)];

vars = [x(t), y(t)];

[newEqs, newVars] = reduceDifferentialOrder(eqs, vars)

Rewrite this system so that all equations become first-order differential equations. The
reduceDifferentialOrder function replaces the higher-order DAE by first-order
expressions by introducing the new variable Dxt(t). It also represents all equations as
symbolic expressions.

[newEqs, newVars] = reduceDifferentialOrder(eqs, vars)

newEqs =

 sin(x(t)) + y(t) + diff(Dxt(t), t) - c1*cos(t)

 diff(y(t), t) - c2*x(t)

 Dxt(t) - diff(x(t), t)

newVars =

 x(t)

 y(t)

 Dxt(t)

Show Relations Between Generated and Original Variables

Reduce a system containing a second- and a third-order expression to a system
containing only first-order DAEs. In addition, return a matrix that expresses the
variables generated by reduceDifferentialOrder via the original variables of this
system.

Create a system of differential equations, which includes a second- and a third-order
expression. Here, x(t) and y(t) are the state variables of the system. Specify the
equations and variables as two symbolic vectors: equations as a vector of symbolic
equations, and variables as a vector of symbolic function calls.

syms x(t) y(t) f(t)

eqs = [diff(x(t),t,t) == diff(f(t),t,t,t), diff(y(t),t,t,t) == diff(f(t),t,t)];

vars = [x(t), y(t)];

Call reduceDifferentialOrder with three output arguments. This syntax returns
matrix R with two columns: the first column contains the new variables, and the second
column expresses the new variables as derivatives of the original variables, x(t) and
y(t).

 reduceDifferentialOrder

4-1021

[newEqs, newVars, R] = reduceDifferentialOrder(eqs, vars)

newEqs =

 diff(Dxt(t), t) - diff(f(t), t, t, t)

 diff(Dytt(t), t) - diff(f(t), t, t)

 Dxt(t) - diff(x(t), t)

 Dyt(t) - diff(y(t), t)

 Dytt(t) - diff(Dyt(t), t)

newVars =

 x(t)

 y(t)

 Dxt(t)

 Dyt(t)

 Dytt(t)

R =

[Dxt(t), diff(x(t), t)]

[Dyt(t), diff(y(t), t)]

[Dytt(t), diff(y(t), t, t)]

Input Arguments

eqs — System containing higher-order differential equations
vector of symbolic equations | vector of symbolic expressions

System containing higher-order differential equations, specified as a vector of symbolic
equations or expressions.

vars — Variables of original differential equations
vector of symbolic functions | vector of symbolic function calls

Variables of original differential equations, specified as a vector of symbolic functions, or
function calls, such as x(t).

Example: [x(t),y(t)]

Output Arguments

newEqs — System of first-order differential equations
column vector of symbolic expressions

4 Functions — Alphabetical List

4-1022

System of first-order differential equations, returned as a column vector of symbolic
expressions.

newVars — Extended set of variables
column vector of symbolic function calls

Extended set of variables, returned as a column vector of symbolic function calls. This
vector includes the original state variables vars followed by the generated variables that
replace the higher-order derivatives in eqs.

R — Relations between new and original variables
symbolic matrix

Relations between new and original variables, returned as a symbolic matrix with two
columns. The first column contains the new variables newVars. The second column
contains their definition as derivatives of the original variables vars.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex |
reduceDAEToODE | reduceRedundancies

Introduced in R2014b

 reduceRedundancies

4-1023

reduceRedundancies
Simplify system of first-order differential algebraic equations by eliminating redundant
equations and variables

Syntax

[newEqs,newVars] = reduceRedundancies(eqs,vars)

[newEqs,newVars,R] = reduceRedundancies(eqs,vars)

Description

[newEqs,newVars] = reduceRedundancies(eqs,vars) eliminates simple
equations from the system of first-order differential algebraic equations eqs. It returns
a column vector newEqs of symbolic expressions and a column vector newVars of those
variables that remain in the new DAE system newEqs. The expressions in newEqs
represent equations with a zero right side.

[newEqs,newVars,R] = reduceRedundancies(eqs,vars) returns a structure
array R containing information on the eliminated equations and variables.

Examples

Shorten DAE System by Removing Redundant Equations

Use reduceRedundancies to simplify a system of five differential algebraic equations
in four variables to a system of two equations in two variables.

Create the following system of five differential algebraic equations in four state variables
x1(t), x2(t), x3(t), and x4(t). The system also contains symbolic parameters a1, a2,
a3, a4, b, c, and the function f(t) that is not a state variable.

syms x1(t) x2(t) x3(t) x4(t) a1 a2 a3 a4 b c f(t)

eqs = [a1*diff(x1(t),t)+a2*diff(x2(t),t) == b*x4(t),...

 a3*diff(x2(t),t)+a4*diff(x3(t),t) == c*x4(t),...

 x1(t) == 2*x2(t),...

4 Functions — Alphabetical List

4-1024

 x4(t) == f(t), ...

 f(t) == sin(t)];

vars = [x1(t), x2(t), x3(t), x4(t)];

Use reduceRedundancies to eliminate redundant equations and corresponding state
variables.

[newEqs, newVars] = reduceRedundancies(eqs, vars)

newEqs =

 a1*diff(x1(t), t) + (a2*diff(x1(t), t))/2 - b*f(t)

 (a3*diff(x1(t), t))/2 + a4*diff(x3(t), t) - c*f(t)

newVars =

 x1(t)

 x3(t)

Obtain Information About Eliminated Equations

Call reduceRedundancies with three output arguments to simplify a system and
return information about eliminated equations.

Create the following system of five differential algebraic equations in four state variables
x1(t), x2(t), x3(t), and x4(t). The system also contains symbolic parameters a1, a2,
a3, a4, b, c, and the function f(t) that is not a state variable.

syms x1(t) x2(t) x3(t) x4(t) a1 a2 a3 a4 b c f(t)

eqs = [a1*diff(x1(t),t)+a2*diff(x2(t),t) == b*x4(t),...

 a3*diff(x2(t),t)+a4*diff(x3(t),t) == c*x4(t),...

 x1(t) == 2*x2(t),...

 x4(t) == f(t), ...

 f(t) == sin(t)];

vars = [x1(t), x2(t), x3(t), x4(t)];

Call reduceRedundancies with three output variables.

[newEqs, newVars, R] = reduceRedundancies(eqs, vars)

newEqs =

 a1*diff(x1(t), t) + (a2*diff(x1(t), t))/2 - b*f(t)

 (a3*diff(x1(t), t))/2 + a4*diff(x3(t), t) - c*f(t)

newVars =

 x1(t)

 reduceRedundancies

4-1025

 x3(t)

R =

 solvedEquations: [2x1 sym]

 constantVariables: [1x2 sym]

 replacedVariables: [1x2 sym]

 otherEquations: [1x1 sym]

Here, R is a structure array with four fields. The solvedEquations field contains
equations that reduceRedundancies used to replace those state variables from vars
that do not appear in newEqs.

R.solvedEquations

ans =

 x1(t) - 2*x2(t)

 x4(t) - f(t)

The constantVariables field contains a matrix with the following two columns. The
first column contains those state variables from vars that reduceRedundancies
replaced by constant values. The second column contains the corresponding constant
values.

R.constantVariables

ans =

[x4(t), f(t)]

The replacedVariables field contains a matrix with the following two columns. The
first column contains those state variables from vars that reduceRedundancies
replaced by expressions in terms of other variables. The second column contains the
corresponding values of the eliminated variables.

R.replacedVariables

ans =

[x2(t), x1(t)/2]

The otherEquations field contains those equations from eqs that do not contain any of
the state variables vars.

R.otherEquations

ans =

4 Functions — Alphabetical List

4-1026

f(t) - sin(t)

Input Arguments

eqs — System of first-order DAEs
vector of symbolic equations | vector of symbolic expressions

System of first-order DAEs, specified as a vector of symbolic equations or expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).

Example: [x(t),y(t)]

Output Arguments

newEqs — System of first-order DAEs
column vector of symbolic expressions

System of first-order DAEs, returned as a column vector of symbolic expressions

newVars — Reduced set of variables
column vector of symbolic function calls

Reduced set of variables, returned as a column vector of symbolic function calls.

R — Information about eliminated variables
structure array

Information about eliminated variables, returned as a structure array. To access this
information, use:

• R.solvedEquations to return a symbolic column vector of all equations that
reduceRedundancies used to replace those state variables that do not appear in
newEqs.

• R.constantVariables to return a matrix with the following two columns. The first
column contains those original state variables of the vector vars that were eliminated

 reduceRedundancies

4-1027

and replaced by constant values. The second column contains the corresponding
constant values.

• R.replacedVariables to return a matrix with the following two columns. The
first column contains those original state variables of the vector vars that were
eliminated and replaced in terms of other variables. The second column contains the
corresponding values of the eliminated variables.

• R.otherEquations to return a column vector containing all original equations eqs
that do not contain any of the input variables vars.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex |
reduceDAEToODE | reduceDifferentialOrder

Introduced in R2014b

4 Functions — Alphabetical List

4-1028

rem
Remainder after division

Syntax

rem(a,b)

Description

rem(a,b) finds the remainder after division. If b <> 0, then rem(a,b) = a -
fix(a/b)*b. If b = 0 or b = Inf or b = -Inf, then rem returns NaN.

The rem function does not support complex numbers: all values must be real numbers.

To find the remainder after division of polynomials, use quorem.

Examples

Divide Integers by Integers

Find the remainder after division in case both the dividend and divisor are integers.

Find the modulus after division for these numbers.

[rem(sym(27), 4), rem(sym(27), -4), rem(sym(-27), 4), rem(sym(-27), -4)]

ans =

[3, 3, -3, -3]

Divide Rationals by Integers

Find the remainder after division in case the dividend is a rational number, and the
divisor is an integer.

Find the remainder after division for these numbers.

 rem

4-1029

[rem(sym(22/3), 5), rem(sym(1/2), -7), rem(sym(27/6), -11)]

ans =

[7/3, 1/2, 9/2]

Divide Elements of Matrices

For vectors and matrices, rem finds the remainder after division element-wise. Nonscalar
arguments must be the same size.

Find the remainder after division for the elements of these two matrices.

A = sym([27, 28; 29, 30]);

B = sym([2, 3; 4, 5]);

rem(A,B)

ans =

[1, 1]

[1, 0]

Find the remainder after division for the elements of matrix A and the value 9. Here, rem
expands 9 into the 2-by-2 matrix with all elements equal to 9.

rem(A,9)

ans =

[0, 1]

[2, 3]

Input Arguments

a — Dividend (numerator)
number | symbolic number | vector | matrix

Dividend (numerator), specified as a number, symbolic number, or a vector or matrix of
numbers or symbolic numbers.

b — Divisor (denominator)
number | symbolic number | vector | matrix

Divisor (denominator), specified as a number, symbolic number, or a vector or matrix of
numbers or symbolic numbers.

4 Functions — Alphabetical List

4-1030

More About

Tips

• Calling rem for numbers that are not symbolic objects invokes the MATLAB rem
function.

• All nonscalar arguments must be the same size. If one input arguments is nonscalar,
then mod expands the scalar into a vector or matrix of the same size as the nonscalar
argument, with all elements equal to the corresponding scalar.

See Also
mod | quorem

Introduced before R2006a

 reset

4-1031

reset
Close MuPAD engine

Syntax

reset(symengine)

Description

reset(symengine) closes the MuPAD engine associated with the MATLAB
workspace, and resets all its assumptions. Immediately before or after executing
reset(symengine) you should clear all symbolic objects in the MATLAB workspace.

See Also
symengine

Introduced in R2008b

4 Functions — Alphabetical List

4-1032

reshape
Reshape symbolic array

Syntax

reshape(A,n1,n2)

reshape(A,n1,...,nM)

reshape(A,...,[],...)

reshape(A,sz)

Description

reshape(A,n1,n2) returns the n1-by-n2 matrix, which has the same elements as
A. The elements are taken column-wise from A to fill in the elements of the n1-by-n2
matrix.

reshape(A,n1,...,nM) returns the n1-by-...-by-nM array, which has the same
elements as A. The elements are taken column-wise from A to fill in the elements of the
n1-by-...-by-nM array.

reshape(A,...,[],...) lets you represent a size value with the placeholder [] while
calculating the magnitude of that size value automatically. For example, if A has size 2-
by-6, then reshape(A,4,[]) returns a 4-by-3 array.

reshape(A,sz) reshapes A into an array with size specified by sz, where sz is a vector.

Examples

Reshape Symbolic Row Vector into Column Vector

Reshape V, which is a 1-by-4 row vector, into the 4-by-1 column vector Y . Here, V and Y
must have the same number of elements.

Create the vector V.

 reshape

4-1033

syms f(x) y

V = [3 f(x) -4 y]

V =

[3, f(x), -4, y]

Reshape V into Y.

Y = reshape(V,4,1)

Y =

 3

f(x)

 -4

 y

Alternatively, use Y = V.' where .' is the nonconjugate transpose.

Reshape Symbolic Matrix

Reshape the 2-by-6 symbolic matrix M into a 4-by-3 matrix.

M = sym([1 9 4 3 0 1; 3 9 5 1 9 2])

N = reshape(M,4,3)

M =

[1, 9, 4, 3, 0, 1]

[3, 9, 5, 1, 9, 2]

N =

[1, 4, 0]

[3, 5, 9]

[9, 3, 1]

[9, 1, 2]

M and N must have the same number of elements. reshape reads M column-wise to fill in
the elements of N column-wise.

Alternatively, use a size vector to specify the dimensions of the reshaped matrix.

sz = [4 3];

N = reshape(M,sz)

N =

4 Functions — Alphabetical List

4-1034

[1, 4, 0]

[3, 5, 9]

[9, 3, 1]

[9, 1, 2]

Automatically Set Dimension of Reshaped Matrix

When you replace a dimension with the placeholder [], reshape calculates the required
magnitude of that dimension to reshape the matrix.

Create the matrix M.

M = sym([1 9 4 3 0 1; 3 9 5 1 9 2])

M =

[1, 9, 4, 3, 0, 1]

[3, 9, 5, 1, 9, 2]

Reshape M into a matrix with three columns.

reshape(M,[],3)

ans =

[1, 4, 0]

[3, 5, 9]

[9, 3, 1]

[9, 1, 2]

reshape calculates that a reshaped matrix of three columns needs four rows.

Reshape Matrix Row-wise

Reshape a matrix row-wise by transposing the result.

Create matrix M.

syms x

M = sym([1 9 0 sin(x) 2 2; NaN x 5 1 4 7])

M =

[1, 9, 0, sin(x), 2, 2]

[NaN, x, 5, 1, 4, 7]

 reshape

4-1035

Reshape M row-wise by transposing the result.

reshape(M,4,3).'

ans =

[1, NaN, 9, x]

[0, 5, sin(x), 1]

[2, 4, 2, 7]

Note that .' returns the non-conjugate transpose while ' returns the conjugate
transpose.

Reshape 3-D Array into 2-D Matrix

Reshape the 3-by-3-by-2 array M into a 9-by-2 matrix.

M has 18 elements. Because a 9-by-2 matrix also has 18 elements, M can be reshaped into
it. Construct M.

syms x

M = [sin(x) x 4; 3 2 9; 8 x x];

M(:,:,2) = M'

M(:,:,1) =

[sin(x), x, 4]

[3, 2, 9]

[8, x, x]

M(:,:,2) =

[sin(conj(x)), 3, 8]

[conj(x), 2, conj(x)]

[4, 9, conj(x)]

Reshape M into a 9-by-2 matrix.

N = reshape(M,9,2)

N =

[sin(x), sin(conj(x))]

[3, conj(x)]

[8, 4]

[x, 3]

[2, 2]

[x, 9]

[4, 8]

[9, conj(x)]

4 Functions — Alphabetical List

4-1036

[x, conj(x)]

Use reshape to Break Up Arrays

Use reshape instead of loops to break up arrays for further computation. Use reshape
to break up the vector V to find the product of every three elements.

Create vector V.

syms x

V = [exp(x) 1 3 9 x 2 7 7 1 8 x^2 3 4 sin(x) x]

V =

[exp(x), 1, 3, 9, x, 2, 7, 7, 1, 8, x^2, 3, 4, sin(x), x]

Specify 3 for the number of rows. Use the placeholder [] for the number of columns. This
lets reshape automatically calculate the number of columns required for three rows.

M = prod(reshape(V,3,[]))

M =

[3*exp(x), 18*x, 49, 24*x^2, 4*x*sin(x)]

reshape calculates that five columns are required for a matrix of three rows. prod then
multiples the elements of each column to return the result.

Input Arguments

A — Input array
symbolic vector | symbolic matrix | symbolic multidimensional array

Input array, specified as a symbolic vector, matrix, or multidimensional array.

n1,n2 — Dimensions of reshaped matrix
comma-separated scalars

Dimensions of reshaped matrix, specified as comma-separated scalars. For example,
reshape(A,3,2) returns a 3-by-2 matrix. The number of elements in the output array
specified by n1,n2 must be equal to numel(A).

n1,...,nM — Dimensions of reshaped array
comma-separated scalars

 reshape

4-1037

Dimensions of reshaped array, specified as comma-separated scalars. For example,
reshape(A,3,2,2) returns a 3-by-2-by-2 matrix. The number of elements in the output
array specified by n1,...,nM must be equal to numel(A).

sz — Size of reshaped array
numeric vector

Size of reshaped array, specified as a numeric vector. For example, reshape(A,[3 2])
returns a 3-by-2 matrix. The number of elements in the output array specified by sz
must be equal to numel(A).

See Also
colon | numel | transpose

Introduced before R2006a

4 Functions — Alphabetical List

4-1038

rewrite
Rewrite expression in new terms

Syntax

rewrite(expr,target)

rewrite(A,target)

Description

rewrite(expr,target) rewrites the symbolic expression expr in terms of target.
The returned expression is mathematically equivalent to the original expression.

rewrite(A,target) rewrites each element of A in terms of target.

Input Arguments

expr

Symbolic expression.

A

Vector or matrix of symbolic expressions.

target

One of these strings: exp, log, sincos, sin, cos, tan, sqrt, or heaviside.

Examples

Rewrite these trigonometric functions in terms of the exponential function:

syms x

rewrite(sin(x), 'exp')

rewrite(cos(x), 'exp')

 rewrite

4-1039

rewrite(tan(x), 'exp')

ans =

(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2

ans =

exp(-x*1i)/2 + exp(x*1i)/2

ans =

-(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1)

Rewrite the tangent function in terms of the sine function:

syms x

rewrite(tan(x), 'sin')

ans =

-sin(x)/(2*sin(x/2)^2 - 1)

Rewrite the hyperbolic tangent function in terms of the sine function:

syms x

rewrite(tanh(x), 'sin')

ans =

(sin(x*1i)*1i)/(2*sin((x*1i)/2)^2 - 1)

Rewrite these inverse trigonometric functions in terms of the natural logarithm:

syms x

rewrite(acos(x), 'log')

rewrite(acot(x), 'log')

ans =

-log(x + (1 - x^2)^(1/2)*1i)*1i

ans =

(log(1 - 1i/x)*1i)/2 - (log(1i/x + 1)*1i)/2

Rewrite the rectangular pulse function in terms of the Heaviside step function:

syms a b x

rewrite(rectangularPulse(a, b, x), 'heaviside')

ans =

heaviside(x - a) - heaviside(x - b)

4 Functions — Alphabetical List

4-1040

Rewrite the triangular pulse function in terms of the Heaviside step function:

syms a b c x

rewrite(triangularPulse(a, b, c, x), 'heaviside')

ans =

(heaviside(x - a)*(a - x))/(a - b) - (heaviside(x - b)*(a - x))/(a - b)...

 - (heaviside(x - b)*(c - x))/(b - c) + (heaviside(x - c)*(c - x))/(b - c)

Call rewrite to rewrite each element of this matrix of symbolic expressions in terms of
the exponential function:

syms x

A = [sin(x) cos(x); sinh(x) cosh(x)];

rewrite(A, 'exp')

ans =

[(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2, exp(-x*1i)/2 + exp(x*1i)/2]

[exp(x)/2 - exp(-x)/2, exp(-x)/2 + exp(x)/2]

Rewrite the cosine function in terms of sine function. Here rewrite replaces the cosine
function using the identity cos(2*x) = 1 – 2*sin(x)^2 which is valid for any x:

syms x

rewrite(cos(x),'sin')

ans =

1 - 2*sin(x/2)^2

rewrite does not replace the sine function with either - - ()1
2

cos x or 1
2

- ()cos x

because these expressions are only valid for x within particular intervals:

syms x

rewrite(sin(x),'cos')

ans =

sin(x)

More About

Tips

• rewrite replaces symbolic function calls in expr with the target function only if such
replacement is mathematically valid. Otherwise, it keeps the original function calls.

 rewrite

4-1041

• “Choose Function to Rearrange Expression” on page 2-61

See Also
collect | combine | expand | factor | horner | numden | simplify |
simplifyFraction

Introduced in R2012a

4 Functions — Alphabetical List

4-1042

root
Represent roots of polynomial

Syntax

root(p,x)

root(p,x,k)

Description

root(p,x) returns a column vector of numbered roots of symbolic polynomial p with
respect to x. Symbolically solving a high-degree polynomial for its roots can be complex
or mathematically impossible. In this case, the Symbolic Math Toolbox uses the root
function to represent the roots of the polynomial.

root(p,x,k) represents the kth root of symbolic polynomial p with respect to x.

Examples

Represent Roots of High-Degree Polynomial

Represent the roots of the polynomial x
3

1+ using root. The root function returns a
column vector. The elements of this vector represent the three roots of the polynomial.

syms x

p = x^3 + 1;

root(p,x)

ans =

 root(x^3 + 1, x, 1)

 root(x^3 + 1, x, 2)

 root(x^3 + 1, x, 3)

root(x^3 + 1, x, 1) represents the first root of p, while root(x^3 + 1, x, 2)
represents the second root, and so on. Use this syntax to conveniently represent roots of
high-degree polynomials.

 root

4-1043

Find Roots of High-Degree Polynomial

Solve for the roots of a high-degree polynomial. The solve function represents the roots
with root.

syms x

p = x^5 + x^4 - 3;

S = solve(p,x)

S =

 root(z^5 + z^4 - 3, z, 1)

 root(z^5 + z^4 - 3, z, 2)

 root(z^5 + z^4 - 3, z, 3)

 root(z^5 + z^4 - 3, z, 4)

 root(z^5 + z^4 - 3, z, 5)

When the root function is returned in output, you can use the root function as input in
subsequent symbolic calculations. However, if a numerical result is required, convert the
root function to a high-precision numeric result using vpa.

Find the roots of p by converting S to numeric form using vpa.

S_vpa = vpa(S)

S_vpa =

 1.0940419373839833208629604782883

 - 1.2635458567287355027456460225178 + 0.66843435297180629866904635857054i

 0.21652488803674384231416578337365 - 1.1380204547108505954236988045135i

 - 1.2635458567287355027456460225178 - 0.66843435297180629866904635857054i

 0.21652488803674384231416578337365 + 1.1380204547108505954236988045135i

If the call to root contains parameters, substitute the parameters with numbers using
subs before calling vpa.

Use root in Symbolic Computations

You can use the root function as input to Symbolic Math Toolbox functions such as
simplify, subs, and diff.

Simplify an expression containing root using the simplify function.

syms x

r = root(x^6 + x, x, 1);

4 Functions — Alphabetical List

4-1044

simplify(sin(r)^2 + cos(r)^2)

ans =

1

Substitute for parameters in root with numbers using subs.

syms b

subs(root(x^2 + b*x, x, 1), b, 5)

ans =

root(x^2 + 5*x, x, 1)

Substituting for parameters using subs is necessary before converting root to numeric
form using vpa.

Differentiate an expression containing root with respect to a parameter using diff.

diff(root(x^2 + b*x, x, 1), b)

ans =

root(b^2*x^2 + b^2*x, x, 1)

Find Inverse Laplace Transform of Ratio of Polynomials

Find the inverse Laplace transform of a ratio of two polynomials using ilaplace. The
inverse Laplace transform is returned in terms of root.

syms s

G = (s^3 + 1)/(s^6 + s^5 + s^2);

H = ilaplace(G)

H =

t - symsum(exp(root(s3^4 + s3^3 + 1, s3, k)*t)/...

(4*root(s3^4 + s3^3 + 1, s3, k) + 3), k, 1, 4)

When you get the root function in output, you can use the root function as input in
subsequent symbolic calculations. However, if a numerical result is required, convert the
root function to a high-precision numeric result using vpa.

Convert the inverse Laplace transform to numeric form using vpa and simplify the result
using simplify.

H_vpa = simplify(vpa(H))

 root

4-1045

H_vpa =

t - 0.30881178580997278695808136329347*exp(0.5189127943851558447865795886366*t)*...

cos(0.666609844932018579153758800733*t) - 0.16223098826244593894459034019473*...

exp(0.5189127943851558447865795886366*t)*sin(0.666609844932018579153758800733*t) +...

 0.30881178580997278695808136329347*exp(-1.0189127943851558447865795886366*t)*...

cos(0.60256541999859902604398442197193*t) - 0.6919689479355443779463355813596*...

exp(-1.0189127943851558447865795886366*t)*sin(0.60256541999859902604398442197193*t)

Input Arguments

p — Symbolic polynomial
symbolic expression

Symbolic polynomial, specified as a symbolic expression.

x — Variable
symbolic variable

Variable, specified as a symbolic variable.

k — Number of polynomial root
number | vector | matrix | multidimensional array | symbolic number | symbolic vector
| symbolic matrix | symbolic multidimensional array

Number of polynomial root, specified as a number, vector, matrix, multidimensional
array, or a symbolic number, vector, matrix, or multidimensional array. When k is a
nonscalar, root acts elementwise on k.

Example: root(f,x,3) represents the third root of f.

See Also
solve | vpa

Introduced in R2015b

4 Functions — Alphabetical List

4-1046

round
Symbolic matrix element-wise round

Syntax

Y = round(X)

Description

Y = round(X) rounds the elements of X to the nearest integers. Values halfway
between two integers are rounded away from zero.

Examples
x = sym(-5/2);

[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =

[-2, -3, -3, -2, -1/2]

See Also
floor | ceil | fix | frac

Introduced before R2006a

 rref

4-1047

rref
Reduced row echelon form of matrix (Gauss-Jordan elimination)

Syntax

rref(A)

Description

rref(A) computes the reduced row echelon form of the symbolic matrix A. If the
elements of a matrix contain free symbolic variables, rref regards the matrix as
nonzero.

To solve a system of linear equations, use linsolve.

Examples

Compute the reduced row echelon form of the magic square matrix:

rref(sym(magic(4)))

ans =

[1, 0, 0, 1]

[0, 1, 0, 3]

[0, 0, 1, -3]

[0, 0, 0, 0]

Compute the reduced row echelon form of the following symbolic matrix:

syms a b c

A = [a b c; b c a; a + b, b + c, c + a];

rref(A)

ans =

[1, 0, -(- c^2 + a*b)/(- b^2 + a*c)]

[0, 1, -(- a^2 + b*c)/(- b^2 + a*c)]

[0, 0, 0]

4 Functions — Alphabetical List

4-1048

See Also
eig | jordan | rank | size | linsolve

Introduced before R2006a

 rsums

4-1049

rsums

Interactive evaluation of Riemann sums

Syntax

rsums(f)

rsums(f,a,b)

rsums(f,[a,b])

Description

rsums(f) interactively approximates the integral of f(x) by Middle Riemann sums for
x from 0 to 1. rsums(f) displays a graph of f(x) using 10 terms (rectangles). You can
adjust the number of terms taken in the Middle Riemann sum by using the slider below
the graph. The number of terms available ranges from 2 to 128. f can be a string or
a symbolic expression. The height of each rectangle is determined by the value of the
function in the middle of each interval.

rsums(f,a,b) and rsums(f,[a,b]) approximates the integral for x from a to b.

Examples

Visualize Riemann Sums

Use rsums('exp(-5*x^2)') or rsums exp(-5*x^2) to create the following plot.

rsums exp(-5*x^2)

4 Functions — Alphabetical List

4-1050

Introduced before R2006a

 sec

4-1051

sec

Symbolic secant function

Syntax

sec(X)

Description

sec(X) returns the secant function of X.

Examples

Secant Function for Numeric and Symbolic Arguments

Depending on its arguments, sec returns floating-point or exact symbolic results.

Compute the secant function for these numbers. Because these numbers are not symbolic
objects, sec returns floating-point results.

A = sec([-2, -pi, pi/6, 5*pi/7, 11])

A =

 -2.4030 -1.0000 1.1547 -1.6039 225.9531

Compute the secant function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, sec returns unresolved symbolic calls.

symA = sec(sym([-2, -pi, pi/6, 5*pi/7, 11]))

symA =

[1/cos(2), -1, (2*3^(1/2))/3, -1/cos((2*pi)/7), 1/cos(11)]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-1052

vpa(symA)

ans =

[-2.4029979617223809897546004014201,...

-1.0,...

1.1547005383792515290182975610039,...

-1.6038754716096765049444092780298,...

225.95305931402493269037542703557]

Plot Secant Function

Plot the secant function on the interval from to .

syms x

ezplot(sec(x), [-4*pi, 4*pi])

grid on

 sec

4-1053

Handle Expressions Containing Secant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing sec.

Find the first and second derivatives of the secant function:

syms x

diff(sec(x), x)

diff(sec(x), x, x)

ans =

sin(x)/cos(x)^2

4 Functions — Alphabetical List

4-1054

ans =

1/cos(x) + (2*sin(x)^2)/cos(x)^3

Find the indefinite integral of the secant function:

int(sec(x), x)

ans =

log(1/cos(x)) + log(sin(x) + 1)

Find the Taylor series expansion of sec(x):

taylor(sec(x), x)

ans =

(5*x^4)/24 + x^2/2 + 1

Rewrite the secant function in terms of the exponential function:

rewrite(sec(x), 'exp')

ans =

1/(exp(-x*1i)/2 + exp(x*1i)/2)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Secant Function

The secant of an angle, α, defined with reference to a right angled triangle is

sec
hypotenuse

adjacent side
()

cos
.a

a
=

()
= =

1 h

b

 sec

4-1055

The secant of a complex angle, α, is

sec() .a
a a

=

+
-

2

e e
i i

See Also
acos | acot | acsc | asec | asin | atan | cos | cot | csc | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-1056

sech

Symbolic hyperbolic secant function

Syntax

sech(X)

Description

sech(X) returns the hyperbolic secant function of X.

Examples

Hyperbolic Secant Function for Numeric and Symbolic Arguments

Depending on its arguments, sech returns floating-point or exact symbolic results.

Compute the hyperbolic secant function for these numbers. Because these numbers are
not symbolic objects, sech returns floating-point results.

A = sech([-2, -pi*i, pi*i/6, 0, pi*i/3, 5*pi*i/7, 1])

A =

 0.2658 -1.0000 1.1547 1.0000 2.0000 -1.6039 0.6481

Compute the hyperbolic secant function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, sech returns unresolved symbolic calls.

symA = sech(sym([-2, -pi*i, pi*i/6, 0, pi*i/3, 5*pi*i/7, 1]))

symA =

[1/cosh(2), -1, (2*3^(1/2))/3, 1, 2, -1/cosh((pi*2i)/7), 1/cosh(1)]

Use vpa to approximate symbolic results with floating-point numbers:

 sech

4-1057

vpa(symA)

ans =

[0.26580222883407969212086273981989,...

-1.0,...

1.1547005383792515290182975610039,...

1.0,...

2.0,...

-1.6038754716096765049444092780298,...

0.64805427366388539957497735322615]

Plot Hyperbolic Secant Function

Plot the hyperbolic secant function on the interval from -10 to 10.

syms x

ezplot(sech(x), [-10, 10])

grid on

4 Functions — Alphabetical List

4-1058

Handle Expressions Containing Hyperbolic Secant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing sech.

Find the first and second derivatives of the hyperbolic secant function:

syms x

diff(sech(x), x)

diff(sech(x), x, x)

ans =

-sinh(x)/cosh(x)^2

 sech

4-1059

ans =

(2*sinh(x)^2)/cosh(x)^3 - 1/cosh(x)

Find the indefinite integral of the hyperbolic secant function:

int(sech(x), x)

ans =

2*atan(exp(x))

Find the Taylor series expansion of sech(x):

taylor(sech(x), x)

ans =

(5*x^4)/24 - x^2/2 + 1

Rewrite the hyperbolic secant function in terms of the exponential function:

rewrite(sech(x), 'exp')

ans =

1/(exp(-x)/2 + exp(x)/2)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sinh |
tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-1060

series

Puiseux series

Syntax

series(f,var)

series(f,var,a)

series(___ ,Name,Value)

Description

series(f,var) approximates f with the Puiseux series expansion of f up to the fifth
order at the point var = 0. If you do not specify var, then series uses the default
variable determined by symvar(f,1).

series(f,var,a) approximates f with the Puiseux series expansion of f at the point
var = a.

series(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. You can specify Name,Value after the input arguments in
any of the previous syntaxes.

Examples

Find Puiseux Series Expansion

Find the Puiseux series expansions of univariate and multivariate expressions.

Find the Puiseux series expansion of this expression at the point x = 0.

syms x

series(1/sin(x), x)

ans =

 series

4-1061

x/6 + 1/x + (7*x^3)/360

Find the Puiseux series expansion of this multivariate expression. If you do not specify
the expansion variable, series uses the default variable determined by symvar(f,1).

syms s t

f = sin(s)/sin(t);

symvar(f, 1)

series(f)

ans =

t

ans =

sin(s)/t + (7*t^3*sin(s))/360 + (t*sin(s))/6

To use another expansion variable, specify it explicitly.

syms s t

f = sin(s)/sin(t);

series(f, s)

ans =

s^5/(120*sin(t)) - s^3/(6*sin(t)) + s/sin(t)

Specify Expansion Point

Find the Puiseux series expansion of psi(x) around x = Inf. The default expansion
point is 0. To specify a different expansion point, use the ExpansionPoint name-value
pair.

series(psi(x), x, 'ExpansionPoint', Inf)

ans =

log(x) - 1/(2*x) - 1/(12*x^2) + 1/(120*x^4)

Alternatively, specify the expansion point as the third argument of series.

syms x

series(psi(x), x, Inf)

ans =

log(x) - 1/(2*x) - 1/(12*x^2) + 1/(120*x^4)

4 Functions — Alphabetical List

4-1062

Specify Truncation Order

Find the Puiseux series expansion of exp(x)/x using different truncation orders.

Find the series expansion up to the default truncation order 6.

syms x

f = exp(x)/x;

s6 = series(f, x)

s6 =

x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + 1

Use Order to control the truncation order. For example, approximate the same
expression up to the orders 7 and 8.

s7 = series(f, x, 'Order', 7)

s8 = series(f, x, 'Order', 8)

s7 =

x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + x^5/720 + 1

s8 =

x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + x^5/720 + x^6/5040 + 1

Plot the original expression f and its approximations s6, s7, and s8. Note how the
accuracy of the approximation depends on the truncation order.

ezplot(s6)

hold on

ezplot(s7)

ezplot(s8)

ezplot(f)

xlim([-5 5])

legend('approximation up to O(x^6)',...

'approximation up to O(x^7)',...

'approximation up to O(x^8)',...

'exp(x)/x',...

'Location', 'Best');

title('Puiseux Series Expansion')

hold off

 series

4-1063

Specify Direction of Expansion

Find the Puiseux series approximations using the Direction argument. This argument
lets you change the convergence area, which is the area where series tries to find
converging Puiseux series expansion approximating the original expression.

Find the Puiseux series approximation of this expression. By default, series finds
the approximation that is valid in a small open circle in the complex plane around the
expansion point.

syms x

series(sin(sqrt(-x)), x)

4 Functions — Alphabetical List

4-1064

ans =

(-x)^(1/2) - (-x)^(3/2)/6 + (-x)^(5/2)/120

Find the Puiseux series approximation of the same expression that is valid in a small
interval to the left of the expansion point. Then, find an approximation that is valid in a
small interval to the right of the expansion point.

syms x

series(sin(sqrt(-x)), x)

series(sin(sqrt(-x)), x, 'Direction', 'left')

series(sin(sqrt(-x)), x, 'Direction', 'right')

ans =

(-x)^(1/2) - (-x)^(3/2)/6 + (-x)^(5/2)/120

ans =

- x^(1/2)*1i - (x^(3/2)*1i)/6 - (x^(5/2)*1i)/120

ans =

x^(1/2)*1i + (x^(3/2)*1i)/6 + (x^(5/2)*1i)/120

Try computing the Puiseux series approximation of this expression. By default, series
tries to find an approximation that is valid in the complex plane around the expansion
point. For this expression, such approximation does not exist.

series(real(sin(x)), x)

Error using sym/series>scalarSeries (line 90)

Cannot compute a series expansion of the input.

However, the approximation exists along the real axis, to both sides of x = 0.

series(real(sin(x)), x, 'Direction', 'realAxis')

ans =

x^5/120 - x^3/6 + x

Input Arguments

f — Input to approximate
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic
multidimensional array

 series

4-1065

Input to approximate, specified as a symbolic expression or function. It also can be a
vector, matrix, or multidimensional array of symbolic expressions or functions.

var — Expansion variable
symbolic variable

Expansion variable, specified as a symbolic variable. If you do not specify var, then
series uses the default variable determined by symvar(f,1).

a — Expansion point
0 (default) | number | symbolic number | symbolic variable | symbolic function |
symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or
expression. The expansion point cannot depend on the expansion variable.

You also can specify the expansion point as a Name,Value pair argument. If you specify
the expansion point both ways, then the Name,Value pair argument takes precedence.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: series(psi(x),x,'ExpansionPoint',Inf,'Order',9)

'ExpansionPoint' — Expansion point
0 (default) | number | symbolic number | symbolic variable | symbolic function |
symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or
expression. The expansion point cannot depend on the expansion variable.

You can also specify the expansion point using the input argument a. If you specify the
expansion point both ways, then the Name,Value pair argument takes precedence.

'Order' — Truncation order of Puiseux series expansion
6 (default) | positive integer | symbolic positive integer

Truncation order of Puiseux series expansion, specified as a positive integer or a symbolic
positive integer.

4 Functions — Alphabetical List

4-1066

series computes the Puiseux series approximation with the order n - 1. The
truncation order n is the exponent in the O-term: O(varn).

'Direction' — Direction for area of convergence of Puiseux series expansion
'complexPlane' (default) | 'left' | 'right' | 'realAxis'

Direction for area of convergence of Puiseux series expansion, specified as one of the
following strings:

'left' Find a Puiseux series approximation that is valid in a small
interval to the left of the expansion point.

'right' Find a Puiseux series approximation that is valid in a small
interval to the right of the expansion point.

'realAxis' Find a Puiseux series approximation that is valid in a small
interval on the both sides of the expansion point.

'complexPlane' Find a Puiseux series approximation that is valid in a small open
circle in the complex plane around the expansion point. This is the
default value.

More About

Tips

• If you use both the third argument a and the ExpansionPoint name-value pair to
specify the expansion point, the value specified via ExpansionPoint prevails.

See Also
pade | taylor

Introduced in R2015b

 setVar

4-1067

setVar
Assign variable in MuPAD notebook

Compatibility

setvar(nb,MATLABvar) has been removed. Use the three argument version
setvar(nb,'MuPADvar',MATLABexpr) instead.

Syntax

setVar(nb,MATLABvar)

setVar(nb,'MuPADvar',MATLABexpr)

Description

setVar(nb,MATLABvar) copies the symbolic variable MATLABvar and its value in the
MATLAB workspace to the variable MATLABvar in the MuPAD notebook nb.

setVar(nb,'MuPADvar',MATLABexpr) assigns the symbolic expression MATLABexpr
in the MATLAB workspace to the variable MuPADvar in the MuPAD notebook nb.

Examples

Copy Variable and Its Value from MATLAB to MuPAD

Copy a variable y with a value exp(-x) assigned to it from the MATLAB workspace to a
MuPAD notebook. Do all three steps in the MATLAB Command Window.

Create the symbolic variable x and assign the expression exp(-x) to y:

syms x

y = exp(-x);

Create a new MuPAD notebook and specify a handle mpnb to that notebook:

4 Functions — Alphabetical List

4-1068

mpnb = mupad;

Copy the variable y and its value exp(-x) to the MuPAD notebook mpnb:

setVar(mpnb,'y',y)

After executing this statement, the MuPAD engine associated with the mpnb notebook
contains the variable y, with its value exp(-x).

Assign MATLAB Symbolic Expression to Variable in MuPAD

Working in the MATLAB Command Window, assign an expression t^2 + 1 to a variable
g in a MuPAD notebook. Do all three steps in the MATLAB Command Window.

Create the symbolic variable t:

syms t

Create a new MuPAD notebook and specify a handle mpnb to that notebook:

mpnb = mupad;

Assign the value t^2 + 1 to the variable g in the MuPAD notebook mpnb:

setVar(mpnb,'g',t^2 + 1)

After executing this statement, the MuPAD engine associated with the mpnb notebook
contains the variable g, with its value t^2 + 1.

• “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25

Input Arguments

nb — Pointer to MuPAD notebook
handle to notebook | vector of handles to notebooks

Pointer to a MuPAD notebook, specified as a MuPAD notebook handle or a vector of
handles. You create the notebook handle when opening a notebook with the mupad or
openmn function.

MuPADvar — Variable in MuPAD notebook
variable

 setVar

4-1069

Variable in a MuPAD notebook, specified as a variable.

MATLABvar — Variable in MATLAB workspace
symbolic variable

Variable in the MATLAB workspace, specified as a symbolic variable.

MATLABexpr — Expression in MATLAB workspace
symbolic expression

Expression in the MATLAB workspace, specified as a symbolic expression.

See Also
getVar | mupad | openmu

Introduced in R2008b

4 Functions — Alphabetical List

4-1070

sign

Sign of real or complex value

Syntax

sign(z)

Description

sign(z) returns the sign of real or complex value z. The sign of a complex number z
is defined as z/abs(z). If z is a vector or a matrix, sign(z) returns the sign of each
element of z.

Examples

Signs of Real Numbers

Find the signs of these symbolic real numbers:

[sign(sym(1/2)), sign(sym(0)), sign(sym(pi) - 4)]

ans =

[1, 0, -1]

Signs of Matrix Elements

Find the signs of the real and complex elements of matrix A:

A = sym([(1/2 + i), -25; i*(i + 1), pi/6 - i*pi/2]);

sign(A)

ans =

[5^(1/2)*(1/5 + 2i/5), -1]

[2^(1/2)*(- 1/2 + 1i/2), 5^(1/2)*18^(1/2)*(1/30 - 1i/10)]

 sign

4-1071

Sign of Symbolic Expression

Find the sign of this expression assuming that the value x is negative:

syms x

assume(x < 0)

sign(5*x^3)

ans =

-1

For further computations, clear the assumption:

syms x clear

Input Arguments

z — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function, vector, or matrix.

More About

Sign Function

The sign function of any number z is defined via the absolute value of z:

sign z
z

z

() =

Thus, the sign function of a real number z can be defined as follows:

sign z

x

x

x

() =

- <

=

>

Ï

Ì
Ô

Ó
Ô

1 0

0 0

1 0

 if

 if

 if

4 Functions — Alphabetical List

4-1072

Tips

• Calling sign for a number that is not a symbolic object invokes the MATLAB sign
function.

See Also
abs | angle | imag | real | signIm

Introduced in R2013a

 signIm

4-1073

signIm

Sign of the imaginary part of complex number

Syntax

signIm(z)

Description

signIm(z) returns the sign of the imaginary part of a complex number z. For all
complex numbers with a nonzero imaginary part, singIm(z) = sign(imag(z)). For
real numbers, signIm(z) = -sign(z).

signIm

Im Im

z

z z z

z() =

-

() > () = <

=

1

0

1

0 0 0

0

if or and

if

otherwise

ÏÏ

Ì
Ô

Ó
Ô

Examples

Symbolic Results Including signIm

Results of symbolic computations, especially symbolic integration, can include the
signIm function.

Integrate this expression. For complex values a and x, this integral includes signIm.

syms a x

f = 1/(a^2 + x^2);

F = int(f, x, -Inf, Inf)

F =

4 Functions — Alphabetical List

4-1074

(pi*signIm(1i/a))/a

Signs of Imaginary Parts of Numbers

Find the signs of imaginary parts of complex numbers with nonzero imaginary parts and
of real numbers.

Use signIm to find the signs of imaginary parts of these numbers. For complex numbers
with nonzero imaginary parts, signIm returns the sign of the imaginary part of the
number.

[signIm(-18 + 3*i), signIm(-18 - 3*i),...

signIm(10 + 3*i), signIm(10 - 3*i),...

signIm(Inf*i), signIm(-Inf*i)]

ans =

 1 -1 1 -1 1 -1

For real positive numbers, signIm returns -1.

[signIm(2/3), signIm(1), signIm(100), signIm(Inf)]

ans =

 -1 -1 -1 -1

For real negative numbers, signIm returns 1.

[signIm(-2/3), signIm(-1), signIm(-100), signIm(-Inf)]

ans =

 1 1 1 1

signIm(0) is 0.

[signIm(0), signIm(0 + 0*i), signIm(0 - 0*i)]

ans =

 0 0 0

Signs of Imaginary Parts of Symbolic Expressions

Find the signs of imaginary parts of symbolic expressions that represent complex
numbers.

 signIm

4-1075

Call signIm for these symbolic expressions without additional assumptions. Because
signIm cannot determine if the imaginary part of a symbolic expression is positive,
negative, or zero, it returns unresolved symbolic calls.

syms x y z

[signIm(z), signIm(x + y*i), signIm(x - 3*i)]

ans =

[signIm(z), signIm(x + y*1i), signIm(x - 3i)]

Assume that x, y, and z are positive values. Find the signs of imaginary parts of the
same symbolic expressions.

syms x y z positive

[signIm(z), signIm(x + y*i), signIm(x - 3*i)]

ans =

[-1, 1, -1]

For further computations, clear the assumptions.

syms x y z clear

Find the first derivative of the signIm function. signIm is a constant function, except
for the jump discontinuities along the real axis. The diff function ignores these
discontinuities.

syms z

diff(signIm(z), z)

ans =

0

Signs of Imaginary Parts of Matrix Elements

singIm accepts vectors and matrices as its input argument. This lets you find the signs
of imaginary parts of several numbers in one function call.

Find the signs of imaginary parts of the real and complex elements of matrix A.

A = sym([(1/2 + i), -25; i*(i + 1), pi/6 - i*pi/2]);

signIm(A)

ans =

4 Functions — Alphabetical List

4-1076

[1, 1]

[1, -1]

Input Arguments

z — Input representing complex number
number | symbolic number | symbolic variable | symbolic expression | vector | matrix

Input representing complex number, specified as a number, symbolic number, symbolic
variable, expression, vector, or matrix.

More About

Tips

• signIm(NaN) returns NaN.

See Also
conj | imag | real | sign

Introduced in R2014b

 simplify

4-1077

simplify
Algebraic simplification

Syntax

simplify(S)

simplify(S,Name,Value)

Description

simplify(S) performs algebraic simplification of S. If S is a symbolic vector or matrix,
this function simplifies each element of S.

simplify(S,Name,Value) performs algebraic simplification of S using additional
options specified by one or more Name,Value pair arguments.

Examples

Simplify Expressions

Simplify these symbolic expressions:

syms x a b c

simplify(sin(x)^2 + cos(x)^2)

simplify(exp(c*log(sqrt(a+b))))

ans =

1

ans =

(a + b)^(c/2)

Simplify Matrix Elements

Call simplify for this symbolic matrix. When the input argument is a vector or matrix,
simplify tries to find a simpler form of each element of the vector or matrix.

4 Functions — Alphabetical List

4-1078

syms x

simplify([(x^2 + 5*x + 6)/(x + 2),...

sin(x)*sin(2*x) + cos(x)*cos(2*x);

(exp(-x*i)*i)/2 - (exp(x*i)*i)/2, sqrt(16)])

ans =

[x + 3, cos(x)]

[sin(x), 4]

Get Simpler Results Using IgnoreAnalyticConstraints

Try to simplify this expression. By default, simplify does not combine powers and
logarithms because combining them is not valid for generic complex values.

syms x

s = (log(x^2 + 2*x + 1) - log(x + 1))*sqrt(x^2);

simplify(s)

ans =

-(log(x + 1) - log((x + 1)^2))*(x^2)^(1/2)

To apply the simplification rules that let the simplify function combine powers and
logarithms, set IgnoreAnalyticConstraints to true:

simplify(s, 'IgnoreAnalyticConstraints', true)

ans =

x*log(x + 1)

Get Simpler Results Using Steps

Simplify this expression:

syms x

f = ((exp(-x*i)*i)/2 - (exp(x*i)*i)/2)/(exp(-x*i)/2 + ...

 exp(x*i)/2);

simplify(f)

ans =

-(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1)

By default, simplify uses one internal simplification step. You can get different, often
shorter, simplification results by increasing the number of simplification steps:

simplify(f, 'Steps', 10)

simplify(f, 'Steps', 30)

 simplify

4-1079

simplify(f, 'Steps', 50)

ans =

2i/(exp(x*2i) + 1) - 1i

ans =

((cos(x) - sin(x)*1i)*1i)/cos(x) - 1i

ans =

tan(x)

Simplify Favoring Real Numbers

To force simplify favor real values over complex values, set the value of Criterion to
preferReal:

syms x

f = (exp(x + exp(-x*i)/2 - exp(x*i)/2)*i)/2 -...

 (exp(- x - exp(-x*i)/2 + exp(x*i)/2)*i)/2;

simplify(f, 'Criterion','preferReal', 'Steps', 100)

ans =

sin(sin(x))*cosh(x) + cos(sin(x))*sinh(x)*1i

If x is a real value, then this form of expression explicitly shows the real and imaginary
parts.

Although the result returned by simplify with the default setting for Criterion is
shorter, here the complex value is a parameter of the sine function:

simplify(f, 'Steps', 100)

ans =

sin(sin(x) + x*1i)

When you set Criterion to preferReal, the simplifier disfavors expression forms
where complex values appear inside subexpressions. In case of nested subexpressions,
the deeper the complex value appears inside an expression, the least preference this form
of an expression gets.

Simplify Expressions with Complex Arguments in Exponents

Setting Criterion to preferReal helps you avoid complex arguments in exponents.

Simplify these symbolic expressions:

4 Functions — Alphabetical List

4-1080

simplify(sym(i)^i, 'Steps', 100)

simplify(sym(i)^(i+1), 'Steps', 100)

ans =

exp(-pi/2)

ans =

(-1)^(1/2 + 1i/2)

Now, simplify the second expression with the Criterion set to preferReal:

simplify(sym(i)^(i+1), 'Criterion', 'preferReal', 'Steps', 100)

ans =

exp(-pi/2)*1i

Input Arguments

S — Input expression
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input expression, specified as a symbolic expression, function, vector, or matrix.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Seconds',60 limits the simplification process to 60 seconds.

'Criterion' — Simplification criterion
'default' (default) | 'preferReal'

Simplification criterion, specified as the comma-separated pair consisting of
'Criterion' and one of these strings.

'default' Use the default (internal) simplification criteria.
'preferReal' Favor the forms of S containing real values over the forms

containing complex values. If any form of S contains complex

 simplify

4-1081

values, the simplifier disfavors the forms where complex values
appear inside subexpressions. In case of nested subexpressions,
the deeper the complex value appears inside an expression, the
least preference this form of an expression gets.

'IgnoreAnalyticConstraints' — Simplification rules
false (default) | true

Simplification rules, specified as the comma-separated pair consisting of
'IgnoreAnalyticConstraints' and one of these values.

false Use strict simplification rules. simplify always returns results
equivalent to the initial expression.

true Apply purely algebraic simplifications to an expression.
simplify can return simpler results for expressions for which
it would return more complicated results otherwise. Setting
IgnoreAnalyticConstraints to true can lead to results that
are not equivalent to the initial expression.

'Seconds' — Time limit for the simplification process
Inf (default) | positive number

Time limit for the simplification process, specified as the comma-separated pair
consisting of 'Seconds' and a positive value that denotes the maximal time in seconds.

'Steps' — Number of simplification steps
1 (default) | positive number

Number of simplification steps, specified as the comma-separated pair consisting
of 'Steps' and a positive value that denotes the maximal number of internal
simplification steps. Note that increasing the number of simplification steps can slow
down your computations.

simplify(S,'Steps',n) is equivalent to simplify(S,n), where n is the number of
simplification steps.

Alternative Functionality

Besides the general simplification function (simplify), the toolbox provides a set of
functions for transforming mathematical expressions to particular forms. For example,

4 Functions — Alphabetical List

4-1082

you can use particular functions to expand or factor expressions, collect terms with
the same powers, find a nested (Horner) representation of an expression, or quickly
simplify fractions. If the problem that you want to solve requires a particular form of an
expression, the best approach is to choose the appropriate simplification function. These
simplification functions are often faster than simplify.

More About

Tips

• Simplification of mathematical expression is not a clearly defined subject. There
is no universal idea as to which form of an expression is simplest. The form of a
mathematical expression that is simplest for one problem might be complicated or
even unsuitable for another problem.

Algorithms

When you use IgnoreAnalyticConstraints, simplify follows these rules:

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the following equality
is valid for all values of a, b, and c:

 (a·b)c = ac·bc.
• log(ab) = b·log(a) for all values of a and b. In particular, the following equality is valid

for all values of a, b, and c:

 (ab)c = ab·c.
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, f(g(x)) = x is assumed to be valid for all complex values of x. In particular:

• log(ex) = x
• asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x
• asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x
• Wk(x·ex) = x for all values of k

See Also
collect | combine | expand | factor | horner | numden | rewrite |
simplifyFraction

 simplify

4-1083

Introduced before R2006a

4 Functions — Alphabetical List

4-1084

simplifyFraction
Symbolic simplification of fractions

Syntax

simplifyFraction(expr)

simplifyFraction(expr,Name,Value)

Description

simplifyFraction(expr) represents the expression expr as a fraction where both the
numerator and denominator are polynomials whose greatest common divisor is 1.

simplifyFraction(expr,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Input Arguments

expr

Symbolic expression or matrix (or vector) of symbolic expressions.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Expand'

Expand the numerator and denominator of the resulting fraction

Default: false

 simplifyFraction

4-1085

Examples

Simplify these fractions:

syms x y

simplifyFraction((x^2 - 1)/(x + 1))

simplifyFraction(((y + 1)^3*x)/((x^3 - x*(x + 1)*(x - 1))*y))

ans =

x - 1

ans =

(y + 1)^3/y

Use Expand to expand the numerator and denominator in the resulting fraction:

syms x y

simplifyFraction(((y + 1)^3*x)/((x^3 - x*(x + 1)*(x - 1))*y),...

'Expand', true)

ans =

(y^3 + 3*y^2 + 3*y + 1)/y

Use simplifyFraction to simplify rational subexpressions of irrational expressions:

syms x

simplifyFraction(((x^2 + 2*x + 1)/(x + 1))^(1/2))

ans =

(x + 1)^(1/2)

Also, use simplifyFraction to simplify rational expressions containing irrational
subexpressions:

simplifyFraction((1 - sin(x)^2)/(1 - sin(x)))

ans =

sin(x) + 1

When you call simplifyFraction for an expression that contains irrational
subexpressions, the function ignores algebraic dependencies of irrational subexpressions:

simplifyFraction((1 - cos(x)^2)/sin(x))

ans =

4 Functions — Alphabetical List

4-1086

-(cos(x)^2 - 1)/sin(x)

Alternatives

You also can simplify fractions using the general simplification function simplify. Note
that in terms of performance, simplifyFraction is significantly more efficient for
simplifying fractions than simplify.

More About

Tips

• expr can contain irrational subexpressions, such as sin(x), x^(-1/3), and so on.
As a first step, simplifyFraction replaces these subexpressions with auxiliary
variables. Before returning results, simplifyFraction replaces these variables with
the original subexpressions.

• simplifyFraction ignores algebraic dependencies of irrational subexpressions.

• “Simplify Symbolic Expressions” on page 2-53
• “Choose Function to Rearrange Expression” on page 2-61

See Also
collect | combine | expand | factor | horner | numden | rewrite | simplify

Introduced in R2011b

 simscapeEquation

4-1087

simscapeEquation
Convert symbolic expressions to Simscape language equations

Syntax

simscapeEquation(f)

simscapeEquation(LHS,RHS)

Description

simscapeEquation(f) converts the symbolic expression f to a Simscape language
equation. This function call converts any derivative with respect to the variable t to
the Simscape notation X.der. Here X is the time-dependent variable. In the resulting
Simscape equation, the variable time replaces all instances of the variable t except for
derivatives with respect to t.

simscapeEquation converts expressions with the second and higher-order derivatives
to a system of first-order equations, introducing new variables, such as x1, x2, and so on.

simscapeEquation(LHS,RHS) returns a Simscape equation LHS == RHS.

Examples

Convert the following expressions to Simscape language equations.

syms t x(t) y(t)

phi = diff(x) + 5*y + sin(t);

simscapeEquation(phi)

simscapeEquation(diff(y),phi)

ans =

phi == sin(time)+y*5.0+x.der;

ans =

y.der == sin(time)+y*5.0+x.der;

Convert this expression containing the second derivative.

4 Functions — Alphabetical List

4-1088

syms x(t)

eqn1 = diff(x,2) - diff(x) + sin(t);

simscapeEquation(eqn1)

ans =

x.der == x1;

 eqn1 == sin(time)-x1+x1.der;

Convert this expression containing the fourth and second derivatives.

eqn2 = diff(x,4) + diff(x,2) - diff(x) + sin(t);

simscapeEquation(eqn2)

ans =

x.der == x1;

 x1.der == x2;

 x2.der == x3;

 eqn2 == sin(time)-x1+x2+x3.der;

More About

Tips

The equation section of a Simscape component file supports a limited number of
functions. For details and the list of supported functions, see Simscape equations. If a
symbolic equation contains the functions that are not available in the equation section of
a Simscape component file, simscapeEquation cannot correctly convert these equations
to Simscape equations. Such expressions do not trigger an error message. The following
types of expressions are prone to invalid conversion:

• Expressions with infinities
• Expressions returned by evalin and feval.

If you perform symbolic computations in the MuPAD Notebook app and want to convert
the results to Simscape equations, use the generate::Simscape function in MuPAD.
• “Generate Simscape Equations” on page 2-241

See Also
matlabFunctionBlock | matlabFunction | ccode | fortran

Introduced in R2010a

 sin

4-1089

sin

Symbolic sine function

Syntax

sin(X)

Description

sin(X) returns the sine function of X.

Examples

Sine Function for Numeric and Symbolic Arguments

Depending on its arguments, sin returns floating-point or exact symbolic results.

Compute the sine function for these numbers. Because these numbers are not symbolic
objects, sin returns floating-point results.

A = sin([-2, -pi, pi/6, 5*pi/7, 11])

A =

 -0.9093 -0.0000 0.5000 0.7818 -1.0000

Compute the sine function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, sin returns unresolved symbolic calls.

symA = sin(sym([-2, -pi, pi/6, 5*pi/7, 11]))

symA =

[-sin(2), 0, 1/2, sin((2*pi)/7), sin(11)]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-1090

vpa(symA)

ans =

[-0.90929742682568169539601986591174,...

0,...

0.5,...

0.78183148246802980870844452667406,...

-0.99999020655070345705156489902552]

Plot Sine Function

Plot the sine function on the interval from to .

syms x

ezplot(sin(x), [-4*pi, 4*pi])

grid on

 sin

4-1091

Handle Expressions Containing Sine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing sin.

Find the first and second derivatives of the sine function:

syms x

diff(sin(x), x)

diff(sin(x), x, x)

ans =

cos(x)

4 Functions — Alphabetical List

4-1092

ans =

-sin(x)

Find the indefinite integral of the sine function:

int(sin(x), x)

ans =

-cos(x)

Find the Taylor series expansion of sin(x):

taylor(sin(x), x)

ans =

x^5/120 - x^3/6 + x

Rewrite the sine function in terms of the exponential function:

rewrite(sin(x), 'exp')

ans =

(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Sine Function

The sine of an angle, α, defined with reference to a right angled triangle is

sin .a() = =
opposite side

hypotenuse

a

h

 sin

4-1093

The sine of a complex angle, α, is

sin .a
a a

() =
-

-
e e

i

i i

2

See Also
acos | acot | acsc | asec | asin | atan | cos | cot | csc | sec | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-1094

single
Convert symbolic matrix to single precision

Syntax

single(S)

Description

single(S) converts the symbolic matrix S to a matrix of single-precision floating-point
numbers. S must not contain any symbolic variables, except 'eps'.

See Also
sym | vpa | double

Introduced before R2006a

 sinh

4-1095

sinh
Symbolic hyperbolic sine function

Syntax

sinh(X)

Description

sinh(X) returns the hyperbolic sine function of X.

Examples

Hyperbolic Sine Function for Numeric and Symbolic Arguments

Depending on its arguments, sinh returns floating-point or exact symbolic results.

Compute the hyperbolic sine function for these numbers. Because these numbers are not
symbolic objects, sinh returns floating-point results.

A = sinh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])

A =

 -3.6269 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.5000i...

 0.0000 + 0.7818i 0.0000 - 1.0000i

Compute the hyperbolic sine function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, sinh returns unresolved symbolic calls.

symA = sinh(sym([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2]))

symA =

[-sinh(2), 0, 1i/2, sinh((pi*2i)/7), -1i]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-1096

vpa(symA)

ans =

[-3.6268604078470187676682139828013,...

0,...

0.5i,...

0.78183148246802980870844452667406i,...

-1.0i]

Plot Hyperbolic Sine Function

Plot the hyperbolic sine function on the interval from to .

syms x

ezplot(sinh(x), [-pi, pi])

grid on

 sinh

4-1097

Handle Expressions Containing Hyperbolic Sine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing sinh.

Find the first and second derivatives of the hyperbolic sine function:

syms x

diff(sinh(x), x)

diff(sinh(x), x, x)

ans =

cosh(x)

4 Functions — Alphabetical List

4-1098

ans =

sinh(x)

Find the indefinite integral of the hyperbolic sine function:

int(sinh(x), x)

ans =

cosh(x)

Find the Taylor series expansion of sinh(x):

taylor(sinh(x), x)

ans =

x^5/120 + x^3/6 + x

Rewrite the hyperbolic sine function in terms of the exponential function:

rewrite(sinh(x), 'exp')

ans =

exp(x)/2 - exp(-x)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sech |
tanh

Introduced before R2006a

 sinhint

4-1099

sinhint

Hyperbolic sine integral function

Syntax

sinhint(X)

Description

sinhint(X) returns the hyperbolic sine integral function of X.

Examples

Hyperbolic Sine Integral Function for Numeric and Symbolic Arguments

Depending on its arguments, sinhint returns floating-point or exact symbolic results.

Compute the hyperbolic sine integral function for these numbers. Because these numbers
are not symbolic objects, sinhint returns floating-point results.

A = sinhint([-pi, -1, 0, pi/2, 2*pi])

A =

 -5.4696 -1.0573 0 1.8027 53.7368

Compute the hyperbolic sine integral function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, sinhint returns unresolved symbolic calls.

symA = sinhint(sym([-pi, -1, 0, pi/2, 2*pi]))

symA =

[-sinhint(pi), -sinhint(1), 0, sinhint(pi/2), sinhint(2*pi)]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-1100

vpa(symA)

ans =

[-5.4696403451153421506369580091277,...

-1.0572508753757285145718423548959,...

0,...

1.802743198288293882089794577617,...

53.736750620859153990408011863262]

Plot Hyperbolic Sine Integral Function

Plot the hyperbolic sine integral function on the interval from -2*pi to 2*pi .

syms x

ezplot(sinhint(x), [-2*pi, 2*pi])

grid on

 sinhint

4-1101

Handle Expressions Containing Hyperbolic Sine Integral Function

Many functions, such as diff, int, and taylor, can handle expressions containing
sinhint.

Find the first and second derivatives of the hyperbolic sine integral function:

syms x

diff(sinhint(x), x)

diff(sinhint(x), x, x)

ans =

sinh(x)/x

4 Functions — Alphabetical List

4-1102

ans =

cosh(x)/x - sinh(x)/x^2

Find the indefinite integral of the hyperbolic sine integral function:

int(sinhint(x), x)

ans =

x*sinhint(x) - cosh(x)

Find the Taylor series expansion of sinhint(x):

taylor(sinhint(x), x)

ans =

x^5/600 + x^3/18 + x

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Hyperbolic Sine Integral Function

The hyperbolic sine integral function is defined as follows:

Shi x
t

t
dt

x

() =
()

Ú
sinh

0

References

[1] Gautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.”
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

 sinhint

4-1103

See Also
coshint | cosint | eulergamma | int | sin | sinint | ssinint

Introduced in R2014a

4 Functions — Alphabetical List

4-1104

sinint

Sine integral function

Syntax

sinint(X)

Description

sinint(X) returns the sine integral function of X.

Examples

Sine Integral Function for Numeric and Symbolic Arguments

Depending on its arguments, sinint returns floating-point or exact symbolic results.

Compute the sine integral function for these numbers. Because these numbers are not
symbolic objects, sinint returns floating-point results.

A = sinint([- pi, 0, pi/2, pi, 1])

A =

 -1.8519 0 1.3708 1.8519 0.9461

Compute the sine integral function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, sinint returns unresolved symbolic calls.

symA = sinint(sym([- pi, 0, pi/2, pi, 1]))

symA =

[-sinint(pi), 0, sinint(pi/2), sinint(pi), sinint(1)]

Use vpa to approximate symbolic results with floating-point numbers:

 sinint

4-1105

vpa(symA)

ans =

[-1.851937051982466170361053370158,...

0,...

1.3707621681544884800696782883816,...

1.851937051982466170361053370158,...

0.94608307036718301494135331382318]

Plot Sine Integral Function

Plot the sine integral function on the interval from -4*pi to 4*pi .

syms x

ezplot(sinint(x), [-4*pi, 4*pi])

grid on

4 Functions — Alphabetical List

4-1106

Handle Expressions Containing Sine Integral Function

Many functions, such as diff, int, and taylor, can handle expressions containing
sinint.

Find the first and second derivatives of the sine integral function:

syms x

diff(sinint(x), x)

diff(sinint(x), x, x)

ans =

sin(x)/x

 sinint

4-1107

ans =

cos(x)/x - sin(x)/x^2

Find the indefinite integral of the sine integral function:

int(sinint(x), x)

ans =

cos(x) + x*sinint(x)

Find the Taylor series expansion of sinint(x):

taylor(sinint(x), x)

ans =

x^5/600 - x^3/18 + x

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Sine Integral Function

The sine integral function is defined as follows:

Si x
t

t
dt

x

() =
()

Ú
sin

0

References

[1] Cautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.”
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

4 Functions — Alphabetical List

4-1108

See Also
coshint | cosint | eulergamma | int | sin | sinhint | ssinint

Introduced before R2006a

 size

4-1109

size
Symbolic matrix dimensions

Syntax

d = size(A)

[m, n] = size(A)

d = size(A, n)

Description

Suppose A is an m-by-n symbolic or numeric matrix. The statement d = size(A) returns
a numeric vector with two integer components, d = [m,n].

The multiple assignment statement [m, n] = size(A) returns the two integers in two
separate variables.

The statement d = size(A, n) returns the length of the dimension specified by the
scalar n. For example, size(A,1) is the number of rows of A and size(A,2) is the
number of columns of A.

Examples

The statements

syms a b c d

A = [a b c ; a b d; d c b; c b a];

d = size(A)

r = size(A, 2)

return

d =

 4 3

r =

4 Functions — Alphabetical List

4-1110

 3

See Also
length | ndims

Introduced before R2006a

 smithForm

4-1111

smithForm
Smith form of matrix

Syntax

S = smithForm(A)

[U,V,S] = smithForm(A)

___ = smithForm(A,var)

Description

S = smithForm(A) returns the Smith normal form of a square invertible matrix
A. The elements of A must be integers or polynomials in a variable determined by
symvar(A,1). The Smith form S is a diagonal matrix.

[U,V,S] = smithForm(A) returns the Smith normal form of A and unimodular
transformation matrices U and V, such that S = U*A*V.

___ = smithForm(A,var) assumes that the elements of A are univariate polynomials
in the specified variable var. If A contains other variables, smithForm treats those
variables as symbolic parameters.

You can use the input argument var in any of the previous syntaxes.

If A does not contain var, then smithForm(A) and smithForm(A,var) return different
results.

Examples

Smith Form for Matrix of Integers

Find the Smith form of an inverse Hilbert matrix.

A = sym(invhilb(5))

S = smithForm(A)

4 Functions — Alphabetical List

4-1112

A =

[25, -300, 1050, -1400, 630]

[-300, 4800, -18900, 26880, -12600]

[1050, -18900, 79380, -117600, 56700]

[-1400, 26880, -117600, 179200, -88200]

[630, -12600, 56700, -88200, 44100]

S =

[5, 0, 0, 0, 0]

[0, 60, 0, 0, 0]

[0, 0, 420, 0, 0]

[0, 0, 0, 840, 0]

[0, 0, 0, 0, 2520]

Smith Form for Matrix of Univariate Polynomials

Create a 2-by-2 matrix, the elements of which are polynomials in the variable x.

syms x

A = [x^2 + 3, (2*x - 1)^2; (x + 2)^2, 3*x^2 + 5]

A =

[x^2 + 3, (2*x - 1)^2]

[(x + 2)^2, 3*x^2 + 5]

Find the Smith form of this matrix.

S = smithForm(A)

S =

[1, 0]

[0, x^4 + 12*x^3 - 13*x^2 - 12*x - 11]

Smith Form for Matrix of Multivariate Polynomials

Create a 2-by-2 matrix containing two variables: x and y.

syms x y

A = [2/x + y, x^2 - y^2; 3*sin(x) + y, x]

A =

[y + 2/x, x^2 - y^2]

[y + 3*sin(x), x]

 smithForm

4-1113

Find the Smith form of this matrix. If you do not specify the polynomial variable,
smithForm uses symvar(A,1) and thus determines that the polynomial variable is x.
Because 3*sin(x) + y is not a polynomial in x, smithForm throws an error.

S = smithForm(A)

Error using mupadengine/feval (line 163)

Cannot convert the matrix entries to integers or univariate polynomials.

Find the Smith form of A specifying that all elements of A are polynomials in the variable
y.

S = smithForm(A,y)

S =

[1, 0]

[0, 3*y^2*sin(x) - 3*x^2*sin(x) + y^3 + y*(- x^2 + x) + 2]

Smith Form and Transformation Matrices

Find the Smith form and transformation matrices for an inverse Hilbert matrix.

A = sym(invhilb(3));

[U,V,S] = smithForm(A)

U =

[1, 1, 1]

[-4, -1, 0]

[10, 5, 3]

V =

[1, -2, 0]

[0, 1, 5]

[0, 1, 4]

S =

[3, 0, 0]

[0, 12, 0]

[0, 0, 60]

Verify that S = U*A*V.

isAlways(S == U*A*V)

ans =

4 Functions — Alphabetical List

4-1114

 1 1 1

 1 1 1

 1 1 1

Find the Smith form and transformation matrices for a matrix of polynomials.

syms x y

A = [2*(x - y), 3*(x^2 - y^2);

 4*(x^3 - y^3), 5*(x^4 - y^4)];

[U,V,S] = smithForm(A,x)

U =

[0, 1]

[1, - x/(10*y^3) - 3/(5*y^2)]

V =

[-x/(4*y^3), - (5*x*y^2)/2 - (5*x^2*y)/2 - (5*x^3)/2 - (5*y^3)/2]

[1/(5*y^3), 2*x^2 + 2*x*y + 2*y^2]

S =

[x - y, 0]

[0, x^4 + 6*x^3*y - 6*x*y^3 - y^4]

Verify that S = U*A*V.

isAlways(S == U*A*V)

ans =

 1 1

 1 1

If You Specify Variable for Integer Matrix

If a matrix does not contain a particular variable, and you call smithForm specifying
that variable as the second argument, then the result differs from what you get without
specifying that variable. For example, create a matrix that does not contain any
variables.

A = [9 -36 30; -36 192 -180; 30 -180 180]

A =

 9 -36 30

 -36 192 -180

 30 -180 180

 smithForm

4-1115

Call smithForm specifying variable x as the second argument. In this
case, smithForm assumes that the elements of A are univariate polynomials in x.

syms x

smithForm(A,x)

ans =

 1 0 0

 0 1 0

 0 0 1

Call smithForm without specifying variables. In this case, smithForm treats A as a
matrix of integers.

smithForm(A)

ans =

 3 0 0

 0 12 0

 0 0 60

Input Arguments

A — Input matrix
square invertible symbolic matrix

Input matrix, specified as a square invertible symbolic matrix, the elements of which are
integers or univariate polynomials. If the elements of A contain more than one variable,
use the var argument to specify a polynomial variable, and treat all other variables as
symbolic parameters. If A is multivariate, and you do not specify var, then smithForm
uses symvar(A,1) to determine a polynomial variable.

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments

S — Smith normal form of input matrix
symbolic diagonal matrix

4 Functions — Alphabetical List

4-1116

Smith normal form of input matrix, returned as a symbolic diagonal matrix. The first
diagonal element divides the second, the second divides the third, and so on.

U — Transformation matrix
unimodular symbolic matrix

Transformation matrix, returned as a unimodular symbolic matrix. If elements of A
are integers, then elements of U are also integers, and det(U) = 1 or det(U) = -1.
If elements of A are polynomials, then elements of U are univariate polynomials, and
det(U) is a constant.

V — Transformation matrix
unimodular symbolic matrix

Transformation matrix, returned as a unimodular symbolic matrix. If elements of A
are integers, then elements of V are also integers, and det(V) = 1 or det(V) = -1.
If elements of A are polynomials, then elements of V are univariate polynomials, and
det(V) is a constant.

More About

Smith Normal Form

Smith normal form of a an n-by-n matrix A is an n-by-n diagonal matrix S, such that Si i,

divides Si i+ +1 1, for all i < n.

See Also
hermiteForm | jordan

Introduced in R2015b

 solve

4-1117

solve
Equations and systems solver

Compatibility
String inputs will be removed in a future release. Instead, use syms to declare variables
and replace inputs such as solve('2*x == 1','x') with solve(2*x == 1,x).

Syntax
S = solve(eqn,var)

S = solve(eqn,var,Name,Value)

Y = solve(eqns,vars)

Y = solve(eqns,vars,Name,Value)

[y1,...,yN] = solve(eqns,vars)

[y1,...,yN] = solve(eqns,vars,Name,Value)

[y1,...,yN,parameters,conditions] = solve(eqns,vars,'

ReturnConditions',true)

Description
S = solve(eqn,var) solves the equation eqn for the variable var. If you do not specify
var, the symvar function determines the variable to solve for. For example, solve(x +
1 == 2, x) solves the equation x + 1 = 2 for x.

S = solve(eqn,var,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Y = solve(eqns,vars) solves the system of equations eqns for the variables vars
and returns a structure that contains the solutions. If you do not specify vars, solve
uses symvar to find the variables to solve for. In this case, the number of variables that
symvar finds is equal to the number of equations eqns.

Y = solve(eqns,vars,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

4 Functions — Alphabetical List

4-1118

[y1,...,yN] = solve(eqns,vars) solves the system of equations eqns for the
variables vars. The solutions are assigned to the variables y1,...,yN. If you do not
specify the variables, solve uses symvar to find the variables to solve for. In this case,
the number of variables that symvar finds is equal to the number of output arguments N.

[y1,...,yN] = solve(eqns,vars,Name,Value) uses additional options specified by
one or more Name,Value pair arguments.

[y1,...,yN,parameters,conditions] = solve(eqns,vars,'

ReturnConditions',true) returns the additional arguments parameters and
conditions that specify the parameters in the solution and the conditions on the
solution.

Examples

Solve an Equation

Use the == operator to specify the equation sin(x) == 1 and solve it.

syms x

eqn = sin(x) == 1;

solx = solve(eqn,x)

solx =

pi/2

Find the complete solution of the same equation by specifying the ReturnConditions
option as true. Specify output variables for the solution, the parameters in the solution,
and the conditions on the solution.

[solx, params, conds] = solve(eqn, x, 'ReturnConditions', true)

solx =

pi/2 + 2*pi*k

params =

k

conds =

in(k, 'integer')

 solve

4-1119

The solution pi/2 + 2*pi*k contains the parameter k which is valid under the
condition in(k, 'integer'). This condition means the parameter k must be an
integer.

If solve returns an empty object, then no solutions exist. If solve returns an empty
object with a warning, solutions might exist but solve did not find any solutions.

solve(3*x+2, 3*x+1, x)

ans =

Empty sym: 0-by-1

Use Parameters and Conditions Returned by solve to Refine Solution

Return the complete solution of an equation with parameters and conditions of the
solution by specifying ReturnConditions as true.

Solve the equation sin(x) = 0. Provide two additional output variables for output
arguments parameters and conditions.

syms x

[solx, param, cond] = solve(sin(x) == 0, x, 'ReturnConditions', true)

solx =

pi*k

param =

k

cond =

in(k, 'integer')

The solution pi*k contains the parameter k and is valid under the condition
in(k,'integer'). This condition means the parameter k must be an integer. k does
not exist in the MATLAB workspace and must be accessed using param.

Find a valid value of k for 0 < x < 2*pi by assuming the condition, cond, and using
solve to solve these conditions for k. Substitute the value of k found into the solution for
x.

assume(cond)

solk = solve([solx > 0, solx < 2*pi], param)

valx = subs(solx, param, solk)

solk =

1

valx =

4 Functions — Alphabetical List

4-1120

pi

A valid value of k for 0 < x < 2*pi is 1. This produces the value x = pi.

Alternatively, find a solution for x by choosing a value of k. Check if the value chosen
satisfies the condition on k using isAlways.

Check if k = 4 satisfies the condition on k.

isAlways(subs(cond, param, 4))

ans =

 1

isAlways returns logical 1 (true), meaning 4 is a valid value for k. Substitute k with 4
to obtain a solution for x. Use vpa to obtain a numeric approximation.

valx = subs(solx, param, 4)

vpa(valx)

valx =

4*pi

ans =

12.566370614359172953850573533118

Solve Multivariate Equations and Assign Outputs to Variables

Avoid ambiguities when solving equations with symbolic parameters by specifying the
variable for which you want to solve an equation. If you do not specify the variable,
solve chooses a variable using symvar. First, solve the quadratic equation without
specifying a variable. solve chooses x to return the familiar solution. Then solve the
quadratic equation for a to return the solution for a.

syms a b c x

sol = solve(a*x^2 + b*x + c == 0)

sola = solve(a*x^2 + b*x + c == 0, a)

sol =

 -(b + (b^2 - 4*a*c)^(1/2))/(2*a)

 -(b - (b^2 - 4*a*c)^(1/2))/(2*a)

sola =

-(c + b*x)/x^2

When solving for more than one variable, the order in which you specify the variables
defines the order in which the solver returns the solutions.

 solve

4-1121

Solve this system of equations and assign the solutions to variables solv and solu
by specifying the variables explicitly. The solver returns an array of solutions for each
variable.

syms u v

[solv, solu] = solve([2*u^2 + v^2 == 0, u - v == 1], [v, u])

solv =

 - (2^(1/2)*1i)/3 - 2/3

 (2^(1/2)*1i)/3 - 2/3

solu =

 1/3 - (2^(1/2)*1i)/3

 (2^(1/2)*1i)/3 + 1/3

Entries with the same index form the solutions of a system.

solutions = [solv, solu]

solutions =

[- (2^(1/2)*1i)/3 - 2/3, 1/3 - (2^(1/2)*1i)/3]

[(2^(1/2)*1i)/3 - 2/3, (2^(1/2)*1i)/3 + 1/3]

A solution of the system is v = - (2^(1/2)*1i)/3 - 2/3, and u = 1/3 -
(2^(1/2)*1i)/3.

Solve Multivariate Equations and Assign Outputs to Structure

When solving for multiple variables, it can be more convenient to store the outputs in a
structure array than in separate variables. The solve function returns a structure when
you specify a single output argument and multiple outputs exist.

Solve a system of equations to return the solutions in a structure array.

syms u v

S = solve([2*u + v == 0, u - v == 1], [u, v])

S =

 u: [1x1 sym]

 v: [1x1 sym]

Access the solutions by addressing the elements of the structure.

S.u

S.v

ans =

4 Functions — Alphabetical List

4-1122

1/3

ans =

-2/3

Using a structure array allows you to conveniently substitute solutions into expressions.
The subs function substitutes the correct values irrespective of which variables you
substitute.

Substitute solutions into expressions using the structure S.

subs(u^2, S)

subs(3*v+u, S)

ans =

1/9

ans =

-5/3

Return Complete Solution of System of Equations Using Structure

Return the complete solution of a system of equations with parameters and conditions of
the solution by specifying ReturnConditions as true.

syms x y

S = solve([sin(x)^2 == cos(y), 2*x == y],...

 [x, y], 'ReturnConditions', true);

S.x

S.y

S.conditions

S.parameters

ans =

 pi*k - asin(3^(1/2)/3)

 asin(3^(1/2)/3) + pi*k

ans =

 2*pi*k - 2*asin(3^(1/2)/3)

 2*asin(3^(1/2)/3) + 2*pi*k

ans =

 in(k, 'integer')

 in(k, 'integer')

ans =

k

A solution is formed by the elements of the same index in S.x, S.y, and S.conditions.
Any element of S.parameters can appear in any solution. For example, a solution is x

 solve

4-1123

= pi*k - asin(3^(1/2)/3), and y = 2*pi*k - 2*asin(3^(1/2)/3), with the
parameter k under the condition in(k, 'integer'). This condition means k must be
an integer for the solution to be valid. k does not exist in the MATLAB workspace and
must be accessed with S.parameters.

For the first solution, find a valid value of k for 0 < x < pi by assuming the condition
S.conditions(1) and using solve to solve these conditions for k. Substitute the value
of k found into the solution for x.

assume(S.conditions(1))

solk = solve([S.x(1) > 0, S.x(1) < pi], S.parameters)

solx = subs(S.x(1), S.parameters, solk)

solk =

1

solx =

pi - asin(3^(1/2)/3)

A valid value of k for 0 < x < pi is 1. This produces the value x = pi -
asin(3^(1/2)/3).

Alternatively, find a solution for x by choosing a value of k. Check if the value chosen
satisfies the condition on k using isAlways.

Check if k = 4 satisfies the condition on k.

isAlways(subs(S.conditions(1), S.parameters, 4))

ans =

 1

isAlways returns logical 1 (true) meaning 4 is a valid value for k. Substitute k with 4
to obtain a solution for x. Use vpa to obtain a numeric approximation.

valx = subs(S.x(1), S.parameters, 4)

vpa(valx)

valx =

4*pi - asin(3^(1/2)/3)

ans =

11.950890905688785612783108943994

4 Functions — Alphabetical List

4-1124

Return Numeric Solutions

Try solving the following equation. The symbolic solver cannot find an exact symbolic
solution for this equation, and therefore issues a warning before calling the numeric
solver. Because the equation is not polynomial, an attempt to find all possible solutions
can take a long time. The numeric solver does not try to find all numeric solutions for
this equation. Instead, it returns only the first solution it finds.

syms x

solve(sin(x) == x^2 - 1, x)

Warning: Cannot solve symbolically. Returning a numeric

approximation instead.

> In solve at 301

ans =

-0.63673265080528201088799090383828

Plot the left and the right sides of the equation in one graph. The graph shows that the
equation also has a positive solution.

ezplot(sin(x), -2, 2)

hold on

ezplot(x^2 - 1, -2, 2)

hold off

 solve

4-1125

Find this solution by calling the numeric solver vpasolve directly and specifying the
interval where this solution can be found.

vpasolve(sin(x) == x^2 - 1, x, [0 2])

ans =

1.4096240040025962492355939705895

Solve Inequalities

solve can solve inequalities to find a solution that satisfies the inequalities.

Solve the following inequalities. Set ReturnConditions to true to return any
parameters in the solution and conditions on the solution.

4 Functions — Alphabetical List

4-1126

x

y

x y xy

>

>

+ + <

0

0

1
2 2

syms x y

S = solve(x^2 + y^2 + x*y < 1, x > 0, y > 0,...

 [x, y], 'ReturnConditions', true);

solx = S.x

soly = S.y

params = S.parameters

conditions = S.conditions

solx =

(- 3*v^2 + u)^(1/2)/2 - v/2

soly =

v

params =

[u, v]

conditions =

4*v^2 < u & u < 4 & 0 < v

The parameters u and v do not exist in the MATLAB workspace and must be accessed
using S.parameters.

Check if the values u = 7/2 and v = 1/2 satisfy the condition using subs and
isAlways.

isAlways(subs(S.conditions, S.parameters, [7/2,1/2]))

ans =

 1

isAlways returns logical 1 (true) indicating that these values satisfy the condition.
Substitute these parameter values into S.x and S.y to find a solution for x and y.

solx = subs(S.x, S.parameters, [7/2,1/2])

soly = subs(S.y, S.parameters, [7/2,1/2])

solx =

 solve

4-1127

11^(1/2)/4 - 1/4

soly =

1/2

Convert the solution into numeric form by using vpa.

vpa(solx)

vpa(soly)

ans =

0.57915619758884996227873318416767

ans =

0.5

Return Real Solutions

Solve this equation. It has five solutions.

syms x

solve(x^5 == 3125, x)

ans =

 5

 - (2^(1/2)*(5 - 5^(1/2))^(1/2)*5i)/4 - (5*5^(1/2))/4 - 5/4

 (2^(1/2)*(5 - 5^(1/2))^(1/2)*5i)/4 - (5*5^(1/2))/4 - 5/4

 (5*5^(1/2))/4 - (2^(1/2)*(5^(1/2) + 5)^(1/2)*5i)/4 - 5/4

 (5*5^(1/2))/4 + (2^(1/2)*(5^(1/2) + 5)^(1/2)*5i)/4 - 5/4

Return only real solutions by setting argument Real to true. The only real solution of
this equation is 5.

solve(x^5 == 3125, x, 'Real', true)

ans =

5

Return One Solution

Solve this equation. Instead of returning an infinite set of periodic solutions, the solver
picks these three solutions that it considers to be most practical.

syms x

solve(sin(x) + cos(2*x) == 1, x)

4 Functions — Alphabetical List

4-1128

ans =

 0

 pi/6

 (5*pi)/6

Pick only one solution using PrincipalValue.

solve(sin(x) + cos(2*x) == 1, x, 'PrincipalValue', true)

ans =

0

Shorten Result with Simplification Rules

Try to solve this equation. By default, solve does not apply simplifications that are
not always mathematically correct. As a result, solve cannot solve this equation
symbolically.

syms x

solve(exp(log(x)*log(3*x)) == 4, x)

Warning: Cannot solve symbolically.

Returning a numeric approximation instead.

ans =

- 14.009379055223370038369334703094 - 2.9255310052111119036668717988769i

Set IgnoreAnalyticConstraints to true to apply simplifications that might allow
solve to find a result. For details, see “Algorithms” on page 4-1136.

S = solve(exp(log(x)*log(3*x)) == 4, x, 'IgnoreAnalyticConstraints', true)

S =

 (3^(1/2)*exp(-(log(256) + log(3)^2)^(1/2)/2))/3

 (3^(1/2)*exp((log(256) + log(3)^2)^(1/2)/2))/3

solve applies simplifications that allow it to find a solution. The simplifications applied
do not always hold. Thus, the solutions in this mode might not be correct or complete,
and need verification.

Ignore Assumptions on Variables

The sym and syms functions let you set assumptions for symbolic variables.

 solve

4-1129

Assume that the variable x can have only positive values.

syms x positive

When you solve an equation or a system of equations for a variable under assumptions,
the solver only returns solutions consistent with the assumptions. Solve this equation for
x.

solve(x^2 + 5*x - 6 == 0, x)

ans =

1

Allow solutions that do not satisfy the assumptions by setting IgnoreProperties to
true.

solve(x^2 + 5*x - 6 == 0, x, 'IgnoreProperties', true)

ans =

 -6

 1

For further computations, clear the assumption that you set on the variable x.

syms x clear

Numerically Approximating Symbolic Solutions That Contain RootOf

When solving polynomials, solve might return solutions containing RootOf. To
numerically approximate these solutions, use vpa. Consider the following equation and
solution.

syms x

s = solve(x^4 + x^3 + 1 == 0, x)

s =

 root(z^4 + z^3 + 1, z, 1)

 root(z^4 + z^3 + 1, z, 2)

 root(z^4 + z^3 + 1, z, 3)

 root(z^4 + z^3 + 1, z, 4)

Because there are no parameters in this solution, use vpa to approximate it numerically.

vpa(s)

4 Functions — Alphabetical List

4-1130

ans =

 - 1.0189127943851558447865795886366 + 0.60256541999859902604398442197193i

 - 1.0189127943851558447865795886366 - 0.60256541999859902604398442197193i

 0.5189127943851558447865795886366 + 0.666609844932018579153758800733i

 0.5189127943851558447865795886366 - 0.666609844932018579153758800733i

Solve Polynomial Equations of High Degree

When you solve a higher order polynomial equation, the solver might use RootOf to
return the results. Solve an equation of order 4.

syms x a

solve(x^4 + x^3 + a == 0, x)

ans =

 root(z^4 + z^3 + a, z, 1)

 root(z^4 + z^3 + a, z, 2)

 root(z^4 + z^3 + a, z, 3)

 root(z^4 + z^3 + a, z, 4)

Try to get an explicit solution for such equations by calling the solver with MaxDegree.
The option specifies the maximum degree of polynomials for which the solver tries
to return explicit solutions. The default value is 2. Increasing this value, you can get
explicit solutions for higher order polynomials.

Solve a third order polynomial by increasing the value of MaxDegree to 3 to return
explicit solutions instead of RootOf.

S = solve(x^3 + x + a == 0, x, 'MaxDegree', 3);

pretty(S)

/ 1 \

| #1 - ---- |

| 3 #1 |

| |

| / 1 \ |

| sqrt(3) | ---- + #1 | 1i |

| 1 \ 3 #1 / #1 |

| ---- - ------------------------ - -- |

| 6 #1 2 2 |

| |

| / 1 \ |

| sqrt(3) | ---- + #1 | 1i |

| \ 3 #1 / 1 #1 |

| ------------------------ + ---- - -- |

\ 2 6 #1 2 /

where

 solve

4-1131

 / / 2 \ \1/3

 | | a 1 | a |

 #1 == | sqrt| -- + -- | - - |

 \ \ 4 27 / 2 /

Input Arguments

eqn — Equation to solve
symbolic expression | symbolic equation

Equation to solve, specified as a symbolic expression or symbolic equation. The relation
operator == defines symbolic equations . If eqn is a symbolic expression (without the
right side), the solver assumes that the right side is 0, and solves the equation eqn ==
0.

var — Variable for which you solve equation
symbolic variable

Variable for which you solve an equation, specified as a symbolic variable. By default,
solve uses the variable determined by symvar.

eqns — System of equations
symbolic expressions | symbolic equations

System of equations, specified as symbolic expressions or symbolic equations. If any
elements of eqns are symbolic expressions (without the right side), solve equates the
element to 0.

vars — Variables for which you solve an equation or system of equations
symbolic variables

Variables for which you solve an equation or system of equations, specified as symbolic
variables. By default, solve uses the variables determined by symvar.

The order in which you specify these variables defines the order in which the solver
returns the solutions.

Name-Value Pair Arguments

Note: solve changed the default MaxDegree value from 3 to 2.

4 Functions — Alphabetical List

4-1132

Example: 'Real',true specifies that the solver returns real solutions.

'ReturnConditions' — Flag for returning parameters conditions
false (default) | true

Flag for returning parameters in solution and conditions under which the solution is
true, specified as the comma-separated pair consisting of 'ReturnConditions' and one
of these values.

false Do not return parameterized solutions. Do not return the
conditions under which the solution holds. The solve function
replaces parameters with appropriate values.

true Return the parameters in the solution and the conditions under
which the solution holds. For a call with a single output variable,
solve returns a structure with the fields parameters and
conditions. For multiple output variables, solve assigns the
parameters and conditions to the last two output variables. This
behavior means that the number of output variables must be equal
to the number of variables to solve for plus two.

Example: [v1, v2, params, conditions] = solve(sin(x) +y == 0,y^2 ==
3,'ReturnConditions',true) returns the parameters in params and conditions in
conditions.

'IgnoreAnalyticConstraints' — Simplification rules applied to expressions and
equations
false (default) | true

Simplification rules applied to expressions and equations, specified as the comma-
separated pair consisting of 'IgnoreAnalyticConstraints' and one of these values.

false Use strict simplification rules.
true Apply purely algebraic simplifications to expressions and

equations. Setting IgnoreAnalyticConstraints to true can
give you simple solutions for the equations for which the direct
use of the solver returns complicated results. In some cases, it
also enables solve to solve equations and systems that cannot be
solved otherwise. Setting IgnoreAnalyticConstraints to true
can lead to wrong or incomplete results.

 solve

4-1133

'IgnoreProperties' — Flag for returning solutions inconsistent with properties of
variables
false (default) | true

Flag for returning solutions inconsistent with the properties of variables, specified as the
comma-separated pair consisting of 'IgnoreProperties' and one of these values.

false Do not exclude solutions inconsistent with the properties of
variables.

true Exclude solutions inconsistent with the properties of variables.

'MaxDegree' — Maximum degree of polynomial equations for which solver uses explicit
formulas
2 (default) | positive integer smaller than 5

Maximum degree of polynomial equations for which solver uses explicit formulas,
specified as a positive integer smaller than 2. The solver does not use explicit formulas
that involve radicals when solving polynomial equations of a degree larger than the
specified value.

'PrincipalValue' — Flag for returning one solution
false (default) | true

Flag for returning one solution, specified as the comma-separated pair consisting of
'PrincipalValue' and one of these values.

false Return all solutions.
true Return only one solution. If an equation or a system of equations

does not have a solution, the solver returns an empty symbolic
object.

'Real' — Flag for returning only real solutions
false (default) | true

Flag for returning only real solutions, specified as the comma-separated pair consisting of
'Real' and one of these values.

false Return all solutions.

4 Functions — Alphabetical List

4-1134

true Return only those solutions for which every subexpression of the
original equation represents a real number. Also, assume that all
symbolic parameters of an equation represent real numbers.

Output Arguments

S — Solutions of equation
symbolic array

Solutions of an equation, returned as a symbolic array. The size of a symbolic array
corresponds to the number of the solutions.

Y — Solutions of system of equations
structure

Solutions of a system of equations, returned as a structure. The number of fields
in the structure correspond to the number of independent variables in a system. If
ReturnConditions is set to true, the solve function returns two additional fields that
contain the parameters in the solution, and the conditions under which the solution is
true.

y1,...,yN — Solutions of system of equations
symbolic variables

Solutions of a system of equations, returned as symbolic variables. The number of output
variables or symbolic arrays must be equal to the number of independent variables
in a system. If you explicitly specify independent variables vars, then the solver uses
the same order to return the solutions. If you do not specify vars, the toolbox sorts
independent variables alphabetically, and then assigns the solutions for these variables
to the output variables.

parameters — Parameters in solution
vector of generated parameters

Parameters in a solution, returned as a vector of generated parameters. This output
argument is only returned if ReturnConditions is true. If a single output argument is
provided, parameters is returned as a field of a structure. If multiple output arguments
are provided, parameters is returned as the second-to-last output argument. The
generated parameters do not appear in the MATLAB workspace. They must be accessed
using parameters.

 solve

4-1135

Example: [solx, params, conditions] = solve(sin(x) == 0,
'ReturnConditions', true) returns the parameter k in the argument params.

conditions — Conditions under which solutions are valid
vector of symbolic expressions

Conditions under which solutions are valid, returned as a vector of symbolic expressions.
This output argument is only returned if ReturnConditions is true. If a single output
argument is provided, conditions is returned as a field of a structure. If multiple
output arguments are provided, conditions is returned as the last output argument.

Example: [solx, params, conditions] = solve(sin(x) == 0,
'ReturnConditions', true) returns the condition in(k, 'integer') in
conditions. The solution in solx is valid only under this condition.

More About

Tips

• If solve cannot find a solution and ReturnConditions is false, the solve
function internally calls the numeric solver vpasolve that tries to find a numeric
solution. If solve cannot find a solution and ReturnConditions is true, solve
returns an empty solution with a warning. If no solutions exist, solve returns an
empty solution without a warning. For polynomial equations and systems without
symbolic parameters, the numeric solver returns all solutions. For nonpolynomial
equations and systems without symbolic parameters, the numeric solver returns only
one solution (if a solution exists).

• If the solution contains parameters and ReturnConditions is true, solve returns
the parameters in the solution and the conditions under which the solutions are true.
If ReturnConditions is false, the solve function either chooses values of the
parameters and returns the corresponding results, or returns parameterized solutions
without choosing particular values. In the latter case, solve also issues a warning
indicating the values of parameters in the returned solutions.

• If a parameter does not appear in any condition, it means the parameter can take any
complex value.

• The output of solve can contain parameters from the input equations in addition to
parameters introduced by solve.

• Parameters introduced by solve do not appear in the MATLAB workspace. They
must be accessed using the output argument that contains them. Alternatively, to use

4 Functions — Alphabetical List

4-1136

the parameters in the MATLAB workspace use syms to initialize the parameter. For
example, if the parameter is k, use syms k.

• The variable names parameters and conditions are not allowed as inputs to
solve.

• The syntax S = solve(eqn,var,'ReturnConditions',true) returns S as a
structure instead of a symbolic array.

• To solve differential equations, use the dsolve function.
• When solving a system of equations, always assign the result to output arguments.

Output arguments let you access the values of the solutions of a system.
• MaxDegree only accepts positive integers smaller than 5 because, in general, there

are no explicit expressions for the roots of polynomials of degrees higher than 4.
• The output variables y1,...,yN do not specify the variables for which solve solves

equations or systems. If y1,...,yN are the variables that appear in eqns, that
does not guarantee that solve(eqns) will assign the solutions to y1,...,yN using
the correct order. Thus, when you run [b,a] = solve(eqns), you might get the
solutions for a assigned to b and vice versa.

To ensure the order of the returned solutions, specify the variables vars. For
example, the call [b,a] = solve(eqns,b,a) assigns the solutions for a to a and
the solutions for b to b.

Algorithms

When you use IgnoreAnalyticConstraints, the solver applies these rules to the
expressions on both sides of an equation.

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the following equality
is valid for all values of a, b, and c:

 (a·b)c = ac·bc.
• log(ab) = b·log(a) for all values of a and b. In particular, the following equality is valid

for all values of a, b, and c:

 (ab)c = ab·c.
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, f(g(x)) = x is assumed to be valid for all complex values x. In particular:

• log(ex) = x

 solve

4-1137

• asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x
• asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x
• Wk(x·ex) = x for all values of k

• The solver can multiply both sides of an equation by any expression except 0.
• The solutions of polynomial equations must be complete.

• “Select Numeric or Symbolic Solver” on page 2-121

See Also
dsolve | linsolve | root | subs | symvar | vpasolve

Introduced before R2006a

4 Functions — Alphabetical List

4-1138

sort

Sort elements of symbolic vectors or matrices

Syntax

Y = sort(X)

[Y,I] = sort(___)

___ = sort(X,dim)

___ = sort(___ ,'descend')

Description

Y = sort(X) sorts the elements of a symbolic vector or matrix in ascending order. If
X is a vector, sort(X) sorts the elements of X in lexicographic order. If X is a matrix,
sort(X) sorts each column of X.

[Y,I] = sort(___) shows the indices that each element of Y had in the original
vector or matrix X.

If X is an m-by-n matrix and you sort elements of each column (dim = 2), then each
column of I is a permutation vector of the corresponding column of X, such that

for j = 1:n

 Y(:,j) = X(I(:,j),j);

end

If X is a two-dimensional matrix, and you sort the elements of each column, the array I
shows the row indices that the elements of Y had in the original matrix X. If you sort the
elements of each row, I shows the original column indices.

___ = sort(X,dim) sorts the elements of X along the dimension dim. Thus, if X is
a two-dimensional matrix, then sort(X,1) sorts elements of each column of X, and
sort(X,2) sorts elements of each row.

___ = sort(___ ,'descend') sorts X in descending order. By default, sort uses
ascending order.

 sort

4-1139

Examples

Sort Vector Elements

By default, sort sorts the element of a vector or a matrix in ascending order.

Sort the elements of the following symbolic vector:

syms a b c d e

sort([7 e 1 c 5 d a b])

ans =

[1, 5, 7, a, b, c, d, e]

Find Indices That Elements of Sorted Matrix Had in Original Matrix

To find the indices that each element of a new vector or matrix Y had in the original
vector or matrix X, call sort with two output arguments.

Sort the matrix X returning the matrix of indices that each element of the sorted matrix
had in X:

X = sym(magic(3));

[Y, I] = sort(X)

Y =

[3, 1, 2]

[4, 5, 6]

[8, 9, 7]

I =

 2 1 3

 3 2 1

 1 3 2

Sort Matrix Along Its Columns and Rows

When sorting elements of a matrix, sort can work along the columns or rows of that
matrix.

Sort the elements of the following symbolic matrix:

4 Functions — Alphabetical List

4-1140

X = sym(magic(3))

X =

[8, 1, 6]

[3, 5, 7]

[4, 9, 2]

By default, the sort command sorts elements of each column:

sort(X)

ans =

[3, 1, 2]

[4, 5, 6]

[8, 9, 7]

To sort the elements of each row, use set the value of the dim option to 2:

sort(X,2)

ans =

[1, 6, 8]

[3, 5, 7]

[2, 4, 9]

Sort in Descending Order

sort can sort the elements of a vector or a matrix in descending order.

Sort the elements of this vector in descending order:

syms a b c d e

sort([7 e 1 c 5 d a b], 'descend')

ans =

[e, d, c, b, a, 7, 5, 1]

Sort the elements of each column of this matrix X in descending order:

X = sym(magic(3))

sort(X,'descend')

X =

[8, 1, 6]

 sort

4-1141

[3, 5, 7]

[4, 9, 2]

ans =

[8, 9, 7]

[4, 5, 6]

[3, 1, 2]

Now, sort the elements of each row of X in descending order:

sort(X, 2, 'descend')

ans =

[8, 6, 1]

[7, 5, 3]

[9, 4, 2]

Input Arguments

X — Input that needs to be sorted
symbolic vector | symbolic matrix

Input that needs to be sorted, specified as a symbolic vector or matrix.

dim — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. The default value is 1. If dim
exceeds the number of dimensions of X, then sort(X,dim) returns X, and [Y,I] =
sort(X,dim) returns Y = X and I = ones(size(X)).

Output Arguments

Y — Sorted output
symbolic vector | symbolic matrix

Sorted output, returned as a symbolic vector or matrix.

I — Indices that elements of Y had in X
symbolic vector | symbolic matrix

4 Functions — Alphabetical List

4-1142

Indices that elements of Y had in X, returned as a symbolic vector or matrix. [Y,I] =
sort(X,dim) also returns matrix I = ones(size(X)) if the value dim exceeds the
number of dimensions of X.

More About

Tips

• Calling sort for vectors or matrices of numbers that are not symbolic objects invokes
the MATLAB sort function.

• For complex input X, sort compares elements by their magnitudes (complex moduli),
computed with abs(X). If complex numbers have the same complex modulus, sort
compares their phase angles, angle(X).

• If you use 'ascend' instead of 'descend', then sort returns elements in ascending
order, as it does by default.

• sort uses the following rules:

• It sorts symbolic numbers and floating-point numbers numerically.
• It sorts symbolic variables alphabetically.
• In all other cases, including symbolic expressions and functions, sort relies on the

internal order that MuPAD uses to store these objects.

See Also
max | min

Introduced before R2006a

 sqrtm

4-1143

sqrtm

Matrix square root

Syntax

X = sqrtm(A)

[X,resnorm] = sqrtm(A)

Description

X = sqrtm(A) returns a matrix X, such that X2 = A and the eigenvalues of X are the
square roots of the eigenvalues of A.

[X,resnorm] = sqrtm(A) returns a matrix X and the residual norm(A-X^2,'fro')/
norm(A,'fro').

Input Arguments

A

Symbolic matrix.

Output Arguments

X

Matrix, such that X2 = A.

resnorm

Residual computed as norm(A-X^2,'fro')/norm(A,'fro').

4 Functions — Alphabetical List

4-1144

Examples

Compute the square root of this matrix. Because these numbers are not symbolic objects,
you get floating-point results.

A = [2 -2 0; -1 3 0; -1/3 5/3 2];

X = sqrtm(A)

X =

 1.3333 -0.6667 0.0000

 -0.3333 1.6667 -0.0000

 -0.0572 0.5286 1.4142

Now, convert this matrix to a symbolic object, and compute its square root again:

A = sym([2 -2 0; -1 3 0; -1/3 5/3 2]);

X = sqrtm(A)

X =

[4/3, -2/3, 0]

[-1/3, 5/3, 0]

[(2*2^(1/2))/3 - 1, 1 - 2^(1/2)/3, 2^(1/2)]

Check the correctness of the result:

isAlways(X^2 == A)

ans =

 1 1 1

 1 1 1

 1 1 1

Use the syntax with two output arguments to return the square root of a matrix and the
residual:

A = vpa(sym([0 0; 0 5/3]), 100);

[X,resnorm] = sqrtm(A)

X =

[0, 0]

[0, 1.2909944487358056283930884665941]

resnorm =

2.9387358770557187699218413430556e-40

 sqrtm

4-1145

More About

Square Root of Matrix

The square root of a matrix A is a matrix X, such that X2 = A and the eigenvalues of X are
the square roots of the eigenvalues of A.

Tips

• Calling sqrtm for a matrix that is not a symbolic object invokes the MATLAB sqrtm
function.

• If A has an eigenvalue 0 of algebraic multiplicity larger than its geometric
multiplicity, the square root of A does not exist.

See Also
cond | eig | expm | funm | jordan | logm | norm

Introduced in R2013a

4 Functions — Alphabetical List

4-1146

ssinint
Shifted sine integral function

Syntax

ssinint(X)

Description

ssinint(X) returns the shifted sine integral function ssinint(X) = sinint(X) —
pi/2.

Examples

Shifted Sine Integral Function for Numeric and Symbolic Arguments

Depending on its arguments, ssinint returns floating-point or exact symbolic results.

Compute the shifted sine integral function for these numbers. Because these numbers
are not symbolic objects, ssinint returns floating-point results.

A = ssinint([- pi, 0, pi/2, pi, 1])

A =

 -3.4227 -1.5708 -0.2000 0.2811 -0.6247

Compute the shifted sine integral function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, ssinint returns unresolved symbolic calls.

symA = ssinint(sym([- pi, 0, pi/2, pi, 1]))

symA =

[- pi - ssinint(pi), -pi/2, ssinint(pi/2), ssinint(pi), ssinint(1)]

Use vpa to approximate symbolic results with floating-point numbers:

 ssinint

4-1147

vpa(symA)

ans =

[-3.4227333787773627895923750617977,...

-1.5707963267948966192313216916398,...

-0.20003415864040813916164340325818,...

0.28114072518756955112973167851824,...

-0.62471325642771360428996837781657]

Plot Shifted Sine Integral Function

Plot the shifted sine integral function on the interval from -4*pi to 4*pi .

syms x

ezplot(ssinint(x), [-4*pi, 4*pi])

grid on

4 Functions — Alphabetical List

4-1148

Handle Expressions Containing Shifted Sine Integral Function

Many functions, such as diff, int, and taylor, can handle expressions containing
ssinint.

Find the first and second derivatives of the shifted sine integral function:

syms x

diff(ssinint(x), x)

diff(ssinint(x), x, x)

ans =

sin(x)/x

 ssinint

4-1149

ans =

cos(x)/x - sin(x)/x^2

Find the indefinite integral of the shifted sine integral function:

int(ssinint(x), x)

ans =

cos(x) + x*ssinint(x)

Find the Taylor series expansion of ssinint(x):

taylor(ssinint(x), x)

ans =

x^5/600 - x^3/18 + x - pi/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About

Sine Integral Function

The sine integral function is defined as follows:

Si x
t

t
dt

x

() =
()

Ú
sin

0

Shifted Sine Integral Function

The sine integral function is defined as Ssi(x) = Si(x) - π/2.

4 Functions — Alphabetical List

4-1150

References

[1] Gautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.”
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
coshint | cosint | eulergamma | int | sin | sinhint | sinhint | sinint

Introduced in R2014a

 subexpr

4-1151

subexpr
Rewrite symbolic expression in terms of common subexpressions

Syntax

[r,sigma] = subexpr(expr)

[r,var] = subexpr(expr,'var')

[r,var] = subexpr(expr,var)

Description

[r,sigma] = subexpr(expr) rewrites the symbolic expression expr in terms of
a common subexpression, substituting this common subexpression with the symbolic
variable sigma. The input expression expr cannot contain the variable sigma.

[r,var] = subexpr(expr,'var') substitutes the common subexpression by var. The
input expression expr cannot contain the symbolic variable var.

[r,var] = subexpr(expr,var) is equivalent to [r,var] =
subexpr(expr,'var'), except that the symbolic variable var must already exist in the
MATLAB workspace.

This syntax overwrites the value of the variable var with the common subexpression
found in expr. To avoid overwriting the value of var, use another variable name as the
second output argument. For example, use [r,var1] = subexpr(expr,var).

Examples

Rewrite Expression Using Abbreviations

Solve the following equation. The solutions are very long expressions. To see them,
remove the semicolon at the end of the solve command.

syms a b c d x

4 Functions — Alphabetical List

4-1152

solutions = solve(a*x^3 + b*x^2 + c*x + d == 0, x, 'MaxDegree', 3);

These long expressions have common subexpressions. To shorten the expressions,
abbreviate the common subexpression by using subexpr. If you do not specify the
variable to use for abbreviations as the second input argument of subexpr, then
subexpr uses the variable sigma.

[r, sigma] = subexpr(solutions)

r =

sigma^(1/3) - b/(3*a) - (- b^2/(9*a^2) + c/(3*a))/sigma^(1/3)

(- b^2/(9*a^2) + c/(3*a))/(2*sigma^(1/3)) -...

 sigma^(1/3)/2 - (3^(1/2)*(sigma^(1/3) +...

(- b^2/(9*a^2) + c/(3*a))/sigma^(1/3))*1i)/2 - b/(3*a)

(- b^2/(9*a^2) + c/(3*a))/(2*sigma^(1/3)) -...

 sigma^(1/3)/2 + (3^(1/2)*(sigma^(1/3) +...

(- b^2/(9*a^2) + c/(3*a))/sigma^(1/3))*1i)/2 - b/(3*a)

sigma =

((d/(2*a) + b^3/(27*a^3) - (b*c)/(6*a^2))^2 + (- b^2/(9*a^2) +...

 c/(3*a))^3)^(1/2) - b^3/(27*a^3) - d/(2*a) + (b*c)/(6*a^2)

Customize Abbreviation Variables

Solve a quadratic equation.

syms a b c x

solutions = solve(a*x^2 + b*x + c == 0, x)

solutions =

 -(b + (b^2 - 4*a*c)^(1/2))/(2*a)

 -(b - (b^2 - 4*a*c)^(1/2))/(2*a)

Use syms to create the symbolic variable s, and then replace common subexpressions in
the result with this variable.

syms s

[abbrSolutions,s] = subexpr(solutions,s)

abbrSolutions =

 -(b + s)/(2*a)

 -(b - s)/(2*a)

s =

(b^2 - 4*a*c)^(1/2)

Alternatively, use the string s to specify the abbreviation variable.

[abbrSolutions,s] = subexpr(solutions,'s')

abbrSolutions =

 subexpr

4-1153

 -(b + s)/(2*a)

 -(b - s)/(2*a)

s =

(b^2 - 4*a*c)^(1/2)

Both syntaxes overwrite the value of the variable s with the common subexpression.
Therefore, you cannot, for example, substitute s with some value.

subs(abbrSolutions,s,0)

ans =

 -(b + s)/(2*a)

 -(b - s)/(2*a)

To avoid overwriting the value of the variable s, use another variable name for the
second output argument.

syms s

[abbrSolutions,t] = subexpr(solutions,'s')

abbrSolutions =

 -(b + s)/(2*a)

 -(b - s)/(2*a)

t =

(b^2 - 4*a*c)^(1/2)

subs(abbrSolutions,s,0)

ans =

 -b/(2*a)

 -b/(2*a)

Input Arguments

expr — Long expression containing common subexpressions
symbolic expression | symbolic function

Long expression containing common subexpressions, specified as a symbolic expression
or function.

var — Variable to use for substituting common subexpressions
string | symbolic variable

Variable to use for substituting common subexpressions, specified as a string or symbolic
variable.

subexpr throws an error if the input expression expr already contains var.

4 Functions — Alphabetical List

4-1154

Output Arguments

r — Expression with common subexpressions replaced by abbreviations
symbolic expression | symbolic function

Expression with common subexpressions replaced by abbreviations, returned as a
symbolic expression or function.

var — Variable used for abbreviations
symbolic variable

Variable used for abbreviations, returned as a symbolic variable.

See Also
pretty | simplify | subs

Introduced before R2006a

 subs

4-1155

subs
Symbolic substitution

Syntax

subs(s,old,new)

subs(s,new)

subs(s)

Description

subs(s,old,new) returns a copy of s replacing all occurrences of old with new, and
then evaluating s.

subs(s,new) returns a copy of s replacing all occurrences of the default variable in s
with new, and then evaluating s. The default variable is defined by symvar.

subs(s) returns a copy of s replacing symbolic variables in s with their values obtained
from the calling function and the MATLAB workspace, and then evaluating s. Variables
with no assigned values remain as variables.

Examples

Single Substitution

Replace a with 4 in this expression.

syms a b

subs(a + b, a, 4)

ans =

b + 4

Replace a*b with 5 in this expression.

subs(a*b^2, a*b, 5)

4 Functions — Alphabetical List

4-1156

ans =

5*b

Value That Gets Substituted by Default

Substitute the default value in this expression with a. If you do not specify which
variable or expression that you want to replace, subs uses symvar to find the default
variable. For x + y, the default variable is x.

syms x y a

symvar(x + y, 1)

ans =

x

Therefore, subs replaces x with a.

subs(x + y, a)

ans =

a + y

Single Input

Solve this ordinary differential equation.

syms a y(t)

y = dsolve(diff(y) == -a*y)

y =

C3*exp(-a*t)

Now, specify the values of the symbolic parameters a and C2.

a = 980;

C2 = 3;

Although the values a and C2 are now in the MATLAB workspace, y is not evaluated
with the account of these values.

y

y =

C3*exp(-a*t)

 subs

4-1157

To evaluate y taking into account the new values of a and C2, use subs.

subs(y)

ans =

C3*exp(-980*t)

Multiple Substitutions

Make multiple substitutions by specifying the old and new values as vectors.

syms a b

subs(cos(a) + sin(b), [a, b], [sym('alpha'), 2])

ans =

sin(2) + cos(alpha)

You also can use cell arrays for that purpose.

subs(cos(a) + sin(b), {a, b}, {sym('alpha'), 2})

ans =

sin(2) + cos(alpha)

Scalar and Matrix Expansion

Replace variable a in this expression with the 3-by-3 magic square matrix. Note that the
constant 1 expands to the 3-by-3 matrix with all its elements equal to 1.

syms a t

subs(exp(a*t) + 1, a, -magic(3))

ans =

[exp(-8*t) + 1, exp(-t) + 1, exp(-6*t) + 1]

[exp(-3*t) + 1, exp(-5*t) + 1, exp(-7*t) + 1]

[exp(-4*t) + 1, exp(-9*t) + 1, exp(-2*t) + 1]

You can also replace an element of a vector, matrix, or array with a nonscalar value. For
example, create these 2-by-2 matrices.

A = sym('A', [2,2])

B = sym('B', [2,2])

A =

4 Functions — Alphabetical List

4-1158

[A1_1, A1_2]

[A2_1, A2_2]

B =

[B1_1, B1_2]

[B2_1, B2_2]

Replace the first element of the matrix A with the matrix B. While making this
substitution, subs expands the 2-by-2 matrix A into this 4-by-4 matrix.

A44 = subs(A, A(1,1), B)

A44 =

[B1_1, B1_2, A1_2, A1_2]

[B2_1, B2_2, A1_2, A1_2]

[A2_1, A2_1, A2_2, A2_2]

[A2_1, A2_1, A2_2, A2_2]

subs does not let you replace a nonscalar with a scalar.

Multiple Scalar Expansion

Replace variables x and y with these 2-by-2 matrices. When you make multiple
substitutions involving vectors or matrices, use cell arrays to specify the old and new
values.

syms x y

subs(x*y, {x, y}, {[0 1; -1 0], [1 -1; -2 1]})

ans =

[0, -1]

[2, 0]

Note that these substitutions are elementwise.

[0 1; -1 0].*[1 -1; -2 1]

ans =

 0 -1

 2 0

Substitutions in Equations

Replace sin(x + 1) with a in this equation.

 subs

4-1159

syms x a

subs(sin(x + 1) + 1 == x, sin(x + 1), a)

ans =

a + 1 == x

Substitutions in Functions

Replace x with a in this symbolic function.

syms x y a

syms f(x, y)

f(x, y) = x + y;

f = subs(f, x, a)

f(x, y) =

a + y

subs replaces the values in the symbolic function formula, but does not replace input
arguments of the function.

formula(f)

argnames(f)

ans =

a + y

ans =

[x, y]

You can replace the arguments of a symbolic function explicitly.

syms x y

f(x, y) = x + y;

f(a, y) = subs(f, x, a);

f

f(a, y) =

a + y

Original Expression

Assign the expression x + y to s.

4 Functions — Alphabetical List

4-1160

syms x y

s = x + y;

Replace y in this expression with the value 1. Here, s itself does not change.

subs(s, y, 1);

s

s =

x + y

To replace the value of s with the new expression, assign the result returned by subs to
s.

s = subs(s, y, 1);

s

s =

x + 1

Structure Array

Suppose you want to verify the solutions of this system of equations.

syms x y

eqs = [x^2 + y^2 == 1, x == y];

S = solve(eqs, x, y);

S.x

S.y

ans =

 -2^(1/2)/2

 2^(1/2)/2

ans =

 -2^(1/2)/2

 2^(1/2)/2

To verify the correctness of the returned solutions, substitute the solutions into the
original system.

isAlways(subs(eqs, S))

ans =

 1 1

 1 1

 subs

4-1161

Input Arguments

s — Input
symbolic variable | symbolic expression | symbolic equation | symbolic function |
symbolic array | symbolic vector | symbolic matrix

Input specified as a symbolic variable, expression, equation, function, array, vector, or
matrix.

old — Existing element that needs to be replaced
symbolic variable | symbolic expression | string representing variable or expression |
symbolic array | symbolic vector | symbolic matrix | array of strings | vector of strings
| matrix of strings

Existing element that needs to be replaced specified as a symbolic variable, expression,
string, array, vector, or matrix.

new — New element
number | symbolic variable | symbolic expression | string representing variable or
expression | symbolic array | symbolic vector | symbolic matrix | array of strings |
vector of strings | matrix of strings | structure array

New element specified as a number, variable, expression, string, array, vector, matrix, or
structure array.

More About

Tips

• subs(s,old,new) does not modify s. To modify s, use s = subs(s,old,new).
• If old and new are both vectors or cell arrays of the same size, subs replaces each

element of old by the corresponding element of new.
• If old is a scalar, and new is a vector or matrix, then subs(s,old,new) replaces all

instances of old in s with new, performing all operations elementwise. All constant
terms in s are replaced with the constant times a vector or matrix of all 1s.

• If s is a univariate polynomial and new is a numeric matrix, use
polyvalm(sym2poly(s), new) to evaluate s in the matrix sense. All constant
terms are replaced with the constant times an identity matrix.

4 Functions — Alphabetical List

4-1162

See Also
double | eval | simplify | subexpr | vpa

Introduced before R2006a

 svd

4-1163

svd
Singular value decomposition of symbolic matrix

Syntax
sigma = svd(X)

[U,S,V] = svd(X)

[U,S,V] = svd(X,0)

[U,S,V] = svd(X,'econ')

Description
sigma = svd(X) returns a vector sigma containing the singular values of a symbolic
matrix A.

[U,S,V] = svd(X) returns numeric unitary matrices U and V with the columns
containing the singular vectors, and a diagonal matrix S containing the singular values.
The matrices satisfy the condition A = U*S*V', where V' is the Hermitian transpose
(the complex conjugate of the transpose) of V. The singular vector computation uses
variable-precision arithmetic. svd does not compute symbolic singular vectors. Therefore,
the input matrix X must be convertible to floating-point numbers. For example, it can be
a matrix of symbolic numbers.

[U,S,V] = svd(X,0) produces the "economy size" decomposition. If X is an m-by-n
matrix with m > n, then svd computes only the first n columns of U. In this case, S is an
n-by-n matrix. For m <= n, this syntax is equivalent to svd(X).

[U,S,V] = svd(X,'econ') also produces the "economy size" decomposition. If X is an
m-by-n matrix with m >= n, then this syntax is equivalent to svd(X,0). For m < n, svd
computes only the first m columns of V. In this case, S is an m-by-m matrix.

Examples

Symbolic Singular Values

Compute the singular values of the symbolic 4-by-4 magic square:

4 Functions — Alphabetical List

4-1164

A = sym(magic(4));

sigma = svd(A)

sigma =

 34

 8*5^(1/2)

 2*5^(1/2)

 0

Now, compute singular values of the matrix whose elements are symbolic expressions:

syms t real

A = [0 1; -1 0];

E = expm(t*A)

sigma = svd(E)

E =

[cos(t), sin(t)]

[-sin(t), cos(t)]

sigma =

 (cos(t)^2 + sin(t)^2)^(1/2)

 (cos(t)^2 + sin(t)^2)^(1/2)

Simplify the result:

sigma = simplify(sigma)

sigma =

 1

 1

For further computations, remove the assumption:

syms t clear

Floating-Point Singular Values

Convert the elements of the symbolic 4-by-4 magic square to floating-point numbers, and
compute the singular values of the matrix:

A = sym(magic(4));

sigma = svd(vpa(A))

sigma =

 34.0

 svd

4-1165

 17.88854381999831757127338934985

 4.4721359549995793928183473374626

 0.0000000000000000000042127245515076439434819165724023i

Singular Values and Singular Vectors

Compute the singular values and singular vectors of the 4-by-4 magic square:

old = digits(10);

A = sym(magic(4))

[U, S, V] = svd(A)

digits(old)

A =

[16, 2, 3, 13]

[5, 11, 10, 8]

[9, 7, 6, 12]

[4, 14, 15, 1]

U =

[0.5, 0.6708203932, 0.5, -0.2236067977]

[0.5, -0.2236067977, -0.5, -0.6708203932]

[0.5, 0.2236067977, -0.5, 0.6708203932]

[0.5, -0.6708203932, 0.5, 0.2236067977]

S =

[34.0, 0, 0, 0]

[0, 17.88854382, 0, 0]

[0, 0, 4.472135955, 0]

[0, 0, 0, 1.108401846e-15]

V =

[0.5, 0.5, 0.6708203932, 0.2236067977]

[0.5, -0.5, -0.2236067977, 0.6708203932]

[0.5, -0.5, 0.2236067977, -0.6708203932]

[0.5, 0.5, -0.6708203932, -0.2236067977]

Compute the product of U, S, and the Hermitian transpose of V with the 10-digit
accuracy. The result is the original matrix A with all its elements converted to floating-
point numbers:

vpa(U*S*V',10)

ans =

4 Functions — Alphabetical List

4-1166

[16.0, 2.0, 3.0, 13.0]

[5.0, 11.0, 10.0, 8.0]

[9.0, 7.0, 6.0, 12.0]

[4.0, 14.0, 15.0, 1.0]

"Economy Size" Decomposition

Use the second input argument 0 to compute the "economy size" decomposition of this 2-
by-3 matrix:

old = digits(10);

A = sym([1 1;2 2; 2 2]);

[U, S, V] = svd(A, 0)

U =

[0.3333333333, -0.6666666667]

[0.6666666667, 0.6666666667]

[0.6666666667, -0.3333333333]

S =

[4.242640687, 0]

[0, 0]

V =

[0.7071067812, 0.7071067812]

[0.7071067812, -0.7071067812]

Now, use the second input argument 'econ' to compute the "economy size"
decomposition of matrix B. Here, the 3-by-2 matrix B is the transpose of A.

B = A';

[U, S, V] = svd(B, 'econ')

digits(old)

U =

[0.7071067812, -0.7071067812]

[0.7071067812, 0.7071067812]

S =

[4.242640687, 0]

[0, 0]

V =

[0.3333333333, 0.6666666667]

 svd

4-1167

[0.6666666667, -0.6666666667]

[0.6666666667, 0.3333333333]

Input Arguments

X — Input matrix
symbolic matrix

Input matrix specified as a symbolic matrix. For syntaxes with one output argument, the
elements of X can be symbolic numbers, variables, expressions, or functions. For syntaxes
with three output arguments, the elements of X must be convertible to floating-point
numbers.

Output Arguments

sigma — Singular values
symbolic vector | vector of symbolic numbers

Singular values of a matrix, returned as a vector. If sigma is a vector of numbers, then
its elements are sorted in descending order.

U — Singular vectors
matrix of symbolic numbers

Singular vectors, returned as a unitary matrix. Each column of this matrix is a singular
vector.

S — Singular values
matrix of symbolic numbers

Singular values, returned as a diagonal matrix. Diagonal elements of this matrix appear
in descending order.

V — Singular vectors
matrix of symbolic numbers

Singular vectors, returned as a unitary matrix. Each column of this matrix is a singular
vector.

4 Functions — Alphabetical List

4-1168

More About

Tips

• The second arguments 0 and 'econ' only affect the shape of the returned matrices.
These arguments do not affect the performance of the computations.

• Calling svd for numeric matrices that are not symbolic objects invokes the MATLAB
svd function.

See Also
chol | digits | eig | inv | lu | qr | svd | vpa

Introduced before R2006a

 sym

4-1169

sym
Create symbolic variables, expressions, functions, matrices

Compatibility

The syntaxes sym(A,set) and sym(A,'clear') for a symbolic object A that
already exists in the MATLAB workspace will be removed in a future release. Use
assume(A,set) and assume(A,'clear') instead.

In previous releases, sym treated i in string input as an imaginary number. Now, it is
treated as a variable i. For details, see “Input Arguments” on page 4-1176.

Support of strings that are not valid variable names and do not define a number will
be removed in a future release. To create symbolic expressions, first create symbolic
variables, and then use operations on them. For example, use syms x; x + 1
instead of sym('x + 1'), exp(sym(pi)) instead of sym('exp(pi)'), and syms
f(var1,...varN) instead of f(var1,...varN) = sym('f(var1,...varN)').

Syntax

var = sym('var')

symexpr = sym(h)

A = sym('a',[m,n])

A = sym('a',n)

sym(___ ,set)

sym(___ ,'clear')

sym(N)

sym(N,flag)

Description

var = sym('var') creates a symbolic variable var. For example, create variable x by
entering x = sym('x').

4 Functions — Alphabetical List

4-1170

symexpr = sym(h) creates a symbolic expression or matrix symexpr from an
anonymous MATLAB function associated with the function handle h.

A = sym('a',[m,n]) creates an m-by-n symbolic matrix filled with automatically
generated elements. The generated elements do not appear in the MATLAB workspace.

When you use this syntax to create a vector, it generates the elements by using the prefix
a and attaching the numbers from 1 to m or n to it. For example, A = sym('a',[1,3])
creates a row vector A = [a1,a2,a3].

When you use this syntax to create a matrix, it generates the elements of the form ai_j,
where i = 1:m and j = 1:n. For example, A = sym('a',[2 2]) generates the 2-by-2
symbolic matrix A = [a1_1, a1_2; a2_1, a2_2].

To specify another form for generated names of matrix elements, use combinations of
'%d' and the prefix a. For example, A = sym('a_%d',[1 3]) generates a row vector A
= [a_1, a_2, a_3], and AB = sym('a%db%d',[2 2]) generates the 2-by-2 symbolic
matrix AB = [a1b1, a1b2; a2b1, a2b2].

A = sym('a',n) creates an n-by-n symbolic matrix filled with automatically generated
elements.

sym(___ ,set) creates a symbolic variable or matrix and sets an assumption that
the variable or all matrix elements belong to a set. Here, the set can be 'real',
'positive', 'integer', or 'rational'. You can specify set after the input
arguments in any of the previous syntaxes.

sym(___ ,'clear') clears assumptions set on a symbolic variable or matrix. You
can specify 'clear' after the input arguments in any of the previous syntaxes, except
combining 'clear' and set. You cannot set and clear an assumption in the same
function call to sym.

sym(N) converts a number or numeric matrix to a symbolic number or symbolic matrix.

sym(N,flag) uses the technique specified by flag for converting floating-point
numbers to symbolic numbers.

 sym

4-1171

Examples

Create Variables

Create the symbolic variables x and y.

x = sym('x');

y = sym('y');

Create Symbolic Expressions from Function Handles

Create a symbolic expression and a symbolic matrix from anonymous functions
associated with MATLAB handles.

h_expr = @(x)(sin(x) + cos(x));

sym_expr = sym(h_expr)

sym_expr =

cos(x) + sin(x)

h_matrix = @(x)(x*pascal(3));

sym_matrix = sym(h_matrix)

sym_matrix =

[x, x, x]

[x, 2*x, 3*x]

[x, 3*x, 6*x]

Create Matrices with Automatically Generated Elements

Create a 3-by-4 symbolic matrix with automatically generated elements A1_1, ..., A3_4.

A = sym('A',[3 4])

A =

[A1_1, A1_2, A1_3, A1_4]

[A2_1, A2_2, A2_3, A2_4]

[A3_1, A3_2, A3_3, A3_4]

Create a 4-by-4 matrix with the elements x_1_1, ..., x_4_4. For square matrices, you can
use one integer to specify matrix dimensions.

4 Functions — Alphabetical List

4-1172

B = sym('x_%d_%d',4)

B =

[x_1_1, x_1_2, x_1_3, x_1_4]

[x_2_1, x_2_2, x_2_3, x_2_4]

[x_3_1, x_3_2, x_3_3, x_3_4]

[x_4_1, x_4_2, x_4_3, x_4_4]

This syntax does not create symbolic variables A1_1, ..., A3_4, x_1_1, ..., x_4_4 in the
MATLAB workspace. To access an element of a matrix, use parentheses.

A(2,3)

B(4,2)

ans =

A2_3

ans =

x_4_2

Create Diagonal Matrix

Use symbolic matrices and vectors generated by sym to define other matrices.

A = diag(sym('A',[1 4]))

A =

[A1, 0, 0, 0]

[0, A2, 0, 0]

[0, 0, A3, 0]

[0, 0, 0, A4]

Perform operations on symbolic matrices by using the operators that you use for numeric
matrices. For example, find the determinant and the trace of the matrix A.

det(A)

ans =

A1*A2*A3*A4

trace(A)

ans =

 sym

4-1173

A1 + A2 + A3 + A4

Set Assumptions While Creating Variables

Create the symbolic variables x, y, z, and t simultaneously assuming that x is real, y is
positive, z integer, and t is rational.

x = sym('x','real');

y = sym('y','positive');

z = sym('z','integer');

t = sym('t','rational');

Check the assumptions on x, y, and z using assumptions.

assumptions

ans =

[in(t, 'rational'), in(x, 'real'), 0 < y, in(z, 'integer')]

For further computations, clear the assumptions using assume.

assume([x,y,z,t],'clear')

assumptions

ans =

Empty sym: 1-by-0

Set Assumptions on Matrix Elements

Create a symbolic matrix and set assumptions on each element of that matrix.

A = sym('A%d%d',[2 2],'positive')

A =

[A11, A12]

[A21, A22]

Solve an equation involving the first element of A. MATLAB assumes that this element is
positive.

solve(A(1, 1)^2 - 1, A(1, 1))

ans =

4 Functions — Alphabetical List

4-1174

1

Check the assumptions set on the elements of A by using assumptions.

assumptions(A)

ans =

[0 < A21, 0 < A11, 0 < A22, 0 < A12]

Clear all previously set assumptions on elements of a symbolic matrix by using assume.

assume(A,'clear');

assumptions(A)

ans =

Empty sym: 1-by-0

Solve the same equation again.

solve(A(1, 1)^2 - 1, A(1, 1))

ans =

 -1

 1

Create Symbolic Numbers

Convert numeric values to symbolic numbers or expressions. When converting rational
numbers or expressions with special values, such as pi, sqrt(2), and so on, use
sym subexpressions instead of using sym on an entire expression. This approach is
more accurate. If you apply sym to an expression, then MATLAB evaluates the entire
expression to a floating-point number, and then the sym command converts that floating-
point number to a symbolic number.

sym(1/1234567)

sym(sqrt(1234567))

sym(exp(pi))

ans =

7650239286923505/9444732965739290427392

ans =

4886716562018589/4398046511104

 sym

4-1175

ans =

6513525919879993/281474976710656

1/sym(1234567)

sqrt(sym(1234567))

exp(sym(pi))

ans =

1/1234567

ans =

1234567^(1/2)

ans =

exp(pi)

Use quotation marks when creating symbolic numbers with 15 or more digits.

sym(11223344556666778899)

ans =

11223344556666779648

sym('11223344556666778899')

ans =

11223344556666778899

When you use quotation marks to create symbolic complex numbers, specify the
imaginary part of a number as 1i, 2i, and so on.

sym('1234567 + 1i')

sym('1234567 - 2i')

ans =

1234567 + 1i

ans =

1234567 - 2i

Choose Conversion Technique for Floating-Point Values

Convert pi to a symbolic value.

4 Functions — Alphabetical List

4-1176

Choose the conversion technique by specifying the optional second argument, which can
be 'r', 'f', 'd', or 'e'. The default is 'r'. See the Input Arguments section for the
details about conversion techniques.

r = sym(pi)

f = sym(pi,'f')

d = sym(pi,'d')

e = sym(pi,'e')

r =

pi

f =

884279719003555/281474976710656

d =

3.1415926535897931159979634685442

e =

pi - (198*eps)/359

Input Arguments

Note: In previous releases, in string input arguments to sym, i signified an imaginary
unit. Now, it is treated as a symbolic variable. For example, sym('1 + i')^2 returns
the symbolic expression (i + 1)^2. To obtain the same results as in previous releases,
omit quotation marks for expressions involving only numbers. For example, sym(1 +
i)^2 returns 2i. If you use quotation marks (for example, when you convert a number
with 15 or more digits), specify the imaginary part as 1i, 1i/2,2i, and so on. For
example, use sym('(1 + 11223344556666778899i)').

var — Variable name
string

Variable name, specified as a string. Argument var must a valid variable name. That
is, var must begin with a letter and can contain only alphanumeric characters and
underscores. To verify that the name is a valid variable name, use isvarname.

Example: x, y123, z_1

 sym

4-1177

h — Anonymous function
MATLAB function handle

Anonymous function, specified as a MATLAB function handle
Example: h = @(x)sin(x); symexpr = sym(h)

a — Prefix for automatically generated matrix elements
string

Prefix for automatically generated matrix elements, specified as a string. Argument a
must a valid variable name. That is, a must begin with a letter and can contain only
alphanumeric characters and underscores. To verify that the name is a valid variable
name, use isvarname.

Example: a, b, a_bc

[m,n] — Vector or matrix dimensions
vector of two integers

Vector or matrix dimensions, specified as a row or column vector of two integers. As
a shortcut, you also can use one integer to create a square matrix. For example, A =
sym('A',3) creates a square 3-by-3 matrix.

Example: [2 3], [2,3], [2;3]

set — Assumptions on symbolic variable or matrix
'real' | 'positive' | 'integer' | 'rational'

Assumptions on a symbolic variable or matrix, specified as one of these strings: 'real',
'positive', 'integer', or 'rational'.

N — Numeric value to be converted to symbolic number or matrix
number | matrix of numbers

Numeric value to be converted to symbolic number or matrix, specified as a number or a
matrix of numbers.
Example: 10, pi,hilb(3)

flag — Conversion technique
'r' (default) | 'd' | 'e' | 'f'

Conversion technique, specified as one of the strings listed in this table.

4 Functions — Alphabetical List

4-1178

'r' When sym uses the rational mode, it converts floating-point numbers obtained
by evaluating expressions of the form p/q, p*pi/q, sqrt(p), 2^q, and
10^q for modest sized integers p and q to the corresponding symbolic form.
This effectively compensates for the round-off error involved in the original
evaluation, but might not represent the floating-point value precisely. If sym
cannot find simple rational approximation, then it uses the same technique as
it would use with the flag 'f'.

'd' When sym uses the decimal mode, it takes the number of digits from the
current setting of digits. Conversions with fewer than 16 digits lose some
accuracy, while more than 16 digits might not be warranted. For example,
sym(4/3,'d') with the 10-digit accuracy returns 1.333333333, while with
the 20-digit accuracy it returns 1.3333333333333332593. The latter does
not end in a string of 3s, but it is an accurate decimal representation of the
floating-point number nearest to 4/3.

'e' When sym uses the estimate error mode, it supplements a result obtained in
the rational mode by a term involving the variable eps. This term estimates
the difference between the theoretical rational expression and its actual
floating-point value. For example, sym(3*pi/4,'e') returns (3*pi)/4 -
(103*eps)/249.

'f' When sym uses the floating-point mode, it represents all values in the
form N*2^e or -N*2^e, where N >= 0 and e are integers. For example,
sym(1/10,'f') returns 3602879701896397/36028797018963968 . The
returned rational value is the exact value of the floating-point number that
you convert to a symbolic number.

Output Arguments

var — Variable
symbolic variable

Variable, returned as a symbolic variable.

symexpr — Expression or matrix generated from anonymous MATLAB function
symbolic expression | symbolic matrix

Expression or matrix generated from an anonymous MATLAB function, returned as a
symbolic expression or matrix.

 sym

4-1179

A — Vector or matrix with automatically generated elements
symbolic vector | symbolic matrix

Vector or matrix with automatically generated elements, returned as a symbolic vector or
matrix. The elements of this vector or matrix do not appear in the MATLAB workspace.

Alternative Functionality

Alternative Approaches for Creating Symbolic Variables

To create several symbolic variables in one function call, use syms.

More About

Tips

• Statements like pi = sym('pi') and delta = sym('1/10') create symbolic
numbers that avoid the floating-point approximations inherent in the values of pi
and 1/10. The pi created in this way temporarily replaces the built-in numeric
function with the same name.

• sym always treats i in string input as an identifier. To input the imaginary number i,
use 1i instead.

• clear x does not clear the symbolic object of its assumptions, such as real, positive,
or any assumptions set by assume, sym, or syms. To remove assumptions, use one of
these options:

• assume(x,'clear') removes all assumptions affecting x.
• clear all clears all objects in the MATLAB workspace and resets the symbolic

engine.
• assume and assumeAlso provide more flexibility for setting assumptions on

variable.
• When you replace one or more elements of a numeric vector or matrix with a symbolic

number, MATLAB converts that number to a double-precision number.

A = eye(3);

A(1,1) = sym('pi')

4 Functions — Alphabetical List

4-1180

A =

 3.1416 0 0

 0 1.0000 0

 0 0 1.0000

You cannot replace elements of a numeric vector or matrix with a symbolic variable,
expression, or function because these elements cannot be converted to double-
precision numbers. For example, A(1,1) = sym('a') throws an error.

See Also
assume | assumeAlso | assumptions | clear | clear all | double | eps | reset
| symfun | syms | symvar

Introduced before R2006a

 sym2poly

4-1181

sym2poly
Extract vector of all numeric coefficients, including zeros, from symbolic polynomial

Syntax

c = sym2poly(p)

Description

c = sym2poly(p) returns the numeric vector of coefficients c of the symbolic
polynomial p. The returned vector c includes all coefficients, including those equal 0.

sym2poly returns coefficients in order of descending powers of the polynomial variable.
If c x c x c

n n

n1

1

2

2- -
+ + +... , then c = sym2poly(p) returns c = [c1 c2 ... cn].

Examples

Extract Numeric Coefficients of Polynomial

Create row vectors of coefficients of symbolic polynomials.

Extract integer coefficients of a symbolic polynomial into a numeric row vector.

syms x

c = sym2poly(x^3 - 2*x - 5)

c =

 1 0 -2 -5

Extract rational and integer coefficients of a symbolic polynomial into a vector. Because
sym2poly returns numeric double-precision results, it approximates exact rational
coefficients with double-precision numbers.

c = sym2poly(1/2*x^3 - 2/3*x - 5)

c =

4 Functions — Alphabetical List

4-1182

 0.5000 0 -0.6667 -5.0000

Input Arguments

p — Polynomial
symbolic expression

Polynomial, specified as a symbolic expression.

Output Arguments

c — Polynomial coefficients
numeric row vector

Polynomial coefficients, returned as a numeric row vector.

More About

Tips

•
To extract symbolic coefficients of a polynomial, use coeffs. This function returns a
symbolic vector of coefficients and omits all zeros. For example, syms a b x; c =
coeffs(a*x^3 - 5*b,x) returns c = [-5*b, a].

See Also
coeffs | poly2sym

Introduced before R2006a

 symengine

4-1183

symengine
Return symbolic engine

Syntax

s = symengine

Description

s = symengine returns the currently active symbolic engine.

Examples

To see which symbolic computation engine is currently active, enter:

s = symengine

s =

MuPAD symbolic engine

Now you can use the variable s in function calls that require symbolic engine:

syms a b c x

p = a*x^2 + b*x + c;

feval(s,'polylib::discrim', p, x)

ans =

b^2 - 4*a*c

See Also
evalin | feval | read

Introduced in R2008b

4 Functions — Alphabetical List

4-1184

symfun
Create symbolic functions

Syntax
f = symfun(formula,inputs)

Description
f = symfun(formula,inputs) creates the symbolic function f. The symbolic variables
inputs represent its input arguments. The symbolic expression formula defines the
body of the function f.

Examples

Create Symbolic Functions

Use syms to create symbolic variables. Then use symfun to create a symbolic function
with these variables as its input arguments.

syms x y

f = symfun(x + y, [x y])

f(x, y) =

x + y

Call the function for x = 1 and y = 2.

f(1,2)

ans =

3

Input Arguments
formula — Function body
symbolic expression | vector of symbolic expressions | matrix of symbolic expressions

 symfun

4-1185

Function body, specified as a symbolic expression, vector of symbolic expressions, or
matrix of symbolic expressions.
Example: x + y

inputs — Input argument or arguments of function
symbolic variable | array of symbolic variables

Input argument or arguments of a function, specified as a symbolic variable or an array
of symbolic variables, respectively.
Example: [x,y]

Output Arguments

f — Function
symbolic function (symfun data type)

Function, returned as a symbolic function (symfun data type).

Alternative Functionality

Alternative Approaches for Creating Symbolic Functions

• Use the assignment operation to simultaneously create a symbolic function and
define its body. The arguments x and y must be symbolic variables in the MATLAB
workspace, and the body of the function must be a symbolic number, variable, or
expression. Assigning a number, such as f(x,y) = 1, causes an error.

syms x y

f(x,y) = x + y

• Use syms to create an abstract symbolic function f(x,y) and its arguments. The
following command creates the symbolic function f and the symbolic variables x and
y. Using syms, you also can create multiple symbolic functions in one function call.

syms f(x,y)

4 Functions — Alphabetical List

4-1186

More About

Tips

• When you replace one or more elements of a numeric vector or matrix with a symbolic
number, MATLAB converts that number to a double-precision number.

A = eye(3);

A(1,1) = sym('pi')

A =

 3.1416 0 0

 0 1.0000 0

 0 0 1.0000

You cannot replace elements of a numeric vector or matrix with a symbolic variable,
expression, or function because these elements cannot be converted to double-
precision numbers. For example, syms f(t); A(1,1) = f throws an error.

• Symbolic functions are always scalars, therefore, you cannot index into a function. To
access x^2 and x^4 in this example, use formula to get the expression that defines f,
and then index into that expression.

syms x

f = symfun([x^2, x^4], x);

expr = formula(f);

expr(1)

expr(2)

ans =

x^2

ans =

x^4

See Also
argnames | dsolve | formula | matlabFunction | odeToVectorField | sym |
syms | symvar

Introduced in R2012a

 sympref

4-1187

sympref

Set symbolic preferences

Syntax

sympref(pref,value)

sympref(pref,'default')

sympref(pref)

sympref()

sympref('default')

sympref(allPref)

Description

sympref(pref,value) sets the symbolic preference pref to value and returns
the previous value of pref. Symbolic preferences can affect the functions fourier,
ifourier, and heaviside. These preferences persist between successive MATLAB
sessions.

sympref(pref,'default') pref to its default value and returns the previous value of
pref.

sympref(pref) returns the value of symbolic preference pref.

sympref() returns the values of all symbolic preferences in a structure.

sympref('default') sets all symbolic preferences to their default values and returns
the previous values in a structure.

sympref(allPref) restores all symbolic preferences to the values in structure
allPref and returns the previous values in a structure. allPref is the structure
returned by a previous call to sympref.

4 Functions — Alphabetical List

4-1188

Examples

Change Parameter Values of Fourier Transform

Note: Symbolic preferences persist between successive MATLAB sessions. MATLAB does
not restore them for a new session.

The Fourier transform F(w) of f = f(t) is

F w c f t e dtiswt() = ()

-•

•

Ú ,

where c and s are parameters with default values 1 and -1. Other common values for c
are 1/2π and 1 2p , and for s are 1, -2π, and 2π.

Find the Fourier transform of sin(t) with default values of c and s.

syms t w

fourier(sin(t),t,w)

ans =

-pi*(dirac(w - 1) - dirac(w + 1))*1i

Find the same Fourier transform for c = 1/(2π) and s = 1. Set these parameter
values using the FourierParameter preference of sympref. Represent π exactly using
sym. The values of c and s are specified as the vector [1/(2*sym(pi)) 1]. Store the
previous values returned by sympref to restore them later.

oldparam = sympref('FourierParameters',[1/(2*sym(pi)) 1])

fourier(sin(t),t,w)

oldparam =

[1, -1]

ans =

(dirac(w - 1)*1i)/2 - (dirac(w + 1)*1i)/2

 sympref

4-1189

The preferences set by sympref persist through your current and future MATLAB
sessions. Restore the old values of c and s using the previous parameter values stored in
oldparam.

sympref('FourierParameters',oldparam);

Alternatively, you can restore the default values of c and s by specifying the 'default'
option.

sympref('FourierParameters','default');

Change Value of Heaviside at Origin

The default value of the Heaviside function at the origin is 1/2 in the Symbolic Math
Toolbox. Return the value of heaviside(0). Find the Z-Transform of heaviside(x) for
this default value of heaviside(0).

syms x

heaviside(sym(0))

ztrans(heaviside(x))

ans =

1/2

ans =

1/(z - 1) + 1/2

Other common values for the Heaviside function at the origin are 0 and 1. Set
heaviside(0) to 1 using the 'HeavisideAtOrigin' preference of sympref. Store the
old parameter value returned by sympref to restore it later.

oldparam = sympref('HeavisideAtOrigin',1)

oldparam =

1/2

Check the new value of heaviside(0). Find the Z-Transform of heaviside(x) for this
value.

heaviside(sym(0))

ztrans(heaviside(x))

ans =

4 Functions — Alphabetical List

4-1190

1

ans =

1/(z - 1) + 1

The new output of heaviside(0) modifies the output of ztrans.

The preferences set by sympref persist throughout your current and future MATLAB
sessions. Restore the previous value of heaviside(0) by loading the old parameter
stored in oldparam.

sympref('HeavisideAtOrigin',oldparam);

Alternatively, you can restore the default value of 'HeavisideAtOrigin' by specifying
the 'default' option.

sympref('HeavisideAtOrigin','default');

Saving and Restoring All Symbolic Preferences

sympref can save and restore all symbolic preferences simultaneously in place of
working with individual preferences.

Return the values of all symbolic preferences using sympref. The sympref function
returns a structure of values of preferences. Access individual preferences by addressing
the fields of the structure.

S = sympref;

S.FourierParameters

S.HeavisideAtOrigin

ans =

[1, -1]

ans =

1/2

S stores the values of all symbolic preferences.

Assume that you have changed the preferences. Since the preferences persist through
your current and future MATLAB sessions, you want to restore your previous
preferences in S. Restore the saved preferences using sympref(S).

sympref(S);

 sympref

4-1191

Alternatively, you can set all symbolic preferences to their defaults by specifying the
option 'default'.

sympref('default');

Input Arguments

pref — Symbolic preference
‘FourierParameters’ | ‘HeavisideAtOrigin’

Symbolic preference, specified as ‘FourierParameters’ or ‘HeavisideAtOrigin’.

Example: sympref(‘HeavisideAtOrigin’,1) sets the value returned by heaviside
at the origin to 1.

value — Value of symbolic preference
numeric number | symbolic number

Value of the symbolic preference, specified as a numeric or symbolic number.

allPref — Values of all symbolic preferences
structure

Values of all symbolic preferences, specified as a structure. Typically, allPref is
generated by a previous call to sympref.

More About

Tips

• The commands clear(all) and reset(symengine) do not reset or affect symbolic
preferences. Use sympref to manipulate symbolic preferences.

See Also
fourier | heaviside | ifourier

Introduced in R2015a

4 Functions — Alphabetical List

4-1192

symprod
Product of series

Syntax

F = symprod(f,k,a,b)

F = symprod(f,k)

Description

F = symprod(f,k,a,b) returns the product of the series with terms that expression f
specifies, which depend on symbolic variable k. The value of k ranges from a to b. If you
do not specify k, symprod uses the variable that symvar determines. If f is a constant,
then the default variable is x.

F = symprod(f,k) returns the product of the series that expression f specifies, which
depend on symbolic variable k. The value of k starts at 1 with an unspecified upper
bound. The product F is returned in terms of k where k represents the upper bound. This
product F differs from the indefinite product. If you do not specify k, symprod uses the
variable that symvar determines. If f is a constant, then the default variable is x.

Examples

Find Product of Series Specifying Bounds

Find the following products of series

P

k

P
k

k

k

k

1 1
1

2
1

2
2

2

2
2

= -

=
-

=

•

=

•

’

’

,

.

 symprod

4-1193

syms k

P1 = symprod(1 - 1/k^2, k, 2, Inf)

P2 = symprod(k^2/(k^2 - 1), k, 2, Inf)

P1 =

1/2

P2 =

2

Alternatively, specify bounds as a row or column vector.

syms k

P1 = symprod(1 - 1/k^2, k, [2 Inf])

P2 = symprod(k^2/(k^2 - 1), k, [2; Inf])

P1 =

1/2

P2 =

2

Find Product of Series Specifying Product Index and Bounds

Find the product of series

P
e

x

kx

k

=

=

’
1

10000

.

syms k x

P = symprod(exp(k*x)/x, k, 1, 10000)

P =

exp(50005000*x)/x^10000

Find Product of Series with Unspecified Bounds

When you do not specify the bounds of a series are unspecified, the variable k starts at 1.
In the returned expression, k itself represents the upper bound.

Find the products of series with an unspecified upper bound

4 Functions — Alphabetical List

4-1194

P k

P
k

k

k

k

1

2
2 1

2

=

=
-

’

’

,

.

syms k

P1 = symprod(k, k)

P2 = symprod((2*k - 1)/k^2, k)

P1 =

factorial(k)

P2 =

(1/2^(2*k)*2^(k + 1)*factorial(2*k))/(2*factorial(k)^3)

Input Arguments

f — Expression defining terms of series
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic
number

Expression defining terms of series, specified as a symbolic expression, function,
constant, or a vector or matrix of symbolic expressions, functions, or constants.

k — Product index
symbolic variable

Product index, specified as a symbolic variable. If you do not specify this variable,
symprod uses the default variable that symvar(expr,1) determines. If f is a constant,
then the default variable is x.

a — Lower bound of product index
number | symbolic number | symbolic variable | symbolic expression | symbolic
function

Lower bound of product index, specified as a number, symbolic number, variable,
expression, or function (including expressions and functions with infinities).

b — Upper bound of product index
number | symbolic number | symbolic variable | symbolic expression | symbolic
function

 symprod

4-1195

Upper bound of product index, specified as a number, symbolic number, variable,
expression, or function (including expressions and functions with infinities).

More About

Definite Product

The definite product of a series is defined as

x x x xi

i a

b

a a b

=

+’ = ◊ ◊ ◊
1
…

Indefinite Product

f i xi
i

() = ’

is called the indefinite product of xi over i, if the following identity holds for all values of
i:

f i

f i
xi

+()

()
=

1

Note: symprod does not compute indefinite products.

See Also
cumprod | cumsum | int | syms | symsum | symvar

Introduced in R2011b

4 Functions — Alphabetical List

4-1196

syms

Shortcut for creating symbolic variables and functions

Compatibility

syms does not create variables with the following
names: clear, integer, positive, rational, and real. For example, in previous
releases syms integer created the symbolic variable integer. To create these
variables now, use sym. For example, to create the symbolic variable integer,
use integer = sym('integer').

Syntax

syms var1 ... varN

syms var1 ... varN set

syms var1 ... varN clear

syms f(var1,...,varN)

syms

Description

syms var1 ... varN creates symbolic variables var1 ... varN. Separate variables
by spaces.

syms var1 ... varN set creates symbolic variables var1 ... varN simultaneously
setting an assumption that these variables belong to a set.

syms var1 ... varN clear clears assumptions set on a symbolic variables var1 ...
varN.

syms f(var1,...,varN) creates the symbolic function f and symbolic variables
var1,...,varN representing the input arguments of f. You can create multiple
symbolic functions in one call. For example, syms f(x) g(t) creates two symbolic
functions (f and g) and two symbolic variables (x and t).

 syms

4-1197

syms without input arguments lists all symbolic variables, functions, vectors, and
matrices currently existing in the MATLAB workspace.

Examples

Create Symbolic Variables

Create symbolic variables x and y.

syms x y

Set Assumptions While Creating Variables

Create symbolic variables x and y, and assume that they are integer.

syms x y integer

Check assumptions.

assumptions

ans =

[in(x, 'integer'), in(y, 'integer')]

Alternatively, check assumptions on each variable. For example, check assumptions set
on the variable x.

assumptions(x)

ans =

in(x, 'integer')

Clear assumptions on x and y.

assume([x y],'clear')

assumptions

ans =

Empty sym: 1-by-0

4 Functions — Alphabetical List

4-1198

Create Symbolic Functions

Create symbolic functions with one and two arguments.

syms s(t) f(x,y)

Both s and f are abstract symbolic functions. They do not have symbolic expressions
assigned to them, so the bodies of these functions are s(t) and f(x, y), respectively.

Specify the following formula for f.

f(x,y) = x + 2*y

f(x, y) =

x + 2*y

Compute function value at the point x = 1 and y = 2.

f(1,2)

ans =

5

Create Symbolic Functions with Matrices as Formulas

Create a symbolic function and specify its formula by using a symbolic matrix.

syms x

f(x) = [x x^3; x^2 x^4]

f(x) =

[x, x^3]

[x^2, x^4]

Compute the function value at the point x = 2:

f(2)

ans =

[2, 8]

[4, 16]

Compute the value of this function for x = [1 2 3; 4 5 6]. The result is a cell array
of symbolic matrices.

 syms

4-1199

y = f([1 2 3; 4 5 6])

y =

 [2x3 sym] [2x3 sym]

 [2x3 sym] [2x3 sym]

Access the contents of each cell in a cell array by using braces.

y{1}

ans =

[1, 2, 3]

[4, 5, 6]

y{2}

ans =

[1, 4, 9]

[16, 25, 36]

y{3}

ans =

[1, 8, 27]

[64, 125, 216]

y{4}

ans =

[1, 16, 81]

[256, 625, 1296]

List All Symbolic Variables, Functions, and Matrices

Create several symbolic variables, functions, and matrices.

syms a b c f(x,y) g(s,t)

A = sym('A',[2,3]);

B = sym('B',[1 10]);

Use syms without input arguments to print a list of all symbolic objects that currently
exist in the MATLAB workspace.

syms

 'A' 'B' 'a' 'b' 'c' 'f' 'g' 's' 't' 'x' 'y'

4 Functions — Alphabetical List

4-1200

Input Arguments

var1 ... varN — Symbolic variables
valid variable names separated by spaces

Symbolic variables, specified as valid variable names separated by spaces. Each variable
name must begin with a letter and can contain only alphanumeric characters and
underscores. To verify that the name is a valid variable name, use isvarname.

Example: x y123 z_1

set — Assumptions on symbolic variables
real | positive | integer | rational

Assumptions on a symbolic variable or matrix, specified as real, positive, integer, or
rational.

f(var1,...,varN) — Symbolic function with its input arguments
expression with parentheses

Symbolic function with its input arguments, specified as an expression with parentheses.
The function name f and the variable names var1...varN must be valid variable
names. That is, they must begin with a letter and can contain only alphanumeric
characters and underscores. To verify that the name is a valid variable name, use
isvarname.

Example: s(t), f(x,y)

More About

Tips

• syms is a shortcut for sym. This shortcut lets you create several symbolic variables in
one function call. Alternatively, you can use sym and create each variable separately.
You also can use symfun to create symbolic functions.

• In functions and scripts, do not use syms to create symbolic variables with the same
names as MATLAB functions. For these names MATLAB does not create symbolic
variables, but keeps the names assigned to the functions. If you want to create a
symbolic variable with the same name as a MATLAB function inside a function or a
script, use sym. For example, use alpha = sym('alpha').

 syms

4-1201

• The following variable names are invalid with syms: integer, real, rational,
positive and clear. To create variables with these names use sym. For example,
real = sym('real').

• clear x does not clear the symbolic object of its assumptions, such as real, positive,
or any assumptions set by assume, sym, or syms. To remove assumptions, use one of
these options:

• assume(x,'clear') removes all assumptions affecting x.
• clear all clears all objects in the MATLAB workspace and resets the symbolic

engine.
• assume and assumeAlso provide more flexibility for setting assumptions on

variables.
• When you replace one or more elements of a numeric vector or matrix with a symbolic

number, MATLAB converts that number to a double-precision number.

A = eye(3);

A(1,1) = sym('pi')

A =

 3.1416 0 0

 0 1.0000 0

 0 0 1.0000

You cannot replace elements of a numeric vector or matrix with a symbolic variable,
expression, or function because these elements cannot be converted to double-
precision numbers. For example, syms a; A(1,1) = a throws an error.

See Also
assume | assumeAlso | assumptions | clear all | reset | sym | symfun |
symvar

Introduced before R2006a

4 Functions — Alphabetical List

4-1202

symsum
Sum of series

Syntax
F = symsum(f,k,a,b)

F = symsum(f,k)

Description
F = symsum(f,k,a,b) returns the sum of the series with terms that expression f
specifies, which depend on symbolic variable k. The value of k ranges from a to b. If you
do not specify the variable, symsum uses the variable that symvar determines. If f is a
constant, then the default variable is x.

F = symsum(f,k) returns the indefinite sum F of the series with terms that expression
f specifies, which depend on variable k. The f argument defines the series such that the
indefinite sum F is given by F(k+1) - F(k) = f(k). If you do not specify the variable,
symsum uses the variable that symvar determines. If f is a constant, then the default
variable is x.

Examples

Find Sum of Series Specifying Bounds

Find the following sums of series.

S k

S

k

S
x

k

k

k

k

k

1

2
1

3

2

0

10

2
1

1

=

=

=

=

=

•

=

•

Â

Â

Â
!

 symsum

4-1203

syms k x

S1 = symsum(k^2, k, 0, 10)

S2 = symsum(1/k^2, k, 1, Inf)

S3 = symsum(x^k/factorial(k), k, 0, Inf)

S1 =

385

S2 =

pi^2/6

S3 =

exp(x)

Alternatively, specify bounds as a row or column vector.

S1 = symsum(k^2, k, [0 10])

S2 = symsum(1/k^2, k, [1; Inf])

S3 = symsum(x^k/factorial(k), k, [0 Inf])

S1 =

385

S2 =

pi^2/6

S3 =

exp(x)

Find Indefinite Sum of Series

Find the indefinite sum of the series specified by the symbolic expressions k and k^2.

syms k

symsum(k, k)

symsum(1/k^2, k)

ans =

k^2/2 - k/2

ans =

-psi(1, k)

Difference between symsum and sum

The sum function finds the sum of elements of symbolic vectors and matrices, similar to
the MATLAB sum function.

4 Functions — Alphabetical List

4-1204

Consider the definite sum

S

kk

=

=

Â
1

2
1

10

.

Contrast symsum and sum by summing this definite sum using both functions.

syms k

S_sum = sum(subs(1/k^2, k, 1:10))

S_symsum = symsum(1/k^2, k, 1, 10)

S_sum =

1968329/1270080

S_symsum =

1968329/1270080

For details on sum, see the information on the MATLAB sum page.

Input Arguments

f — Expression defining terms of series
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic
number

Expression defining terms of series, specified as a symbolic expression, function, or a
vector or matrix of symbolic expressions, functions, or constants.

k — Summation index
symbolic variable

Summation index, specified as a symbolic variable. If you do not specify this variable,
symsum uses the default variable determined by symvar(expr,1). If f is a constant,
then the default variable is x.

a — Lower bound of summation index
number | symbolic number | symbolic variable | symbolic expression | symbolic
function

Lower bound of summation index, specified as a number, symbolic number, variable,
expression, or function (including expressions and functions with infinities).

 symsum

4-1205

b — Upper bound of summation index
number | symbolic number | symbolic variable | symbolic expression | symbolic
function

Upper bound of summation index, specified as a number, symbolic number, variable,
expression, or function (including expressions and functions with infinities).

More About

Definite Sum

The definite sum of series is defined as

x x x xk

k a

b

a a b

=

+Â = + + +
1
… .

Indefinite Sum

The indefinite sum of a series is defined as

F x f x

x

() ,= ()Â

such that

F x F x f x+() - () = ()1 .

See Also
cumsum | int | sum | symprod | syms | symvar

Introduced before R2006a

4 Functions — Alphabetical List

4-1206

symvar
Find symbolic variables in symbolic expression, matrix, or function

Syntax

symvar(s)

symvar(s,n)

Description

symvar(s) returns a vector containing all the symbolic variables in s in alphabetical
order with uppercase letters preceding lowercase letters.

symvar(s,n) returns a vector containing n symbolic variables in s alphabetically closest
to x. If s is a symbolic function, symvar(s,n) returns the input arguments of s in front
of other free variables in s.

Input Arguments

s

Symbolic expression, matrix, or function.

n

Integer or Inf. If n exceeds the number of variables in s, then symvar(s,n) is
equivalent to symvar(s,m) where m is the number of variables in s.

Examples

Find all symbolic variables in the sum:

syms wa wb wx yx ya yb

symvar(wa + wb + wx + ya + yb + yx)

 symvar

4-1207

ans =

[wa, wb, wx, ya, yb, yx]

Find all symbolic variables in this function:

syms x y a b

f(a, b) = a*x^2/(sin(3*y - b));

symvar(f)

ans =

[a, b, x, y]

Now find the first three symbolic variables in f. For a symbolic function, symvar with
two arguments returns the function inputs in front of other variables:

symvar(f, 3)

ans =

[a, b, x]

For a symbolic expression or matrix, symvar with two arguments returns variables
sorted by their proximity to x:

symvar(a*x^2/(sin(3*y - b)), 3)

ans =

[x, y, b]

Find the default symbolic variable of these expressions:

syms v z

g = v + z;

symvar(g, 1)

ans =

z

syms aaa aab

g = aaa + aab;

symvar(g, 1)

ans =

aaa

syms X1 x2 xa xb

g = X1 + x2 + xa + xb;

4 Functions — Alphabetical List

4-1208

symvar(g, 1)

ans =

x2

More About

Tips

• symvar(s) can return variables in a different order than symvar(s,n).
• symvar does treat the constants pi, i, and j as variables.
• If there are no symbolic variables in s, symvar returns the empty vector.
• When performing differentiation, integration, substitution or solving equations,

MATLAB uses the variable returned by symvar(s,1) as a default variable. For a
symbolic expression or matrix, symvar(s,1) returns the variable closest to x. For a
function, symvar(s,1) returns the first input argument of s.

Algorithms

When sorting the symbolic variables by their proximity to x, symvar uses this algorithm:

1 The variables are sorted by the first letter in their names. The ordering is
x y w z v u ... a X Y W Z V U ... A. The name of a symbolic variable cannot begin with
a number.

2 For all subsequent letters, the ordering is alphabetical, with all uppercase letters
having precedence over lowercase: 0 1 ... 9 A B ... Z a b ... z.

See Also
sym | symfun | syms

Introduced in R2008b

 tan

4-1209

tan

Symbolic tangent function

Syntax

tan(X)

Description

tan(X) returns the tangent function of X.

Examples

Tangent Function for Numeric and Symbolic Arguments

Depending on its arguments, tan returns floating-point or exact symbolic results.

Compute the tangent function for these numbers. Because these numbers are not
symbolic objects, tan returns floating-point results.

A = tan([-2, -pi, pi/6, 5*pi/7, 11])

A =

 2.1850 0.0000 0.5774 -1.2540 -225.9508

Compute the tangent function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, tan returns unresolved symbolic calls.

symA = tan(sym([-2, -pi, pi/6, 5*pi/7, 11]))

symA =

[-tan(2), 0, 3^(1/2)/3, -tan((2*pi)/7), tan(11)]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-1210

vpa(symA)

ans =

[2.1850398632615189916433061023137,...

0,...

0.57735026918962576450914878050196,...

-1.2539603376627038375709109783365,...

-225.95084645419514202579548320345]

Plot Tangent Function

Plot the tangent function on the interval from to .

syms x

ezplot(tan(x), [-pi, pi])

grid on

 tan

4-1211

Handle Expressions Containing Tangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing tan.

Find the first and second derivatives of the tangent function:

syms x

diff(tan(x), x)

diff(tan(x), x, x)

ans =

tan(x)^2 + 1

4 Functions — Alphabetical List

4-1212

ans =

2*tan(x)*(tan(x)^2 + 1)

Find the indefinite integral of the tangent function:

int(tan(x), x)

ans =

-log(cos(x))

Find the Taylor series expansion of tan(x):

taylor(tan(x), x)

ans =

(2*x^5)/15 + x^3/3 + x

Rewrite the tangent function in terms of the sine and cosine functions:

rewrite(tan(x), 'sincos')

ans =

sin(x)/cos(x)

Rewrite the tangent function in terms of the exponential function:

rewrite(tan(x), 'exp')

ans =

-(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1)

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

More About
Tangent Function

The tangent of an angle, α, defined with reference to a right angled triangle is

 tan

4-1213

tan
opposite side

adjacent side
() .a = =

a

b

.

The tangent of a complex angle, α, is

tan a
a a

a a
() =

-

+()

-

-

e e

i e e

i i

i i
.

.

4 Functions — Alphabetical List

4-1214

See Also
acos | acot | acsc | asec | asin | atan | cos | cot | csc | sec | sin

Introduced before R2006a

 tanh

4-1215

tanh
Symbolic hyperbolic tangent function

Syntax

tanh(X)

Description

tanh(X) returns the hyperbolic tangent function of X.

Examples

Hyperbolic Tangent Function for Numeric and Symbolic Arguments

Depending on its arguments, tanh returns floating-point or exact symbolic results.

Compute the hyperbolic tangent function for these numbers. Because these numbers are
not symbolic objects, tanh returns floating-point results.

A = tanh([-2, -pi*i, pi*i/6, pi*i/3, 5*pi*i/7])

A =

 -0.9640 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.5774i...

 0.0000 + 1.7321i 0.0000 - 1.2540i

Compute the hyperbolic tangent function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, tanh returns unresolved symbolic calls.

symA = tanh(sym([-2, -pi*i, pi*i/6, pi*i/3, 5*pi*i/7]))

symA =

[-tanh(2), 0, (3^(1/2)*1i)/3, 3^(1/2)*1i, -tanh((pi*2i)/7)]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-1216

vpa(symA)

ans =

[-0.96402758007581688394641372410092,...

0,...

0.57735026918962576450914878050196i,...

1.7320508075688772935274463415059i,...

-1.2539603376627038375709109783365i]

Plot Hyperbolic Tangent Function

Plot the hyperbolic tangent function on the interval from to .

syms x

ezplot(tanh(x), [-pi, pi])

grid on

 tanh

4-1217

Handle Expressions Containing Hyperbolic Tangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing tanh.

Find the first and second derivatives of the hyperbolic tangent function:

syms x

diff(tanh(x), x)

diff(tanh(x), x, x)

ans =

1 - tanh(x)^2

4 Functions — Alphabetical List

4-1218

ans =

2*tanh(x)*(tanh(x)^2 - 1)

Find the indefinite integral of the hyperbolic tangent function:

int(tanh(x), x)

ans =

log(cosh(x))

Find the Taylor series expansion of tanh(x):

taylor(tanh(x), x)

ans =

(2*x^5)/15 - x^3/3 + x

Rewrite the hyperbolic tangent function in terms of the exponential function:

rewrite(tanh(x), 'exp')

ans =

(exp(2*x) - 1)/(exp(2*x) + 1)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sech |
sinh

Introduced before R2006a

 taylor

4-1219

taylor

Taylor series

Syntax

taylor(f,var)

taylor(f,var,a)

taylor(___ ,Name,Value)

Description

taylor(f,var) approximates f with the Taylor series expansion of f up to the fifth
order at the point var = 0. If you do not specify var, then taylor uses the default
variable determined by symvar(f,1).

taylor(f,var,a) approximates f with the Taylor series expansion of f at the point
var = a.

taylor(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. You can specify Name,Value after the input arguments in
any of the previous syntaxes.

Examples

Find Maclaurin Series of Univariate Expressions

Find the Maclaurin series expansions of these functions.

syms x

taylor(exp(x))

taylor(sin(x))

taylor(cos(x))

ans =

4 Functions — Alphabetical List

4-1220

x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1

ans =

x^5/120 - x^3/6 + x

ans =

x^4/24 - x^2/2 + 1

Specify Expansion Point

Find the Taylor series expansions at x = 1 for these functions. The default expansion
point is 0. To specify a different expansion point, use ExpansionPoint:

syms x

taylor(log(x), x, 'ExpansionPoint', 1)

ans =

x - (x - 1)^2/2 + (x - 1)^3/3 - (x - 1)^4/4 + (x - 1)^5/5 - 1

Alternatively, specify the expansion point as the third argument of taylor:

taylor(acot(x), x, 1)

ans =

pi/4 - x/2 + (x - 1)^2/4 - (x - 1)^3/12 + (x - 1)^5/40 + 1/2

Specify Truncation Order

Find the Maclaurin series expansion for f = sin(x)/x. The default truncation order
is 6. Taylor series approximation of this expression does not have a fifth-degree term, so
taylor approximates this expression with the fourth-degree polynomial:

syms x

f = sin(x)/x;

t6 = taylor(f, x)

t6 =

x^4/120 - x^2/6 + 1

Use Order to control the truncation order. For example, approximate the same
expression up to the orders 8 and 10:

t8 = taylor(f, x, 'Order', 8)

 taylor

4-1221

t10 = taylor(f, x, 'Order', 10)

t8 =

- x^6/5040 + x^4/120 - x^2/6 + 1

t10 =

x^8/362880 - x^6/5040 + x^4/120 - x^2/6 + 1

Plot the original expression f and its approximations t6, t8, and t10. Note how the
accuracy of the approximation depends on the truncation order.

ezplot(t6)

hold on

ezplot(t8)

ezplot(t10)

ezplot(f)

xlim([-4 4])

legend('approximation of sin(x)/x up to O(x^6)',...

'approximation of sin(x)/x up to O(x^8)',...

'approximation of sin(x)/x up to O(x^{10})',...

'sin(x)/x',...

'Location', 'South');

title('Taylor Series Expansion')

hold off

4 Functions — Alphabetical List

4-1222

Specify Order Mode: Relative or Absolute

Find the Taylor series expansion of this expression. By default, taylor uses an absolute
order, which is the truncation order of the computed series.

taylor(1/(exp(x)) - exp(x) + 2*x, x, 'Order', 5)

ans =

-x^3/3

Fnd the Taylor series expansion with a relative truncation order by using
OrderMode. For some expressions, a relative truncation order provides more accurate
approximations.

 taylor

4-1223

taylor(1/(exp(x)) - exp(x) + 2*x, x, 'Order', 5, 'OrderMode', 'relative')

ans =

- x^7/2520 - x^5/60 - x^3/3

Find Maclaurin Series of Multivariate Expressions

Find the Maclaurin series expansion of this multivariate expression. If you do not specify
the vector of variables, taylor treats f as a function of one independent variable.

syms x y z

f = sin(x) + cos(y) + exp(z);

taylor(f)

ans =

x^5/120 - x^3/6 + x + cos(y) + exp(z)

Find the multivariate Maclaurin expansion by specifying the vector of variables.

syms x y z

f = sin(x) + cos(y) + exp(z);

taylor(f, [x, y, z])

ans =

x^5/120 - x^3/6 + x + y^4/24 - y^2/2 + z^5/120 + z^4/24 + z^3/6 + z^2/2 + z + 2

Specify Expansion Point for Multivariate Expression

Find the multivariate Taylor expansion by specifying both the vector of variables and the
vector of values defining the expansion point:

syms x y

f = y*exp(x - 1) - x*log(y);

taylor(f, [x, y], [1, 1], 'Order', 3)

ans =

x + (x - 1)^2/2 + (y - 1)^2/2

If you specify the expansion point as a scalar a, taylor transforms that scalar into a
vector of the same length as the vector of variables. All elements of the expansion vector
equal a:

taylor(f, [x, y], 1, 'Order', 3)

ans =

4 Functions — Alphabetical List

4-1224

x + (x - 1)^2/2 + (y - 1)^2/2

Input Arguments

f — Input to approximate
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic
multidimensional array

Input to approximate, specified as a symbolic expression or function. It also can be a
vector, matrix, or multidimensional array of symbolic expressions or functions.

var — Expansion variable
symbolic variable

Expansion variable, specified as a symbolic variable. If you do not specify var, then
taylor uses the default variable determined by symvar(f,1).

a — Expansion point
0 (default) | number | symbolic number | symbolic variable | symbolic function |
symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or
expression. The expansion point cannot depend on the expansion variable. You also can
specify the expansion point as a Name,Value pair argument. If you specify the expansion
point both ways, then the Name,Value pair argument takes precedence.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: taylor(log(x),x,'ExpansionPoint',1,'Order',9)

'ExpansionPoint' — Expansion point
0 (default) | number | symbolic number | symbolic variable | symbolic function |
symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or
expression. The expansion point cannot depend on the expansion variable. You can also

 taylor

4-1225

specify the expansion point using the input argument a. If you specify the expansion
point both ways, then the Name,Value pair argument takes precedence.

'Order' — Truncation order of Taylor series expansion
6 (default) | positive integer | symbolic positive integer

Truncation order of Taylor series expansion, specified as a positive integer or a symbolic
positive integer. taylor computes the Taylor series approximation with the order n -
1. The truncation order n is the exponent in the O-term: O(varn).

'OrderMode' — Order mode indicator
'absolute' (default) | 'relative'

Order mode indicator, specified as 'absolute' or 'relative'. This indicator
specifies whether you want to use absolute or relative order when computing the Taylor
polynomial approximation.

Absolute order is the truncation order of the computed series. Relative order n means
that the exponents of var in the computed series range from the leading order m to
the highest exponent m + n - 1. Here m + n is the exponent of var in the O-term:
O(varm + n).

More About

Taylor Series Expansion

Taylor series expansion represents an analytic function f(x) as an infinite sum of terms
around the expansion point x = a:

f x f a
f a

x a
f a

x a
f a

m
x a

m
m

m

()
! !

()

!

()

= () +
¢()

-() +
¢¢ ()

-() + = ◊ -()

=1 2

2
…

00

•

Â

Taylor series expansion requires a function to have derivatives up to an infinite order
around the expansion point.

Maclaurin Series Expansion

Taylor series expansion around x = 0 is called Maclaurin series expansion:

4 Functions — Alphabetical List

4-1226

f x f
f

x
f

x
f

m
x

m
m

m

()
! !

()

!

()

= () +
¢()

+
¢¢()

+ =

=

•

Â0
0

1

0

2

02

0

…

Tips

• If you use both the third argument a and ExpansionPoint to specify the expansion
point, the value specified via ExpansionPoint prevails.

• If var is a vector, then the expansion point a must be a scalar or a vector of the same
length as var. If var is a vector and a is a scalar, then a is expanded into a vector of
the same length as var with all elements equal to a.

• If the expansion point is infinity or negative infinity, then taylor computes the
Laurent series expansion, which is a power series in 1/var.

See Also
pade | series | symvar

Introduced before R2006a

 taylortool

4-1227

taylortool

Taylor series calculator

Syntax

taylortool

taylortool('f')

Description

taylortool initiates a GUI that graphs a function against the Nth partial sum of its
Taylor series about a base point x = a. The default function, value of N, base point,
and interval of computation for taylortool are f = x*cos(x), N = 7, a = 0, and
[-2*pi,2*pi], respectively.

taylortool('f') initiates the GUI for the given expression f.

Examples

Open Taylor Series Calculator For Particular Expression

Open the Taylor series calculator for sin(tan(x)) - tan(sin(x)):

taylortool('sin(tan(x)) - tan(sin(x))')

4 Functions — Alphabetical List

4-1228

More About
• “Taylor Series” on page 2-33

See Also
funtool | rsums

 taylortool

4-1229

Introduced before R2006a

4 Functions — Alphabetical List

4-1230

texlabel

TeX representation of symbolic expression

Syntax

texlabel(expr)

texlabel(expr,'literal')

Description

texlabel(expr) converts the symbolic expression expr into the TeX equivalent for
use in text strings. texlabel converts Greek variable names, such as delta, into Greek
letters. Annotation functions, such as title, xlabel, and text can use the TeX string
as input. To obtain the LaTeX representation, use latex.

texlabel(expr,'literal') interprets Greek variable names literally.

Examples

Generate TeX String

Use texlabel to generate TeX strings for these symbolic expressions.

syms x y lambda12 delta

texlabel(sin(x) + x^3)

texlabel(3*(1-x)^2*exp(-(x^2) - (y+1)^2))

texlabel(lambda12^(3/2)/pi - pi*delta^(2/3))

ans =

{sin}({x}) + {x}^{3}

ans =

{3} {exp}(- ({y} + {1})^{2} - {x}^{2}) ({x} - {1})^{2}

 texlabel

4-1231

ans =

{\lambda_{12}}^{{3}/{2}}/{\pi} - {\delta}^{{2}/{3}} {\pi}

To make texlabel interpret Greek variable names literally, include the argument
'literal'.

texlabel(lambda12,'literal')

ans =

{lambda12}

Insert TeX String in Figure

Use texlabel to generate a TeX string that text inserts into a figure.

Plot y = x^2.

syms alpha

expr = alpha^2;

ezplot(expr)

4 Functions — Alphabetical List

4-1232

Display the plotted expression on the plot.

expr = texlabel(expr);

text(2,30,['y = ' expr]);

 texlabel

4-1233

Input Arguments

expr — Expression to be converted
symbolic expression

Expression to be converted, specified as a symbolic expression.

See Also
latex | text | title | xlabel | ylabel | zlabel

Introduced before R2006a

4 Functions — Alphabetical List

4-1234

times, .*
Symbolic array multiplication

Syntax

A.*B

times(A,B)

Description

A.*B performs elementwise multiplication of A and B.

times(A,B) is equivalent to A.*B.

Examples

Multiply Matrix by Scalar

Create a 2-by-3 matrix.

A = sym('a', [2 3])

A =

[a1_1, a1_2, a1_3]

[a2_1, a2_2, a2_3]

Multiply the matrix by the symbolic expression sin(b). Multiplying a matrix by a scalar
means multiplying each element of the matrix by that scalar.

syms b

A.*sin(b)

ans =

[a1_1*sin(b), a1_2*sin(b), a1_3*sin(b)]

[a2_1*sin(b), a2_2*sin(b), a2_3*sin(b)]

 times, .*

4-1235

Multiply Two Matrices

Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

H = sym(hilb(3))

d = diag(sym([1 2 3]))

H =

[1, 1/2, 1/3]

[1/2, 1/3, 1/4]

[1/3, 1/4, 1/5]

d =

[1, 0, 0]

[0, 2, 0]

[0, 0, 3]

Multiply the matrices by using the elementwise multiplication operator .*. This operator
multiplies each element of the first matrix by the corresponding element of the second
matrix. The dimensions of the matrices must be the same.

H.*d

ans =

[1, 0, 0]

[0, 2/3, 0]

[0, 0, 3/5]

Multiply Expression by Symbolic Function

Multiply a symbolic expression by a symbolic function. The result is a symbolic function.

syms f(x)

f(x) = x^2;

f1 = (x^2 + 5*x + 6).*f

f1(x) =

x^2*(x^2 + 5*x + 6)

Input Arguments
A — Input
number | symbolic number | symbolic variable | symbolic vector | symbolic matrix |
symbolic multidimensional array | symbolic function | symbolic expression

4 Functions — Alphabetical List

4-1236

Input, specified as a number or a symbolic number, variable, vector, matrix,
multidimensional array, function, or expression. Inputs A and B must be the same size
unless one is a scalar. A scalar value expands into an array of the same size as the other
input.

B — Input
number | symbolic number | symbolic variable | symbolic vector | symbolic matrix |
symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or a symbolic number, variable, vector, matrix,
multidimensional array, function, or expression. Inputs A and B must be the same size
unless one is a scalar. A scalar value expands into an array of the same size as the other
input.

See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus
| power | rdivide | transpose

Introduced before R2006a

 toeplitz

4-1237

toeplitz
Symbolic Toeplitz matrix

Syntax

toeplitz(c,r)

toeplitz(r)

Description

toeplitz(c,r) generates a nonsymmetric Toeplitz matrix having c as its first column
and r as its first row. If the first elements of c and r are different, toeplitz issues a
warning and uses the first element of the column.

toeplitz(r) generates a symmetric Toeplitz matrix if r is real. If r is complex, but its
first element is real, then this syntax generates the Hermitian Toeplitz matrix formed
from r. If the first element of r is not real, then the resulting matrix is Hermitian off the
main diagonal, meaning that Tij = conjugate(Tji) for i ≠ j.

Input Arguments

c

Vector specifying the first column of a Toeplitz matrix.

r

Vector specifying the first row of a Toeplitz matrix.

Examples

Generate the Toeplitz matrix from these vectors. Because these vectors are not symbolic
objects, you get floating-point results.

4 Functions — Alphabetical List

4-1238

c = [1 2 3 4 5 6];

r = [1 3/2 3 7/2 5];

toeplitz(c,r)

ans =

 1.0000 1.5000 3.0000 3.5000 5.0000

 2.0000 1.0000 1.5000 3.0000 3.5000

 3.0000 2.0000 1.0000 1.5000 3.0000

 4.0000 3.0000 2.0000 1.0000 1.5000

 5.0000 4.0000 3.0000 2.0000 1.0000

 6.0000 5.0000 4.0000 3.0000 2.0000

Now, convert these vectors to a symbolic object, and generate the Toeplitz matrix:

c = sym([1 2 3 4 5 6]);

r = sym([1 3/2 3 7/2 5]);

toeplitz(c,r)

ans =

[1, 3/2, 3, 7/2, 5]

[2, 1, 3/2, 3, 7/2]

[3, 2, 1, 3/2, 3]

[4, 3, 2, 1, 3/2]

[5, 4, 3, 2, 1]

[6, 5, 4, 3, 2]

Generate the Toeplitz matrix from this vector:

syms a b c d

T = toeplitz([a b c d])

T =

[a, b, c, d]

[conj(b), a, b, c]

[conj(c), conj(b), a, b]

[conj(d), conj(c), conj(b), a]

If you specify that all elements are real, then the resulting Toeplitz matrix is symmetric:

syms a b c d real

T = toeplitz([a b c d])

T =

[a, b, c, d]

[b, a, b, c]

[c, b, a, b]

 toeplitz

4-1239

[d, c, b, a]

For further computations, clear the assumptions:

syms a b c d clear

Generate the Toeplitz matrix from a vector containing complex numbers:

T = toeplitz(sym([1, 2, i]))

T =

[1, 2, 1i]

[2, 1, 2]

[-1i, 2, 1]

If the first element of the vector is real, then the resulting Toeplitz matrix is Hermitian:

isAlways(T == T')

ans =

 1 1 1

 1 1 1

 1 1 1

If the first element is not real, then the resulting Toeplitz matrix is Hermitian off the
main diagonal:

T = toeplitz(sym([i, 2, 1]))

T =

[1i, 2, 1]

[2, 1i, 2]

[1, 2, 1i]

isAlways(T == T')

ans =

 0 1 1

 1 0 1

 1 1 0

Generate a Toeplitz matrix using these vectors to specify the first column and the first
row. Because the first elements of these vectors are different, toeplitz issues a warning
and uses the first element of the column:

syms a b c

4 Functions — Alphabetical List

4-1240

toeplitz([a b c], [1 b/2 a/2])

Warning: First element of input column does not match first element of input row.

Column wins diagonal conflict.

ans =

[a, b/2, a/2]

[b, a, b/2]

[c, b, a]

More About

Toeplitz Matrix

A Toeplitz matrix is a matrix that has constant values along each descending diagonal
from left to right. For example, matrix T is a symmetric Toeplitz matrix:

T

t t t t

t t t

t t t

t t t

t t t

t t t t

k

k

=

Ê

Ë

Á
Á -

- -

-

- - -

0 1 2

1 0 1

2 1 0

0 1 2

1 0 1

2 1 0

L

M O M

L

ÁÁ
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜

Tips

• Calling toeplitz for numeric arguments that are not symbolic objects invokes the
MATLAB toeplitz function.

See Also
toeplitz

Introduced in R2013a

 transpose, .'

4-1241

transpose, .'
Symbolic matrix transpose

Syntax

A.'

transpose(A)

Description

A.' computes the nonconjugate transpose of A.

transpose(A) is equivalent to A.'.

Examples

Transpose of Real Matrix

Create a 2-by-3 matrix, the elements of which represent real numbers.

syms x y real

A = [x x x; y y y]

A =

[x, x, x]

[y, y, y]

Find the nonconjugate transpose of this matrix.

A.'

ans =

[x, y]

[x, y]

[x, y]

If all elements of a matrix represent real numbers, then its complex conjugate transform
equals its nonconjugate transform.

4 Functions — Alphabetical List

4-1242

isAlways(A' == A.')

ans =

 1 1

 1 1

 1 1

Transpose of Complex Matrix

Create a 2-by-2 matrix, the elements of which represent complex numbers.

syms x y real

A = [x + y*i x - y*i; y + x*i y - x*i]

A =

[x + y*1i, x - y*1i]

[y + x*1i, y - x*1i]

Find the nonconjugate transpose of this matrix. The nonconjugate transpose operator,
A.', performs a transpose without conjugation. That is, it does not change the sign of the
imaginary parts of the elements.

A.'

ans =

[x + y*1i, y + x*1i]

[x - y*1i, y - x*1i]

For a matrix of complex numbers with nonzero imaginary parts, the nonconjugate
transform is not equal to the complex conjugate transform.

isAlways(A.' == A','Unknown','false')

ans =

 0 0

 0 0

Input Arguments

A — Input
number | symbolic number | symbolic variable | symbolic expression | symbolic vector |
symbolic matrix | symbolic multidimensional array

 transpose, .'

4-1243

Input, specified as a number or a symbolic number, variable, expression, vector, matrix,
multidimensional array.

More About

Nonconjugate Transpose

The nonconjugate transpose of a matrix interchanges the row and column index for
each element, reflecting the elements across the main diagonal. The diagonal elements
themselves remain unchanged. This operation does not affect the sign of the imaginary
parts of complex elements.

For example, if B = A.' and A(3,2) is 1+1i, then the element B(2,3) is 1+1i.

See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus
| power | rdivide | times

Introduced before R2006a

4 Functions — Alphabetical List

4-1244

triangularPulse
Triangular pulse function

Syntax
triangularPulse(a,b,c,x)

triangularPulse(a,c,x)

triangularPulse(x)

Description
triangularPulse(a,b,c,x) returns the triangular pulse function.

triangularPulse(a,c,x) is a shortcut for triangularPulse(a, (a + c)/2, c,
x).

triangularPulse(x) is a shortcut for triangularPulse(-1, 0, 1, x).

Input Arguments

a

Number (including infinities and symbolic numbers), symbolic variable, or symbolic
expression. This argument specifies the rising edge of the triangular pulse function.

Default: -1

b

Number (including infinities and symbolic numbers), symbolic variable, or symbolic
expression. This argument specifies the peak of the triangular pulse function.

Default: If you specify a and c, then (a + c)/2. Otherwise, 0.

c

Number (including infinities and symbolic numbers), symbolic variable, or symbolic
expression. This argument specifies the falling edge of the triangular pulse function.

 triangularPulse

4-1245

Default: 1

x

Number (including infinities and symbolic numbers), symbolic variable, or symbolic
expression.

Examples

Compute the triangular pulse function for these numbers. Because these numbers are
not symbolic objects, you get floating-point results:

[triangularPulse(-2, 0, 2, -3)

triangularPulse(-2, 0, 2, -1/2)

triangularPulse(-2, 0, 2, 0)

triangularPulse(-2, 0, 2, 3/2)

triangularPulse(-2, 0, 2, 3)]

ans =

 0

 0.7500

 1.0000

 0.2500

 0

Compute the triangular pulse function for the numbers converted to symbolic objects:

[triangularPulse(sym(-2), 0, 2, -3)

triangularPulse(-2, 0, 2, sym(-1/2))

triangularPulse(-2, sym(0), 2, 0)

triangularPulse(-2, 0, 2, sym(3/2))

triangularPulse(-2, 0, sym(2), 3)]

ans =

 0

 3/4

 1

 1/4

 0

Compute the triangular pulse function for a < x < b:

syms a b c x

4 Functions — Alphabetical List

4-1246

assume(a < x < b)

triangularPulse(a, b, c, x)

ans =

(a - x)/(a - b)

For further computations, remove the assumption:

syms a b x clear

Compute the triangular pulse function for b < x < c:

assume(b < x < c)

triangularPulse(a, b, c, x)

ans =

-(c - x)/(b - c)

For further computations, remove the assumption:

syms b c x clear

Compute the triangular pulse function for a = b:

syms a b c x

assume(b < c)

triangularPulse(b, b, c, x)

ans =

-((c - x)*rectangularPulse(b, c, x))/(b - c)

Compute the triangular pulse function for c = b:

assume(a < b)

triangularPulse(a, b, b, x)

ans =

((a - x)*rectangularPulse(a, b, x))/(a - b)

For further computations, remove all assumptions on a, b, and c:

syms a b c clear

Use triangularPulse with one input argument as a shortcut for computing
triangularPulse(-1, 0, 1, x):

 triangularPulse

4-1247

syms x

triangularPulse(x)

ans =

triangularPulse(-1, 0, 1, x)

[triangularPulse(sym(-10))

triangularPulse(sym(-3/4))

triangularPulse(sym(0))

triangularPulse(sym(2/3))

triangularPulse(sym(1))]

ans =

 0

 1/4

 1

 1/3

 0

Use triangularPulse with three input arguments as a shortcut for computing
triangularPulse(a, (a + c)/2, c, x):

syms a c x

triangularPulse(a, c, x)

ans =

triangularPulse(a, a/2 + c/2, c, x)

[triangularPulse(sym(-10), 10, 3)

triangularPulse(sym(-1/2), -1/4, -2/3)

triangularPulse(sym(2), 4, 3)

triangularPulse(sym(2), 4, 6)

triangularPulse(sym(-1), 4, 0)]

ans =

 7/10

 0

 1

 0

 2/5

Plot the triangular pulse function:

syms x

4 Functions — Alphabetical List

4-1248

ezplot(triangularPulse(x), [-2, 2])

Call triangularPulse with infinities as its rising and falling edges:

syms x

triangularPulse(-1, 0, inf, x)

triangularPulse(-inf, 0, 1, x)

triangularPulse(-inf, 0, inf, x)

ans =

heaviside(x) + (x + 1)*rectangularPulse(-1, 0, x)

ans =

heaviside(-x) - (x - 1)*rectangularPulse(0, 1, x)

 triangularPulse

4-1249

ans =

1

More About

Triangular Pulse Function

If a < x < b, then the triangular pulse function equals (x - a)/(b - a).

If b < x < c, then the triangular pulse function equals (c - x)/(c - b).

If x <= a or x >= c, then the triangular pulse function equals 0.

The triangular pulse function is also called the triangle function, hat function, tent
function, or sawtooth function.

Tips

• If a, b, and c are variables or expressions with variables, triangularPulse assumes
that a <= b <= c. If a, b, and c are numerical values that do not satisfy this
condition, triangularPulse throws an error.

• If a = b = c, triangularPulse returns 0.
• If a = b or b = c, the triangular function can be expressed in terms of the

rectangular function.

See Also
dirac | heaviside | rectangularPulse

Introduced in R2012b

4 Functions — Alphabetical List

4-1250

tril
Return lower triangular part of symbolic matrix

Syntax

tril(A)

tril(A,k)

Description

tril(A) returns a triangular matrix that retains the lower part of the matrix A. The
upper triangle of the resulting matrix is padded with zeros.

tril(A,k) returns a matrix that retains the elements of A on and below the k-th
diagonal. The elements above the k-th diagonal equal to zero. The values k = 0, k > 0,
and k < 0 correspond to the main, superdiagonals, and subdiagonals, respectively.

Examples

Display the matrix retaining only the lower triangle of the original symbolic matrix:

syms a b c

A = [a b c; 1 2 3; a + 1 b + 2 c + 3];

tril(A)

ans =

[a, 0, 0]

[1, 2, 0]

[a + 1, b + 2, c + 3]

Display the matrix that retains the elements of the original symbolic matrix on and
below the first superdiagonal:

syms a b c

A = [a b c; 1 2 3; a + 1 b + 2 c + 3];

tril(A, 1)

 tril

4-1251

ans =

[a, b, 0]

[1, 2, 3]

[a + 1, b + 2, c + 3]

Display the matrix that retains the elements of the original symbolic matrix on and
below the first subdiagonal:

syms a b c

A = [a b c; 1 2 3; a + 1 b + 2 c + 3];

tril(A, -1)

ans =

[0, 0, 0]

[1, 0, 0]

[a + 1, b + 2, 0]

See Also
diag | triu

Introduced before R2006a

4 Functions — Alphabetical List

4-1252

triu
Return upper triangular part of symbolic matrix

Syntax

triu(A)

triu(A,k)

Description

triu(A) returns a triangular matrix that retains the upper part of the matrix A. The
lower triangle of the resulting matrix is padded with zeros.

triu(A,k) returns a matrix that retains the elements of A on and above the k-th
diagonal. The elements below the k-th diagonal equal to zero. The values k = 0, k > 0,
and k < 0 correspond to the main, superdiagonals, and subdiagonals, respectively.

Examples

Display the matrix retaining only the upper triangle of the original symbolic matrix:

syms a b c

A = [a b c; 1 2 3; a + 1 b + 2 c + 3];

triu(A)

ans =

[a, b, c]

[0, 2, 3]

[0, 0, c + 3]

Display the matrix that retains the elements of the original symbolic matrix on and
above the first superdiagonal:

syms a b c

A = [a b c; 1 2 3; a + 1 b + 2 c + 3];

triu(A, 1)

 triu

4-1253

ans =

[0, b, c]

[0, 0, 3]

[0, 0, 0]

Display the matrix that retains the elements of the original symbolic matrix on and
above the first subdiagonal:

syms a b c

A = [a b c; 1 2 3; a + 1 b + 2 c + 3];

triu(A, -1)

ans =

[a, b, c]

[1, 2, 3]

[0, b + 2, c + 3]

See Also
diag | tril

Introduced before R2006a

4 Functions — Alphabetical List

4-1254

uint8uint16uint32uint64
Convert symbolic matrix to unsigned integers

Syntax

uint8(S)

uint16(S)

uint32(S)

uint64(S)

Description

uint8(S) converts a symbolic matrix S to a matrix of unsigned 8-bit integers.

uint16(S) converts S to a matrix of unsigned 16-bit integers.

uint32(S) converts S to a matrix of unsigned 32-bit integers.

uint64(S) converts S to a matrix of unsigned 64-bit integers.

Note The output of uint8, uint16, uint32, and uint64 does not have type symbolic.

The following table summarizes the output of these four functions.

Function Output Range Output Type Bytes per
Element

Output Class

uint8 0 to 255 Unsigned 8-bit
integer

1 uint8

uint16 0 to 65,535 Unsigned 16-bit
integer

2 uint16

uint32 0 to 4,294,967,295 Unsigned 32-bit
integer

4 uint32

uint64 0 to 18,446,744,073,709,
551,615

Unsigned 64-bit
integer

8 uint64

 uint8uint16uint32uint64

4-1255

See Also
sym | vpa | single | int8 | int16 | int32 | int64 | double

Introduced before R2006a

4 Functions — Alphabetical List

4-1256

vectorPotential
Vector potential of vector field

Syntax

vectorPotential(V,X)

vectorPotential(V)

Description

vectorPotential(V,X) computes the vector potential of the vector field V with respect
to the vector X in Cartesian coordinates. The vector field V and the vector X are both
three-dimensional.

vectorPotential(V) returns the vector potential V with respect to a vector
constructed from the first three symbolic variables found in V by symvar.

Input Arguments

V

Three-dimensional vector of symbolic expressions or functions.

X

Three-dimensional vector with respect to which you compute the vector potential.

Examples

Compute the vector potential of this row vector field with respect to the vector [x, y,
z]:

syms x y z

vectorPotential([x^2*y, -1/2*y^2*x, -x*y*z], [x y z])

 vectorPotential

4-1257

ans =

 -(x*y^2*z)/2

 -x^2*y*z

 0

Compute the vector potential of this column vector field with respect to the vector [x,
y, z]:

syms x y z

f(x,y,z) = 2*y^3 - 4*x*y;

g(x,y,z) = 2*y^2 - 16*z^2+18;

h(x,y,z) = -32*x^2 - 16*x*y^2;

A = vectorPotential([f; g; h], [x y z])

A(x, y, z) =

 z*(2*y^2 + 18) - (16*z^3)/3 + (16*x*y*(y^2 + 6*x))/3

 2*y*z*(- y^2 + 2*x)

 0

To check whether the vector potential exists for a particular vector field, compute the
divergence of that vector field:

syms x y z

V = [x^2 2*y z];

divergence(V, [x y z])

ans =

2*x + 3

If the divergence is not equal to 0, the vector potential does not exist. In this case,
vectorPotential returns the vector with all three components equal to NaN:

vectorPotential(V, [x y z])

ans =

 NaN

 NaN

 NaN

More About

Vector Potential of a Vector Field

The vector potential of a vector field V is a vector field A, such that:

4 Functions — Alphabetical List

4-1258

V A curl A= —¥ = ()

Tips

• The vector potential exists if and only if the divergence of a vector field V with respect
to X equals 0. If vectorPotential cannot verify that V has a vector potential, it
returns the vector with all three components equal to NaN.

See Also
curl | diff | divergence | gradient | hessian | jacobian | laplacian |
potential

Introduced in R2012a

 vertcat

4-1259

vertcat
Concatenate symbolic arrays vertically

Syntax

vertcat(A1,...,AN)

[A1;...;AN]

Description

vertcat(A1,...,AN) vertically concatenates the symbolic arrays A1,...,AN.
For vectors and matrices, all inputs must have the same number of columns. For
multidimensional arrays, vertcat concatenates inputs along the first dimension. The
remaining dimensions must match.

[A1;...;AN] is a shortcut for vertcat(A1,...,AN).

Examples

Concatenate Two Symbolic Vectors Vertically

Concatenate the two symbolic vectors A and B to form a symbolic matrix.

A = sym('a%d',[1 4]);

B = sym('b%d',[1 4]);

vertcat(A,B)

ans =

[a1, a2, a3, a4]

[b1, b2, b3, b4]

Alternatively, you can use the shorthand [A;B] to concatenate A and B.

[A;B]

ans =

4 Functions — Alphabetical List

4-1260

[a1, a2, a3, a4]

[b1, b2, b3, b4]

Concatenate Multiple Symbolic Arrays Vertically

Concatenate multiple symbolic arrays into one symbolic matrix.

A = sym('a%d',[1 3]);

B = sym('b%d%d',[4 3]);

C = sym('c%d%d',[2 3]);

vertcat(C,A,B)

ans =

[c11, c12, c13]

[c21, c22, c23]

[a1, a2, a3]

[b11, b12, b13]

[b21, b22, b23]

[b31, b32, b33]

[b41, b42, b43]

Concatenate Multidimensional Arrays Vertically

Create the 3-D symbolic arrays A and B.

A = [2 4; 1 7; 3 3];

A(:,:,2) = [8 9; 4 5; 6 2];

A = sym(A)

B = [8 3; 0 2];

B(:,:,2) = [6 2; 3 3];

B = sym(B)

A(:,:,1) =

[2, 4]

[1, 7]

[3, 3]

A(:,:,2) =

[8, 9]

[4, 5]

[6, 2]

B(:,:,1) =

[8, 3]

 vertcat

4-1261

[0, 2]

B(:,:,2) =

[6, 2]

[3, 3]

Use vertcat to concatenate A and B.

vertcat(A,B)

ans(:,:,1) =

[2, 4]

[1, 7]

[3, 3]

[8, 3]

[0, 2]

ans(:,:,2) =

[8, 9]

[4, 5]

[6, 2]

[6, 2]

[3, 3]

Input Arguments

A1,...,AN — Input arrays
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array

Input arrays, specified as symbolic variables, vectors, matrices, or multidimensional
arrays.

See Also
cat | horzcat

Introduced before R2006a

4 Functions — Alphabetical List

4-1262

vpa

Variable-precision arithmetic

Compatibility

Support of strings that are not valid variable names and do not define a number
will be removed in a future release. Instead of strings, use symbolic expressions. To
create symbolic expressions, first create symbolic numbers and variables, and then
use operations on them. For example, use vpa((1 + sqrt(sym(5)))/2) instead of
vpa('(1 + sqrt(5))/2').

Syntax

vpa(x)

vpa(x,d)

Description

vpa(x) uses variable-precision floating-point arithmetic (VPA) to evaluate each element
of the symbolic input x to at least d significant digits, where d is the value of the digits
function. The default value of digits is 32.

vpa(x,d) uses at least d significant digits, instead of the value of digits.

Examples

Evaluate Symbolic Inputs with Variable-Precision Arithmetic

Evaluate symbolic inputs with variable-precision floating-point arithmetic. By default,
vpa calculates values to 32 significant digits.

a = sym(pi);

 vpa

4-1263

b = 1/sym(3);

vpa(a)

vpa(a - exp(b))

ans =

3.1415926535897932384626433832795

ans =

1.7459802285037037098345180636769

Evaluate elements of vectors or matrices with variable-precision arithmetic.

V = [a b];

M = [sin(a) cos(b); exp(b) log(a)];

vpa(V)

vpa(M)

ans =

[3.1415926535897932384626433832795, 0.33333333333333333333333333333333]

ans =

[0, 0.94495694631473766438828400767588]

[1.3956124250860895286281253196026, 1.1447298858494001741434273513531]

Change Precision Used by vpa

By default, vpa evaluates inputs to 32 significant digits. You can change the number of
significant digits by using the digits function.

Approximate the expression 100001/10001 with seven significant digits using digits.
Save the old value of digits returned by digits(7). The vpa function returns only five
significant digits, which can mean the remaining digits are zeros.

digitsOld = digits(7);

y = sym(100001)/10001;

vpa(y)

ans =

9.9991

Check if the remaining digits are zeros by using a higher precision value of 25. The result
shows that the remaining digits are in fact a repeating decimal.

digits(25)

4 Functions — Alphabetical List

4-1264

vpa(y)

ans =

9.999100089991000899910009

Alternatively, to override digits for a single vpa call, change the precision by specifying
the second argument.

Find π to 100 significant digits by specifying the second argument.

vpa(pi,100)

ans =

3.141592653589793238462643383279502884197169...

39937510582097494459230781640628620899862803...

4825342117068

Restore the original precision value in digitsOld for further calculations.

digits(digitsOld)

Numerically Approximate Symbolic Results

While symbolic results are exact, they might not be in a convenient form. You can use
vpa to numerically approximate exact symbolic results.

Solve a high-degree polynomial for its roots using solve. The solve function cannot
symbolically solve the high-degree polynomial and represents the roots using root.

syms x

y = solve(x^4 - x + 1, x)

y =

 root(z^4 - z + 1, z, 1)

 root(z^4 - z + 1, z, 2)

 root(z^4 - z + 1, z, 3)

 root(z^4 - z + 1, z, 4)

Use vpa to numerically approximate the roots.

yVpa = vpa(y)

yVpa =

 0.72713608449119683997667565867496 + 0.43001428832971577641651985839602i

 vpa

4-1265

 0.72713608449119683997667565867496 - 0.43001428832971577641651985839602i

 - 0.72713608449119683997667565867496 + 0.93409928946052943963903028710582i

 - 0.72713608449119683997667565867496 - 0.93409928946052943963903028710582i

vpa Uses Guard Digits to Maintain Precision

The value of the digits function specifies the minimum number of significant digits
used. Internally, vpa can use more digits than digits specifies. These additional
digits are called guard digits because they guard against round-off errors in subsequent
calculations.

Numerically approximate 1/3 using four significant digits.

a = vpa(1/3, 4)

a =

0.3333

Approximate the result a using 20 digits. The result shows that the toolbox internally
used more than four digits when computing a. The last digits in the result are incorrect
because of the round-off error.

vpa(a, 20)

ans =

0.33333333333303016843

Avoid Hidden Round-off Errors

Hidden round-off errors can cause unexpected results.

Evaluate 1/10 with the default 32-digit precision, and then with the 10 digits precision.

a = vpa(1/10, 32)

b = vpa(1/10, 10)

a =

0.1

b =

0.1

Superficially, a and b look equal. Check their equality by finding a - b.

4 Functions — Alphabetical List

4-1266

a - b

ans =

0.000000000000000000086736173798840354720600815844403

The difference is not equal to zero because b was calculated with only 10 digits of
precision and contains a larger round-off error than a. When you find a - b, vpa
approximates b with 32 digits. Demonstrate this behavior.

a - vpa(b, 32)

ans =

0.000000000000000000086736173798840354720600815844403

vpa Restores Precision of Common Double-Precision Inputs

Unlike exact symbolic values, double-precision values inherently contain round-off
errors. When you call vpa on a double-precision input, vpa cannot restore the lost
precision, even though it returns more digits than the double-precision value. However,
vpa can recognize and restore the precision of expressions of the form p/q, pπ/q, (p/q)1/2,
2q, and 10q, where p and q are modest-sized integers.

First, demonstrate that vpa cannot restore precision for a double-precision input. Call
vpa on a double-precision result and the same symbolic result.

dp = log(3);

s = log(sym(3));

dpVpa = vpa(dp)

sVpa = vpa(s)

d = sVpa - dpVpa

dpVpa =

1.0986122886681095600636126619065

sVpa =

1.0986122886681096913952452369225

d =

0.00000000000000013133163257501600766255995767652

As expected, the double-precision result differs from the exact result at the 16th decimal
place.

 vpa

4-1267

Demonstrate that vpa restores precision for expressions of the form p/q, pπ/q, (p/q)1/2, 2q,
and 10q, where p and q are modest sized integers, by finding the difference between the
vpa call on the double-precision result and on the exact symbolic result. The differences
are 0.0 showing that vpa restores lost precision in the double-precision input.

vpa(1/3) - vpa(1/sym(3))

vpa(pi) - vpa(sym(pi))

vpa(1/sqrt(2)) - vpa(1/sqrt(sym(2)))

vpa(2^66) - vpa(2^sym(66))

vpa(10^25) - vpa(10^sym(25))

ans =

0.0

ans =

0.0

ans =

0.0

ans =

0.0

ans =

0.0

Input Arguments

x — Input to evaluate
number | vector | matrix | multidimensional array | symbolic number | symbolic vector
| symbolic matrix | symbolic multidimensional array | symbolic expression | symbolic
function | symbolic string

Input to evaluate, specified as a number, vector, matrix, multidimensional array, or a
symbolic number, vector, matrix, multidimensional array, expression, function, or string.

d — Number of significant digits
integer

Number of significant digits, specified as an integer. d must be greater than 1 and lesser
than 2 1

29
+ .

4 Functions — Alphabetical List

4-1268

More About

Tips

• vpa uses more digits than the number of digits specified by digits. These extra
digits guard against round-off errors in subsequent calculations and are called guard
digits.

• When you call vpa on a numeric input, such as 1/3, 2^(-5), or sin(pi/4), the
numeric expression is evaluated to a double-precision number that contains round-
off errors. Then, vpa is called on that double-precision number. For accurate results,
convert numeric expressions to symbolic expressions with sym. For example, to
approximate exp(1), use vpa(exp(sym(1))).

• If the second argument d is not an integer, vpa rounds it to the nearest integer with
round.

• vpa restores precision for numeric inputs that match the forms p/q, pπ/q, (p/q)1/2, 2q,
and 10q, where p and q are modest-sized integers.

See Also
digits | double | root

Introduced before R2006a

 vpasolve

4-1269

vpasolve
Numeric solver

Syntax
S = vpasolve(eqn)

S = vpasolve(eqn,var)

S = vpasolve(eqn,var,init_guess)

Y = vpasolve(eqns)

Y = vpasolve(eqns,vars)

Y = vpasolve(eqns,vars,init_guess)

[y1,...,yN] = vpasolve(eqns)

[y1,...,yN] = vpasolve(eqns,vars)

[y1,...,yN] = vpasolve(eqns,vars,init_guess)

___ = vpasolve(___ ,Name,Value)

Description
S = vpasolve(eqn) numerically solves the equation eqn for the variable determined
by symvar.

S = vpasolve(eqn,var) numerically solves the equation eqn for the variable specified
by var.

S = vpasolve(eqn,var,init_guess) numerically solves the equation eqn for
the variable specified by var using the starting point or search range specified in
init_guess. If you do not specify var, vpasolve solves for variables determined by
symvar.

Y = vpasolve(eqns) numerically solves the system of equations eqns for variables
determined by symvar. This syntax returns Y as a structure array. You can access the
solutions by indexing into the array.

Y = vpasolve(eqns,vars) numerically solves the system of equations eqns for
variables specified by vars. This syntax returns a structure array that contains the
solutions. The fields in the structure array correspond to the variables specified by vars.

4 Functions — Alphabetical List

4-1270

Y = vpasolve(eqns,vars,init_guess) numerically solves the system of equations
eqns for the variables vars using the starting values or the search range init_guess.

[y1,...,yN] = vpasolve(eqns) numerically solves the system of equations eqns
for variables determined by symvar. This syntax assigns the solutions to variables
y1,...,yN.

[y1,...,yN] = vpasolve(eqns,vars) numerically solves the system of equations
eqns for the variables specified by vars.

[y1,...,yN] = vpasolve(eqns,vars,init_guess) numerically solves the system
of equations eqns for the variables specified by vars using the starting values or the
search range init_guess.

___ = vpasolve(___ ,Name,Value) numerically solves the equation or system of
equations for the variable or variables using additional options specified by one or more
Name,Value pair arguments.

Examples

Solve Polynomial Equation

For polynomial equations, vpasolve returns all solutions:

syms x

vpasolve(4*x^4 + 3*x^3 + 2*x^2 + x + 5 == 0, x)

ans =

 - 0.88011377126068169817875190457835 - 0.76331583387715452512978468102263i

 0.50511377126068169817875190457835 + 0.81598965068946312853227067890656i

 0.50511377126068169817875190457835 - 0.81598965068946312853227067890656i

 - 0.88011377126068169817875190457835 + 0.76331583387715452512978468102263i

Solve Nonpolynomial Equation

For nonpolynomial equations, vpasolve returns the first solution that it finds:

syms x

vpasolve(sin(x^2) == 1/2, x)

ans =

-226.94447241941511682716953887638

 vpasolve

4-1271

Assign Solutions to Structure Array

When solving a system of equations, use one output argument to return the solutions in
the form of a structure array:

syms x y

S = vpasolve([x^3 + 2*x == y, y^2 == x], [x, y])

S =

 x: [6x1 sym]

 y: [6x1 sym]

Display solutions by accessing the elements of the structure array S:

S.x

ans =

 - 0.28124065338711968666197895499453 + 1.2348724236470142074859894531946i

 0.16295350624845260578123537890613 + 1.6151544650555366917886585417926i

 0.16295350624845260578123537890613 - 1.6151544650555366917886585417926i

 0.2365742942773341617614871521768

 0

 - 0.28124065338711968666197895499453 - 1.2348724236470142074859894531946i

S.y

ans =

 0.70187356885586188630668751791218 + 0.87969719792982402287026727381769i

 - 0.94506808682313338631496614476119 - 0.85451751443904587692179191887616i

 - 0.94506808682313338631496614476119 + 0.85451751443904587692179191887616i

 0.48638903593454300001655725369801

 0

 0.70187356885586188630668751791218 - 0.87969719792982402287026727381769i

Assign Solutions to Variables When Solving System of Equations

When solving a system of equations, use multiple output arguments to assign the
solutions directly to output variables. To ensure the correct order of the returned
solutions, specify the variables explicitly. The order in which you specify the variables
defines the order in which the solver returns the solutions.
syms x y

[sol_x, sol_y] = vpasolve([x*sin(10*x) == y^3, y^2 == exp(-2*x/3)], [x, y])

sol_x =

88.90707209659114864849280774681

sol_y =

0.00000000000013470479710676694388973703681918

4 Functions — Alphabetical List

4-1272

Find Multiple Solutions by Specifying Starting Points

Plot the two sides of the equation, and then use the plot to specify initial guesses for the
solutions.

Plot the left and right sides of the equation 200*sin(x) = x^3 - 1:

syms x

ezplot(200*sin(x))

hold on

ezplot(x^3 - 1)

title('200*sin(x) = x^3 - 1')

This equation has three solutions. If you do not specify the initial guess (zero-
approximation), vpasolve returns the first solution that it finds:

 vpasolve

4-1273

vpasolve(200*sin(x) == x^3 - 1, x)

ans =

-0.0050000214585835715725440675982988

Find one of the other solutions by specifying the initial point that is close to that solution:

vpasolve(200*sin(x) == x^3 - 1, x, -4)

ans =

-3.0009954677086430679926572924945

vpasolve(200*sin(x) == x^3 - 1, x, 3)

ans =

3.0098746383859522384063444361906

Specify Ranges for Solutions

You can specify ranges for solutions of an equation. For example, if you want to restrict
your search to only real solutions, you cannot use assumptions because vpasolve
ignores assumptions. Instead, specify a search interval. For the following equation, if you
do not specify ranges, the numeric solver returns all eight solutions of the equation:

syms x

vpasolve(x^8 - x^2 == 3, x)

ans =

 -1.2052497163799060695888397264341

 1.2052497163799060695888397264341

 - 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i

 - 0.77061431370803029127495426747428 - 0.85915207603993818859321142757164i

 1.0789046020338265308047436284205i

 -1.0789046020338265308047436284205i

 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i

 0.77061431370803029127495426747428 - 0.85915207603993818859321142757164i

Suppose you need only real solutions of this equation. You cannot use assumptions on
variables because vpasolve ignores them.

assume(x, 'real')

vpasolve(x^8 - x^2 == 3, x)

ans =

 -1.2052497163799060695888397264341

 1.2052497163799060695888397264341

 - 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i

 - 0.77061431370803029127495426747428 - 0.85915207603993818859321142757164i

 1.0789046020338265308047436284205i

4 Functions — Alphabetical List

4-1274

 -1.0789046020338265308047436284205i

 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i

 0.77061431370803029127495426747428 - 0.85915207603993818859321142757164i

Specify the search range to restrict the returned results to particular ranges. For
example, to return only real solutions of this equation, specify the search interval as [-
Inf Inf]:

vpasolve(x^8 - x^2 == 3, x, [-Inf Inf])

ans =

 -1.2052497163799060695888397264341

 1.2052497163799060695888397264341

Return only nonnegative solutions:

vpasolve(x^8 - x^2 == 3, x, [0 Inf])

ans =

1.2052497163799060695888397264341

The search range can contain complex numbers. In this case, vpasolve uses a
rectangular search area in the complex plane:

vpasolve(x^8 - x^2 == 3, x, [-1, 1 + i])

ans =

 - 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i

 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i

Find Multiple Solutions for Nonpolynomial Equation

By default, vpasolve returns the same solution on every call. To find more than one
solution for nonpolynomial equations, set random to true. This makes vpasolve use a
random starting value which can lead to different solutions on successive calls.

If random is not specified, vpasolve returns the same solution on every call.

syms x

f = x-tan(x);

for n = 1:3

 vpasolve(f,x)

end

ans =

0

ans =

 vpasolve

4-1275

0

ans =

0

When random is set to true, vpasolve returns a distinct solution on every call.

syms x

f = x-tan(x);

for n = 1:3

 vpasolve(f,x,'random',true)

end

ans =

 -227.76107684764829218924973598808

 ans =

 102.09196646490764333652956578441

 ans =

 61.244730260374400372753016364097

random can be used in conjunction with a search range:

vpasolve(f,x,[10 12],'random',true)

ans =

10.904121659428899827148702790189

Input Arguments
eqn — Equation to solve
symbolic equation | symbolic expression

Equation to solve, specified as a symbolic equation or symbolic expression. A symbolic
equation is defined by the relation operator ==. If eqn is a symbolic expression (without
the right side), the solver assumes that the right side is 0, and solves the equation eqn
== 0.

var — Variable to solve equation for
symbolic variable

Variable to solve equation for, specified as a symbolic variable. If var is not specified,
symvar determines the variables.

eqns — System of equations or expressions to solve
symbolic vector | symbolic matrix | symbolic N-D array

4 Functions — Alphabetical List

4-1276

System of equations or expressions to be solve, specified as a symbolic vector, matrix,
or N-D array of equations or expressions. These equations or expressions can also be
separated by commas. If an equation is a symbolic expression (without the right side),
the solver assumes that the right side of that equation is 0.

vars — Variables to solve system of equations for
symbolic vector

Variables to solve system of equations for, specified as a symbolic vector. These variables
are specified as a vector or comma-separated list. If vars is not specified, symvar
determines the variables.

init_guess — Initial guess for solution
numeric value | vector | matrix with two columns

Initial guess for a solution, specified as a numeric value, vector, or matrix with two
columns.

If init_guess is a number or, in the case of multivariate equations, a vector of
numbers, then the numeric solver uses it as a starting point. If init_guess is specified
as a scalar while the system of equations is multivariate, then the numeric solver uses
the scalar value as a starting point for all variables.

If init_guess is a matrix with two columns, then the two entries of the rows specify the
bounds of a search range for the corresponding variables. To specify a starting point in a
matrix of search ranges, specify both columns as the starting point value.

To omit a search range for a variable, set the search range for that variable to [NaN,
NaN] in init_guess. All other uses of NaN in init_guess will error.

By default, vpasolve uses its own internal choices for starting points and search ranges.

Name-Value Pair Arguments

Example: vpasolve(x^2 - 4 == 0,x,'random',true)

'random' — Use of random starting point for finding multiple solutions
false (default) | true

Use a random starting point for finding solutions, specified as a comma-separated pair
consisting of random and a value, which is either true or false. This is useful when you

 vpasolve

4-1277

solve nonpolynomial equations where there is no general method to find all the solutions.
If the value is false, vpasolve uses the same starting value on every call. Hence,
multiple calls to vpasolve with the same inputs always find the same solution, even
if several solutions exist. If the value is true, however, starting values for the internal
search are chosen randomly in the search range. Hence, multiple calls to vpasolve with
the same inputs might lead to different solutions. Note that if you specify starting points
for all variables, setting random to true has no effect.

Output Arguments

S — Solutions of univariate equation
symbolic value | symbolic array

Solutions of univariate equation, returned as symbolic value or symbolic array. The size
of a symbolic array corresponds to the number of the solutions.

Y — Solutions of system of equations
structure array

Solutions of system of equations, returned as a structure array. The number of fields in
the structure array corresponds to the number of variables to be solved for.

y1,...,yN — Variables that are assigned solutions of system of equations
array of numeric variables | array of symbolic variables

Variables that are assigned solutions of system of equations, returned as an array of
numeric or symbolic variables. The number of output variables or symbolic arrays must
equal the number of variables to be solved for. If you explicitly specify independent
variables vars, then the solver uses the same order to return the solutions. If you do not
specify vars, the toolbox sorts independent variables alphabetically, and then assigns
the solutions for these variables to the output variables or symbolic arrays.

More About

Tips

• vpasolve returns all solutions only for polynomial equations. For nonpolynomial
equations, there is no general method of finding all solutions. When you look for

4 Functions — Alphabetical List

4-1278

numerical solutions of a nonpolynomial equation or system that has several solutions,
then, by default, vpasolve returns only one solution, if any. To find more than just
one solution, set random to true. Now, calling vpasolve repeatedly might return
several different solutions.

• When you solve a system where there are not enough equations to determine all
variables uniquely, the behavior of vpasolve behavior depends on whether the
system is polynomial or nonpolynomial. If polynomial, vpasolve returns all solutions
by introducing an arbitrary parameter. If nonpolynomial, a single numerical solution
is returned, if it exists.

• When you solve a system of rational equations, the toolbox transforms it to a
polynomial system by multiplying out the denominators. vpasolve returns all
solutions of the resulting polynomial system, including those that are also roots of
these denominators.

• vpasolve ignores assumptions set on variables. You can restrict the returned results
to particular ranges by specifying appropriate search ranges using the argument
init_guess.

• If init_guess specifies a search range [a,b], and the values a,b are complex
numbers, then vpasolve searches for the solutions in the rectangular search area in
the complex plane. Here, a specifies the bottom-left corner of the rectangular search
area, and b specifies the top-right corner of that area.

• The output variables y1,...,yN do not specify the variables for which vpasolve
solves equations or systems. If y1,...,yN are the variables that appear in eqns, that
does not guarantee that vpasolve(eqns) will assign the solutions to y1,...,yN
using the correct order. Thus, for the call [a,b] = vpasolve(eqns), you might get
the solutions for a assigned to b and vice versa.

To ensure the order of the returned solutions, specify the variables vars. For
example, the call [b,a] = vpasolve(eqns,b,a) assigns the solutions for a
assigned to a and the solutions for b assigned to b.

• Place equations and expressions to the left of the argument list, and the variables
to the right. vpasolve checks for variables starting on the right, and on reaching
the first equation or expression, assumes everything to the left is an equation or
expression.

• If possible, solve equations symbolically using solve, and then approximate the
obtained symbolic results numerically using vpa. Using this approach, you get
numeric approximations of all solutions found by the symbolic solver. Using the
symbolic solver and postprocessing its results requires more time than using the
numeric methods directly. This can significantly decrease performance.

 vpasolve

4-1279

Algorithms

• When you set random to true and specify a search range for a variable, random
starting points within the search range are chosen using the internal random number
generator. The distribution of starting points within finite search ranges is uniform.

• When you set random to true and do not specify a search range for a variable,
random starting points are generated using a Cauchy distribution with a half-width of
100. This means the starting points are real valued and have a large spread of values
on repeated calls.

See Also
dsolve | equationsToMatrix | fzero | linsolve | solve | symvar | vpa

Introduced in R2012b

4 Functions — Alphabetical List

4-1280

whittakerM
Whittaker M function

Syntax

whittakerM(a,b,z)

Description

whittakerM(a,b,z) returns the value of the Whittaker M function.

Input Arguments

a

Symbolic number, variable, expression, function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If a is a vector or matrix, whittakerM
returns the beta function for each element of a.

b

Symbolic number, variable, expression, function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If b is a vector or matrix, whittakerM
returns the beta function for each element of b.

z

Symbolic number, variable, expression, function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If x is a vector or matrix, whittakerM
returns the beta function for each element of z.

Examples

Solve this second-order differential equation. The solutions are given in terms of the
Whittaker functions.

 whittakerM

4-1281

syms a b w(z)

dsolve(diff(w, 2) + (-1/4 + a/z + (1/4 - b^2)/z^2)*w == 0)

ans =

C2*whittakerM(-a,-b,-z) + C3*whittakerW(-a,-b,-z)

Verify that the Whittaker M function is a valid solution of this differential equation:

syms a b z

isAlways(diff(whittakerM(a,b,z), z, 2) +...

(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerM(a,b,z) == 0)

ans =

 1

Verify that whittakerM(-a,-b,-z) also is a valid solution of this differential equation:

syms a b z

isAlways(diff(whittakerM(-a,-b,-z), z, 2) +...

(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerM(-a,-b,-z) == 0)

ans =

 1

Compute the Whittaker M function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

[whittakerM(1, 1, 1), whittakerM(-2, 1, 3/2 + 2*i),...

whittakerM(2, 2, 2), whittakerM(3, -0.3, 1/101)]

ans =

 0.7303 -9.2744 + 5.4705i 2.6328 0.3681

Compute the Whittaker M function for the numbers converted to symbolic objects. For
most symbolic (exact) numbers, whittakerM returns unresolved symbolic calls.

[whittakerM(sym(1), 1, 1), whittakerM(-2, sym(1), 3/2 + 2*i),...

whittakerM(2, 2, sym(2)), whittakerM(sym(3), -0.3, 1/101)]

ans =

[whittakerM(1, 1, 1), whittakerM(-2, 1, 3/2 + 2i),

whittakerM(2, 2, 2), whittakerM(3, -3/10, 1/101)]

For symbolic variables and expressions, whittakerM also returns unresolved symbolic
calls:

4 Functions — Alphabetical List

4-1282

syms a b x y

[whittakerM(a, b, x), whittakerM(1, x, x^2),...

whittakerM(2, x, y), whittakerM(3, x + y, x*y)]

ans =

[whittakerM(a, b, x), whittakerM(1, x, x^2),...

whittakerM(2, x, y), whittakerM(3, x + y, x*y)]

The Whittaker M function has special values for some parameters:

whittakerM(sym(-3/2), 1, 1)

ans =

exp(1/2)

syms a b x

whittakerM(0, b, x)

ans =

4^b*x^(1/2)*gamma(b + 1)*besseli(b, x/2)

whittakerM(a + 1/2, a, x)

ans =

x^(a + 1/2)*exp(-x/2)

whittakerM(a, a - 5/2, x)

ans =

(2*x^(a - 2)*exp(-x/2)*(2*a^2 - 7*a + x^2/2 -...

x*(2*a - 3) + 6))/pochhammer(2*a - 4, 2)

Differentiate the expression involving the Whittaker M function:

syms a b z

diff(whittakerM(a,b,z), z)

ans =

(whittakerM(a + 1, b, z)*(a + b + 1/2))/z -...

(a/z - 1/2)*whittakerM(a, b, z)

Compute the Whittaker M function for the elements of matrix A:

syms x

A = [-1, x^2; 0, x];

whittakerM(-1/2, 0, A)

 whittakerM

4-1283

ans =

[exp(-1/2)*1i, exp(x^2/2)*(x^2)^(1/2)]

[0, x^(1/2)*exp(x/2)]

More About

Whittaker M Function

The Whittaker functions Ma,b(z) and Wa,b(z) are linearly independent solutions of this
differential equation:

d w

dz

a

z

b

z

w

2

2

2

2

1

4

1 4
0+ - + +

-Ê

Ë
ÁÁ

ˆ

¯
˜̃ =

The Whittaker M function is defined via the confluent hypergeometric functions:

M z e z M b a b za b
z b

, , ,() = - + +Ê
ËÁ

ˆ
¯̃

- +2 1 2 1

2
1 2

Tips

• All non-scalar arguments must have the same size. If one or two input arguments are
non-scalar, then whittakerM expands the scalars into vectors or matrices of the same
size as the non-scalar arguments, with all elements equal to the corresponding scalar.

References

Slater, L. J. “Cofluent Hypergeometric Functions.” Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
hypergeom | kummerU | whittakerW

Introduced in R2012a

4 Functions — Alphabetical List

4-1284

whittakerW
Whittaker W function

Syntax

whittakerW(a,b,z)

Description

whittakerW(a,b,z) returns the value of the Whittaker W function.

Input Arguments

a

Symbolic number, variable, expression, function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If a is a vector or matrix, whittakerW
returns the beta function for each element of a.

b

Symbolic number, variable, expression, function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If b is a vector or matrix, whittakerW
returns the beta function for each element of b.

z

Symbolic number, variable, expression, function, or a vector or matrix of symbolic
numbers, variables, expressions, or functions. If x is a vector or matrix, whittakerW
returns the beta function for each element of z.

Examples

Solve this second-order differential equation. The solutions are given in terms of the
Whittaker functions.

 whittakerW

4-1285

syms a b w(z)

dsolve(diff(w, 2) + (-1/4 + a/z + (1/4 - b^2)/z^2)*w == 0)

ans =

C2*whittakerM(-a, -b, -z) + C3*whittakerW(-a, -b, -z)

Verify that the Whittaker W function is a valid solution of this differential equation:

syms a b z

isAlways(diff(whittakerW(a, b, z), z, 2) +...

(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerW(a, b, z) == 0)

ans =

 1

Verify that whittakerW(-a, -b, -z) also is a valid solution of this differential
equation:

syms a b z

isAlways(diff(whittakerW(-a, -b, -z), z, 2) +...

(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerW(-a, -b, -z) == 0)

ans =

 1

Compute the Whittaker W function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

[whittakerW(1, 1, 1), whittakerW(-2, 1, 3/2 + 2*i),...

whittakerW(2, 2, 2), whittakerW(3, -0.3, 1/101)]

ans =

 1.1953 -0.0156 - 0.0225i 4.8616 -0.1692

Compute the Whittaker W function for the numbers converted to symbolic objects. For
most symbolic (exact) numbers, whittakerW returns unresolved symbolic calls.

[whittakerW(sym(1), 1, 1), whittakerW(-2, sym(1), 3/2 + 2*i),...

whittakerW(2, 2, sym(2)), whittakerW(sym(3), -0.3, 1/101)]

ans =

[whittakerW(1, 1, 1), whittakerW(-2, 1, 3/2 + 2i),

whittakerW(2, 2, 2), whittakerW(3, -3/10, 1/101)]

For symbolic variables and expressions, whittakerW also returns unresolved symbolic
calls:

4 Functions — Alphabetical List

4-1286

syms a b x y

[whittakerW(a, b, x), whittakerW(1, x, x^2),...

whittakerW(2, x, y), whittakerW(3, x + y, x*y)]

ans =

[whittakerW(a, b, x), whittakerW(1, x, x^2),

whittakerW(2, x, y), whittakerW(3, x + y, x*y)]

The Whittaker W function has special values for some parameters:

whittakerW(sym(-3/2), 1/2, 0)

ans =

4/(3*pi^(1/2))

syms a b x

whittakerW(0, b, x)

ans =

(x^(b + 1/2)*besselk(b, x/2))/(x^b*pi^(1/2))

whittakerW(a, -a + 1/2, x)

ans =

x^(1 - a)*x^(2*a - 1)*exp(-x/2)

whittakerW(a - 1/2, a, x)

ans =

(x^(a + 1/2)*exp(-x/2)*exp(x)*igamma(2*a, x))/x^(2*a)

Differentiate the expression involving the Whittaker W function:

syms a b z

diff(whittakerW(a,b,z), z)

ans =

- (a/z - 1/2)*whittakerW(a, b, z) -...

whittakerW(a + 1, b, z)/z

Compute the Whittaker W function for the elements of matrix A:

syms x

A = [-1, x^2; 0, x];

whittakerW(-1/2, 0, A)

ans =

 whittakerW

4-1287

[-exp(-1/2)*(ei(1) + pi*1i)*1i,...

 exp(x^2)*exp(-x^2/2)*expint(x^2)*(x^2)^(1/2)]

[0,...

 x^(1/2)*exp(-x/2)*exp(x)*expint(x)]

More About

Whittaker W Function

The Whittaker functions Ma,b(z) and Wa,b(z) are linearly independent solutions of this
differential equation:

d w

dz

a

z

b

z

w

2

2

2

2

1

4

1 4
0+ - + +

-Ê

Ë
ÁÁ

ˆ

¯
˜̃ =

The Whittaker W function is defined via the confluent hypergeometric functions:

W z e z U b a b za b
z b

, , ,() = - + +Ê
ËÁ

ˆ
¯̃

- +2 1 2 1

2
1 2

Tips

• All non-scalar arguments must have the same size. If one or two input arguments are
non-scalar, then whittakerW expands the scalars into vectors or matrices of the same
size as the non-scalar arguments, with all elements equal to the corresponding scalar.

References

Slater, L. J. “Cofluent Hypergeometric Functions.” Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
hypergeom | kummerU | whittakerM

Introduced in R2012a

4 Functions — Alphabetical List

4-1288

wrightOmega
Wright omega function

Syntax

wrightOmega(x)

wrightOmega(A)

Description

wrightOmega(x) computes the Wright omega function of x.

wrightOmega(A) computes the Wright omega function of each element of A.

Input Arguments

x

Number, symbolic variable, or symbolic expression.

A

Vector or matrix of numbers, symbolic variables, or symbolic expressions.

Examples

Compute the Wright omega function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results:

wrightOmega(1/2)

ans =

 0.7662

wrightOmega(pi)

 wrightOmega

4-1289

ans =

 2.3061

wrightOmega(-1+i*pi)

ans =

 -1.0000 + 0.0000

Compute the Wright omega function for the numbers converted to symbolic objects. For
most symbolic (exact) numbers, wrightOmega returns unresolved symbolic calls:

wrightOmega(sym(1/2))

ans =

wrightOmega(1/2)

wrightOmega(sym(pi))

ans =

wrightOmega(pi)

For some exact numbers, wrightOmega has special values:

wrightOmega(-1+i*sym(pi))

ans =

 -1

Compute the Wright omega function for x and sin(x) + x*exp(x). For symbolic
variables and expressions, wrightOmega returns unresolved symbolic calls:

syms x

wrightOmega(x)

wrightOmega(sin(x) + x*exp(x))

ans =

wrightOmega(x)

ans =

wrightOmega(sin(x) + x*exp(x))

Now compute the derivatives of these expressions:

diff(wrightOmega(x), x, 2)

diff(wrightOmega(sin(x) + x*exp(x)), x)

4 Functions — Alphabetical List

4-1290

ans =

wrightOmega(x)/(wrightOmega(x) + 1)^2 -...

wrightOmega(x)^2/(wrightOmega(x) + 1)^3

ans =

(wrightOmega(sin(x) + x*exp(x))*(cos(x) +...

exp(x) + x*exp(x)))/(wrightOmega(sin(x) + x*exp(x)) + 1)

Compute the Wright omega function for elements of matrix M and vector V:

M = [0 pi; 1/3 -pi];

V = sym([0; -1+i*pi]);

wrightOmega(M)

wrightOmega(V)

ans =

 0.5671 2.3061

 0.6959 0.0415

ans =

 lambertw(0, 1)

 -1

More About

Wright omega Function

The Wright omega function is defined in terms of the Lambert W function:

w p
p

x W ex
x() = ()()-È

Í
Í

˘

˙
˙

Im

2

The Wright omega function ω(x) is a solution of the equation Y + log(Y) = X.

References

Corless, R. M. and D. J. Jeffrey. “The Wright omega Function.” Artificial Intelligence,
Automated Reasoning, and Symbolic Computation (J. Calmet, B. Benhamou, O. Caprotti,
L. Henocque, and V. Sorge, eds.). Berlin: Springer-Verlag, 2002, pp. 76-89.

 wrightOmega

4-1291

See Also
lambertW | log

Introduced in R2011b

4 Functions — Alphabetical List

4-1292

xor
Logical XOR for symbolic expressions

Syntax

xor(A,B)

Description

xor(A,B) represents the logical exclusive disjunction. xor(A,B) is true when either A
or B are true. If both A and B are true or false, xor(A,B) is false.

Input Arguments

A

Symbolic equation, inequality, or logical expression that contains symbolic
subexpressions.

B

Symbolic equation, inequality, or logical expression that contains symbolic
subexpressions.

Examples

Combine two symbolic inequalities into the logical expression using xor:

syms x

range = xor(x > -10, x < 10);

Replace variable x with these numeric values. If you replace x with 11, then inequality x
> -10 is valid and x < 10 is invalid. If you replace x with 0, both inequalities are valid.
Note that subs does not evaluate these inequalities to logical 1 or 0.

 xor

4-1293

x1 = subs(range, x, 11)

x2 = subs(range, x, 0)

x1 =

-10 < 11 xor 11 < 10

x2 =

-10 < 0 xor 0 < 10

To evaluate these inequalities to logical 1 or 0, use isAlways. If only one inequality is
valid, the expression with xor evaluates to logical 1. If both inequalities are valid, the
expression with xor evaluates to logical 0.

isAlways(x1)

isAlways(x2)

ans =

 1

ans =

 0

Note that simplify does not simplify these logical expressions to logical 1 or 0. Instead,
they return symbolic values TRUE or FALSE.

s1 = simplify(x1)

s2 = simplify(x2)

s1 =

TRUE

s2 =

FALSE

Convert symbolic TRUE or FALSE to logical values using isAlways:

isAlways(s1)

isAlways(s2)

ans =

 1

ans =

 0

4 Functions — Alphabetical List

4-1294

More About

Tips

• If you call simplify for a logical expression containing symbolic subexpressions, you
can get symbolic values TRUE or FALSE. These values are not the same as logical 1
(true) and logical 0 (false). To convert symbolic TRUE or FALSE to logical values, use
isAlways.

• assume and assumeAlso do not accept assumptions that contain xor.

See Also
all | and | any | isAlways | not | or

Introduced in R2012a

 zeta

4-1295

zeta
Riemann zeta function

Syntax

zeta(z)

zeta(n,z)

Description

zeta(z) evaluates the Riemann zeta function at the elements of z, where z is a numeric
or symbolic input.

zeta(n,z) returns the nth derivative of zeta(z).

Examples

Find Riemann Zeta Function for Numeric and Symbolic Inputs

Find the Riemann zeta function for numeric inputs.

zeta([0.7 i 4 11/3])

ans =

 -2.7784 + 0.0000i 0.0033 - 0.4182i 1.0823 + 0.0000i 1.1094 + 0.0000i

Find the Riemann zeta function symbolically by converting the inputs to symbolic objects
using sym. The zeta function returns exact results.

zeta(sym([0.7 i 4 11/3]))

ans =

[zeta(7/10), zeta(i), pi^4/90, zeta(11/3)]

zeta returns unevaluated function calls for symbolic inputs that do not have results
implemented. The implemented results are listed in “Algorithms” on page 4-1299.

4 Functions — Alphabetical List

4-1296

Find the Riemann zeta function for a matrix of symbolic expressions.

syms x y

Z = zeta([x sin(x); 8*x/11 x + y])

Z =

[zeta(x), zeta(sin(x))]

[zeta((8*x)/11), zeta(x + y)]

Find Riemann Zeta Function for Large Inputs

For values of |z|>1000, zeta(z) might return an unevaluated function call. Use
expand to force zeta to evaluate the function call.

zeta(sym(1002))

expand(zeta(sym(1002)))

ans =

zeta(1002)

ans =

(1087503...312*pi^1002)/15156647...375

Differentiate Riemann Zeta Function

Find the third derivative of the Riemann zeta function at point x.

syms x

expr = zeta(3,x)

expr =

zeta(3, x)

Find the third derivative at x = 4 by substituting 4 for x using subs.

expr = subs(expr,x,4)

expr =

zeta(3, 4)

Evaluate expr using vpa.

expr = vpa(expr)

 zeta

4-1297

expr =

-0.07264084989132137196244616781177

Plot Zeros of Riemann Zeta Function

Zeros of the Riemann Zeta function zeta(x+i*y) are found along the line x = 1/2. Plot
the absolute value of the function along this line for 0<y<30 to view the first three zeros.

syms y

ezplot(abs(zeta(1/2+1i*y)),[0 30])

grid on

4 Functions — Alphabetical List

4-1298

Input Arguments

z — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic
variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function or expression.

n — Order of derivative
nonnegative integer

 zeta

4-1299

Order of derivative, specified as a nonnegative integer.

More About

Riemann Zeta Function

The Riemann zeta function is defined by

z ()s
k

s
k

=
=

•

Â
1

1

The series converges only if the real part of z is greater than 1. The definition of the
function is extended to the entire complex plane, except for a simple pole z = 1, by
analytic continuation.

Tips

• Floating point evaluation is slow for large values of n.

Algorithms

The following exact values are implemented.

•
z 0

1

2
() = -

•
z

p
0 1

2

2

2
,

ln ln
() = -

()
-

()

• z •() = 1

• If z < 0 and z is an even integer, z z() = 0.

• If z < 0 and z is an odd integer

z z

z

z

() = -
-()

-

bernoulli 1

1

4 Functions — Alphabetical List

4-1300

For z < -1000 , zeta(z) returns an unevaluated function call. To force evaluation,
use expand(zeta(z)).

• If z > 0 and z is an even integer

z
p

z

z

z

z

() =
() ()2

2

|bernoulli |

!

For z > 1000 , zeta(z) returns an unevaluated function call. To force evaluation, use
expand(zeta(z)).

• If n > 0 , z n, .•() = 0

• If the argument does not evaluate to a listed special value, zeta returns the symbolic
function call.

See Also
bernoulli

Introduced before R2006a

 ztrans

4-1301

ztrans

Z-transform

Syntax

ztrans(f,trans_index,eval_point)

Description

ztrans(f,trans_index,eval_point) computes the Z-transform of f with respect to
the transformation index trans_index at the point eval_point.

Input Arguments

f

Symbolic expression, symbolic function, or vector or matrix of symbolic expressions or
functions.

trans_index

Symbolic variable representing the transformation index. This variable is often called the
“discrete time variable”.

Default: The variable n. If f does not contain n, then the default variable is determined
by symvar.

eval_point

Symbolic variable or expression representing the evaluation point. This variable is often
called the “complex frequency variable”.

Default: The variable z. If z is the transformation index of f, then the default evaluation
point is the variable w.

4 Functions — Alphabetical List

4-1302

Examples

Compute the Z-transform of this expression with respect to the transformation index k at
the evaluation point x:

syms k x

f = sin(k);

ztrans(f, k, x)

ans =

(x*sin(1))/(x^2 - 2*cos(1)*x + 1)

Compute the Z-transform of this expression calling the ztrans function with one
argument. If you do not specify the transformation index, ztrans uses the variable n.

syms a n x

f = a^n;

ztrans(f, x)

ans =

-x/(a - x)

If you also do not specify the evaluation point, ztrans uses the variable z:

ztrans(f)

ans =

-z/(a - z)

Compute the following Z-transforms that involve the Heaviside function and the
binomial coefficient:

syms n z

ztrans(heaviside(n - 3), n, z)

ans =

(1/(z - 1) + 1/2)/z^3

ztrans(nchoosek(n, 2)*heaviside(5 - n), n, z)

ans =

z/(z - 1)^3 + 5/z^5 + (6*z - z^6/(z - 1)^3 + 3*z^2 + z^3)/z^5

If ztrans cannot find an explicit representation of the transform, it returns an
unevaluated call:

 ztrans

4-1303

syms f(n) z

F = ztrans(f, n, z)

F =

ztrans(f(n), n, z)

iztrans returns the original expression:

iztrans(F, z, n)

ans =

f(n)

Find the Z-transform of this matrix. Use matrices of the same size to specify the
transformation variable and evaluation point.

syms a b c d w x y z

ztrans([exp(x), 1; sin(y), i*z],[w, x; y, z],[a, b; c, d])

ans =

[(a*exp(x))/(a - 1), b/(b - 1)]

[(c*sin(1))/(c^2 - 2*cos(1)*c + 1), (d*1i)/(d - 1)^2]

When the input arguments are nonscalars, ztrans acts on them element-wise. If
ztrans is called with both scalar and nonscalar arguments, then ztrans expands
the scalar arguments into arrays of the same size as the nonscalar arguments with all
elements of the array equal to the scalar.

syms w x y z a b c d

ztrans(x,[x, w; y, z],[a, b; c, d])

ans =

[a/(a - 1)^2, (b*x)/(b - 1)]

[(c*x)/(c - 1), (d*x)/(d - 1)]

Note that nonscalar input arguments must have the same size.

When the first argument is a symbolic function, the second argument must be a scalar.

syms f1(x) f2(x) a b

f1(x) = exp(x);

f2(x) = x;

ztrans([f1, f2],x,[a, b])

ans =

4 Functions — Alphabetical List

4-1304

[a/(a - exp(1)), b/(b - 1)^2]

More About

Z-Transform

The Z-transform of the expression f = f(n) is defined as follows:

F z
f n

zn
n

() =
()

=

•

Â
0

.

Tips

• If you call ztrans with two arguments, it assumes that the second argument is the
evaluation point eval_point.

• If f is a matrix, ztrans acts element-wise on all components of the matrix.
• If eval_point is a matrix, ztrans acts element-wise on all components of the

matrix.
• To compute the inverse Z-transform, use iztrans.

• “Compute Z-Transforms and Inverse Z-Transforms” on page 2-206

See Also
fourier | ifourier | ilaplace | iztrans | kroneckerDelta | laplace

Introduced before R2006a

